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1. Introduction

Fluorescence confocal microscopy imaging is today one of the most important tools in
biomedical research. In this modality the image intensity information is obtained from
specific tagging proteins that fluoresce nanoseconds after the absorption of photons
associated with a specific wavelength radiation. Additionally, the confocal technology
rejects all the out-focus radiation, thereby allowing 3-D imaging almost without blur.
Therefore, this technique is highly selective allowing the tracking of specific molecules,
tagged with fluorescent dye, in living cells (J.W.Lichtman & J.A.Conchello, 2005). However,
several difficulties associated with this technology such as multiplicative noise,
photobleaching and photo-toxicity, affect the observed images. These undesirable effects
become more serious when higher acquisition rates are needed to observe fast kinetic
processes in living cells.

One of the main sources of these problems resides on the huge amount of amplification used
to amplify the small amount of radiation captured by the microscope, required to observe
the specimen. The amplification process, based on photo-multiplicative devices, generates
images corrupted by a type of multiplicative noise with Poisson distribution, characteristic
of low photon counting process (R. Willett, 2006). In fact the number of photons that are
collected by the detector at each point in the image determines the signal quality at that
point. The noise distorting these images is in general more limiting than the resolution of the
confocal microscope.

The fluorophore is the component of the molecule responsible for its capability to fluoresce.
The photobleaching effect consists on the irreversible destruction of the fluorescence of the
fluorophores due to photochemical reactions induced by the incident radiation (J.Braga et
al., 2004; Lippincott-Schwarz et al., 2003). Upon extended excitation all the fluorophores will
eventually photobleach, which leads to a fading in the intensity of sequences of acquired
images along the time. This effect prevents long exposure time experiments needed to
analyse biologic processes with a long lasting kinetics (Lippincott-Schwarz et al., 2001).
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The photochemical reactions associated with the photobleaching effect also produce free
radicals toxic to the specimen. This photo-toxicity (J.W.Lichtman & J.A.Conchello, 2005)
effect increases along with the power of the incident radiation.

Establishing the right amount of incident radiation is a key point in this microscope
modality. On one hand, increasing the illumination increases the photon count which
improves the quality of the signal, but on the other hand, this increasing of the incident
radiation speeds up the photobleaching and photo-toxicity effects that increase the quality
degradation of the acquired images and in the limit, may lead to a premature death of the
cells.

Many algorithms that deal with this type of microscopy images are conceived under the
assumption of the additive white Gaussian noise (AWGN) model. However, the multiplicative
white Poisson noise (MWPN) model is more appropriated to describe the noise corrupting
laser scanning fluorescence confocal microscope (LSFCM) images due to the photon-limited
characteristics, whose main attribute is its dependence on the image intensity. In order to
take advantage of all the knowledge on AWGN denoising, some authors, instead of using
the Poisson statistics of the noisy observations, they prefer to modify it introducing variance
stabilizing transformations, such as the Anscombe or the Fisz transforms (M.Fisz,1955;
P.Fryzlewicz & G.Nason, 2001). However, even applying the Anscombe transform, the
additive AWGN assumption is accurate only when each photon count is larger than thirty
(R.Willett, 2006).

In the seventies, W.H. Richardson and L. Lucy in separate works developed a specific
methodology for data following a Poisson distribution. The Richardson-Lucy (R-L)
algorithm can be viewed as an Expectation-Maximization (EM) algorithm including a
Poisson statistical noise model. This algorithm presents several weaknesses such as the
amplification of the noise after a few iterations, in particular when the signal to noise ratio
(SNR) is low, which is the case of LSFCM images.

More recently several works on denoising methods applied to photon-limited imaging have
come up in the literature. Methods based on wavelet and other similar transforms were
developed by several authors (K. Timmermann & R. Nowak, 1999), (P.Besbeas et al., 2004),
(R.Willett & R. Nowak, 2004), among many others. In conjunction with the use of the
Poisson statistics, in the Bayesian framework, several regularization schemes have been
proposed. Dey et al. from INRIA have proposed diverse deconvolution/denoising methods
in the Bayesian framework for confocal microscopy with fotal variation (TV) regularization
(N. Dey et. al. 2004, 2006). The authors conceived a combination of the R-L algorithm with a
regularizing TV based constraint, whose smoothing avoids oscillations in homogeneous
regions while preserving edges. The TV regularization was also used in conjunction with a
multilevel algorithm for Poisson noise removal (Chan & Chen, 2007). Adaptive window
approaches have been conceived for Poisson noise reduction and morphology preserving in
Confocal Microscopy (C.Kervrann & A.Trubuil, 2004). Non-parametric regression methods
have been developed in (J.Boulanger et al, 2008) for the denoising of sequences of
fluorescence microscopy volumetric images (3-D+t). In this case the authors adopted a
variance stabilizing procedure with a generalized Ascombe transform to combine Poisson
and Gaussian noise models and proposed an adaptive patch-based framework able to
preserve space-time discontinuities and simultaneously to reduce the noise level of the
sequences. Other approach was proposed by Dupé (Dupé, et al, 2008) where a
deconvolution algorithm uses a fast proximal backward-forward spitting iteration which
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minimizes an energy function whose data fidelity term accounts for Poisson noise and an L,
non-smooth sparsity regularization term acts upon the coefficients of a dictionary of
transforms such as wavelets and curvelets.

Here a denoising algorithm for Poisson data that explicitly takes into account the
photobleaching effect is presented, under the assumption that among all the complex
mechanisms associated to overlapping phenomena that can cause the fading of the intensity
in fluorescence microscopy, the photochemical one is the most relevant.

The main goal of the proposed algorithm is to estimate the time and space varying
morphology of the cell nucleus and simultaneously the intensity decay rate due to
photobleaching of fluorescence microscopy images of human cells.

The intensity decrease along the time is modelled by a decaying exponential with a constant
rate. The algorithm is formulated in the Bayesian framework as an optimization task where
a convex energy function is minimized.

Maximum a posteriori (MAP) estimation criterion is employed since it has been successfully
used in other modalities, specially for image restoration purposes.

In general the denoising process is an ill-posed and an ill-conditioned problem (Vogel, 1998)
requiring some sort of regularization. In the Bayesian framework the regularization effect is
achieved by using a prior distribution functions that are jointly maximized with the
distribution functions associated with the observation model describing the noise generation
process.

Given the characteristics of these images, the local markovianity of the nucleus morphology
seams to be a reasonable assumption. Thus, according to the Hammersley-Clifford theorem
(J.Besag, 1986), a Gibbs distribution with appropriate potentials can be considered as the a
prior knowledge about the cell nucleus morphology.

Several potentials have been proposed in the literature (T.Hebert & R.Leahy, 1989) and
among them, one of the most popular of these functions is the quadratic, mainly for the sake
of mathematic simplicity. However this function over-smoothes the solution. Since it is
assumed that the morphology of the cell consists of sets of homogeneous regions separated
by well defined boundaries, an alternative is the use of edge preserving priors such as total
variation (TV) based potential functions that have been applied with success in several
problems (L. I. Rudin et al., 1992; J. Bardsley & A. Luttman, 2006; N. Dey et al., 2004).

Very recently a new type of norms, called log-Euclidean norms, was proposed in (V. Arsigny
et al., 2006). The interaction between neighbouring pixels that regularizes the solution
imposed by the potential functions using this type of norms is based on the ratio of their
intensities and not on its difference. This new approach is particularly suitable to be used in
this case due to the positive nature of the optimization task associated with the denoising
process of the LSFCM images. The advantage of this type of norms is more perceivable in
small intensity regions where differences between neighbours are small while their ratios
may exhibit relevant values. The penalization cost obtained with difference based priors
may not be enough to remove the noise in these small intensity regions while the
penalization costs induced by the ratio based priors may be strong enough to do it.
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In this paper these log-Euclidean norms are jointly used with the total variation based priors
to improve the performance of the denoising algorithm in the small intensity regions and
simultaneously preserve the transitions across the entire image due to the TV approach.
Synthetic data were generated with a low level of SNR and Monte Carlo experiments were
carried on with these data in order to evaluate the performance of the algorithm.

Real data of a HeLa immortal cell nucleus (D.Jackson, 1998), acquired by a laser scanning
fluorescence confocal microscope (LSFCM), are used to illustrate the application of the
algorithm.

2. Problem Formulation

Each sequence of MxN fluorescence microscopy images under analysis, Y, corresponds to
L observations of a cell nucleus acquired along the time. Data can be represented by a 3D
tensor, Y = {yi,j,t}, with 0<1i,j, t<N-1M -1, L - 1. Each pixel, y; ;, is corrupted by

Poisson noise and the time intensity decrease due to the photobleaching effect is modelled by
a decaying exponential whose rate, denoted by A, is assumed to be constant in time and in
space.

The goal of the algorithm described here is the estimation of human cells morphology along
the time as well as the intensity decay rate, A, associated with the photobleaching effect, from
the noisy sequence Y, usually exhibiting a low signal to noise ratio (SNR).

The proposed method consists of an iterative algorithm performed in two-steps. In the first
step the intensity decay rate coefficient, A, is estimated jointly with a crude time invariant
basic morphology version of the cell.

In the second step a more realistic time and space varying version of the cell nucleus
morphology is estimated by using the intensity decay rate coefficient, A, obtained in the
previous step.

The overall estimation process needs to be decomposed in these two steps in order to
decouple the sources of intensity changes which are the photobleaching effect, estimated in
the first step, and the real cell morphology changes in time and space, estimated in the
second step.

2.1 Step one

Let us focus now on the first step of the algorithm where the rate of decay due to the
photobleaching is estimated.

Let X be an approximated noiseless version of the noisy data, Y, where

—At
Xijt =8i,j € @

G:{g[ ]_}, with 0 <4, j SN - 1,M - 1, represents a time invariant version of the cell

morphology and e represents the time intensity decay term that models the
photobleaching effect. By adopting this model all the time variability of the intensity in the
images is caught by the exponential term in order to accurately estimate the rate of decay
due to the photobleaching.
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A Bayesian approach using the maximum a posteriori (MAP) criterion is adopted to estimate
G and A. The problem may be formulated as the following energy optimization task

(é,f\) = ar(g;n;in E (G,}\,Y) @)

where the energy function E(G,A,Y)=Evy (G,A,Y)+E g (G) is the sum of two terms, a
data fidelity term, Ey (G,%,Y), and a prior term, E g (G), needed do regularize the
solution. The a priori information for A is merely its overall constancy. The first term of this
sum pushes the solution towards the observations according to the type of noise corrupting

the images and the a priori energy term penalizes the solution in agreement with some
previous knowledge about G (T. K. Moon & W. C. Stirling, 2000).

Assuming the independence of the observations the data fidelity term, which is the anti-
logarithm of the likelihood function, is

N-1,M-1,L~-1
Ey (G A Y)=-log HPL(Yi,j,t 184, /7») 3)
i,jt=0
h (51" 667 s the Poisson distribution, yield
where P(Yi,j,t|8i,jr}\): — e ij is the Poisson distribution, yielding
Y1,],t-
-\ -\
E Y (G, 7\4,Y) = Z[gi,je t _Yi,j,t log(gi,je t)]-i—C (4)

it
The prior term regularizes the solution and helps to remove the noise. By assuming G as a
Markov  random  field (MRF), p(G) can be written as a Gibbs distribution,

p(G) :%eiZCECV(g“) , where Z is the partition function and V(.) are the clique potentials

(S.Geman & D.Geman, 1984). The sum of all cligue potentials, the negative of the exponential
argument function, is called the Gibbs energy, E g (G). In order to preserve the edges of

the cell morphology log-total variation (log-TV) potentials are used in the regularization term.
These potential functions have shown to be appropriated to deal with this type of

optimization problems in RY (V. Arsigny et al., 2006).

The regularization based on quadratic potentials is often used because they simplify the
mathematical formulation of the estimation problem. However, they over-smooth the
solution, leading to significant loss of morphological details. On the contrary, the log-TV
prior is more efficient to attenuate small differences among neighbouring nodes due to the
noise, but it penalizes less the large amplitude differences due to the transitions.
Additionally, this prior is able to penalize differences between neighbouring pixels when
their amplitude is very small. This does not happen with quadratic priors that are based on
differences between pixels, g; —g;, , and not on amplitude ratios, g; /g;,, on which the log-

TV prior is based.
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The log-TV Gibbs energy function is defined as follows

EG(G)ZQZ logZ[ 8ij ]-rlogz[ 5ij ] ®)

ijt gi-1,j 8i,j-1

and therefore the overall energy function to be minimized is

N _ 8i,j 8i,j
E(G, L Y)= Z[gi/je M—yi/j/t log(gi/]-e M)]+otLZ\/log2[g ! ]+10g2[ ) j (6)

it ij i-1,j &i,j-1
where a is a tuning parameter used to control the regularization strength that is kept
constant in this step.

The minimization of the energy function (6) with respect to g; ;leads to a non-convex

problem (Stephen Boyd & Lieven Vandenberghe, 2004) since it involves non-convex

functions (e.g. \/ 10g2(x / a)+ 10g2(x / b) ). However, performing an appropriate change of
variable, s; ; =log(g; ;) it is possible to turn it into convex. Due to the monotonicity of the
logarithmic function, the minimizers of both energy functions E (G,A,Y) and
E (S,1,Y) are related by S = log(G*) .

The new objective function for the first step of this model is then

S SN g (s R

E (S,\Y)= Z [e ~Yijt (SI’J —)\t) + aLZ (51,] —51_1,]) +(51,] _51,]—1) @)
ijt 1j

The minimization of this equation is accomplished by finding its stationary points,

performing iteratively its optimization in S with respect to each components; ;, one at a

time, considering all other components in each iteration as constants.
Let us explicitly represent the terms involving a given node s; ; in the energy function (7)

si i—At
E(S,\Y)= Z[e Y —Yi,j,tsi,]} +
t

GL[\/(Si,j - Si—l,j)2 + (Si,j ~Si,j-1 )2 + \/(5i+1,j - Si,j)2 + (5i+1,j ~Si+1,j-1 )2 + (8)

Yoo -siapaf (s o) } -

where C is a term that does not depend on s; ;. To cope with the difficulty introduced by

the non-quadratic terms, a Reweighted Least Squares based method is used (B.Wohlberg &

P.Rodriguez, 2007). The minimizer of the convex energy function (8), s , is also the
minimizer of the following energy function with quadratic terms
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S; i—At
E(S,\Y)= Z[e Y- Yi,j,tsi,j} +
t

C[L|:W(S;,j)|:(si,j - si—l,j)2 + (Si,j - si,j—l )2:| +
W(S;+1,j)[(si+1,j - Si,j)2 + (Si+1,j ~Si+1,j-1 )2} +

RS RN US|

where

wlsi, )= — - — (10)
\/(Si,j _Si—l,j)z + (Si,j _si,j—l)z

Since the weights w(s;j), w(s;rl,j) and w(s;j +1) depend on the unknown minimizer s;j ,

an iterative procedure is used, where in the k' iteration, the estimated value s(l(fl),
p i

computed in the previous iterations, is used instead of s;j . For sake of simplicity let us

denote the weights w(sﬁ_l)), w(sflﬁl])) and w(siklj)) just by w,w. and w4 respectively.

The minimization of (9) with respect to s; ; is performed by finding its stationary point,

L At
Z(es T Y )+ hi;=0 (1)

t
where

hi,' =2al (2w + W+ Wd)si,’ —W|(8i_1,j T8i,i-1 ) — WeSi+1,i —~ WdSi,i+1 (12)
] ] ] ] ] ]

The minimizer of (7) with respect to A can be obtained through the computation of its
stationary point, which is accomplished by solving the equation

si i—At
> {—te g +Wi,j,t} =0 (13)
it
Using the Newton’s method the solutions of (11) and (13) can be iteratively obtained by

(F) _z¢
Zt[es”] - yi,j,t] +h;
Sk+1) _ (k) _

ij i] IOV
2ile’’ +2aL(2w+w, +wg)

(14)
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A1) () (15)

The stopping criterion is based on the norm of the error of A between consecutive iterations
and on the number of iterations. The norm of the error of s; ; was also computed but only
for control purposes, since it acts as an auxiliary variable to estimate A.

The estimated parameter A is used in the next step as a constant, under the assumption that
the intensity decay due the photobleaching effect was totally caught in this step.

2.2 Step two

The ultimate goal of the second step of the proposed algorithm is to estimate the time and
space varying cell nucleus morphology, denoted by F = {fi,j,t}, where the intensity decay
rate due the photobleaching is characterized by the parameter A\ estimated in the previous
step. Each point of the noiseless image sequence, X = {xi,j/t } to be estimated is defined in this

step as

xi e =fi 0 e (16)

The estimation of the parametersf; ; , performed in a Bayesian framework by using the
maximum a posteriori (MAP) crlterlon, may be formulated as the following optimization task

argmm E(F A, Y) 17)

where the energy function E (F,k,Y) =E y (F, k,Y)+E r (F), as before, is the sum of two

terms, E y (F, A, Y), the data fidelity term and E g (F), the energy associated to the a priori

distribution for F .
To preserve the edges of the cell morphology, log-TV and L; (L;norm) potential functions

are used in space and in time respectively. The regularization is performed simultaneously
in the image space and in time using different prior parameters which means that this
denoising iterative algorithm involves an anisotropic 3-D filtering process that is able to
accomplish different smoothing effects in the space and in the time dimensions.

The energy function related to the a priori distribution of F is given by

Eg(F)= (xz log [fl 1]tJ+log (ff']t ]+BZlog[ Lt ] (18)

ijt i,j-1,t ijt i,j,t-1

Therefore the overall problem consists on minimizing the following function
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E(F, X’Y) = Z{fi,j,teiit “Yijt log(fi,j,tefit ﬂ

ijt
+ GZ\/ (log(fi,j,t )— log(fH,j,t ))Z + (log(fi,j,t )— log(fi,j—l,t ))2 (19)
ijt

+ BZ|log(fi,j,t )— log(fi/j/tfl 1

it

where o and B are tuning parameters to control the strength of the regularization in space
and in time respectively. The parameter o is adaptive and Pis constant. The standard
deviation of the logarithm of the morphology, computed for each image, seems to perform
an important role in adapting the strength of the regularization in the space domain. Thus,
for both synthetic and real data, a = ag x std(log(fi,j,t)) , where oy is a constant, is used.

As before, in the previous step, the energy function (19) with respect to f; ; ; is non convex.

it
Once again, to make it convex, the following change of variable is
performed: z; j + =log(fi j ) . Due to the monotonicity of this function, the minimizer of
E (F,X,Y) is related to the one of E (Z,i,Y) by Z" =log(F "), where the log function of
tensor F is taken component-wise.

The objective function to be minimized with respect to the unknowns Z, ;  in this second

step is

~ Z: s o=\t ~
E (Z, }\,Y) = z |:e Lyt - Yi,j/t (Zi,j,t - }\t):| +
i,j,t

2 2
QLZ\/(Zi,j,t_Zi—l,j,t) +(Zi,j,t_zi,j—l,t) + (20)
ijt
LY. ‘Zi,j,t - Zi,j,t—l‘
it
The estimation of Z is performed by using the ICM (Iterated Conditional Modes) method
(J.Besag, 1986) where (20) is minimized with respect to each unknown z;; at a time,

keeping all other unknowns constant.
As before, let us consider explicitly the terms involving a given node z; ; ;in the energy

equation
~ _ Z.,.,t 'Xt 2 2
E (Z, }\,Y)_z|:e 1] +Yi,j,tZi,j,t i|+(IL\/( Zi/j’t 'Zi-l,j,t ) + ( Zi,j/t -Zirj-llt ) +
t
2 2
(Zi+1,j,t 'Zi,j,t ) + ( Zi+1,j,t 'Zi+1,j-1,t ) + (21)

2 2
\/(Zi,j+1,t'zi-1,j+1,t) +(Zi,j+1,t'zi,j,t) +

ol

Zijt 'Zi,j,t-l"" Zi,j,t+1-Zi,j,tH+C
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where C is a term that does not depend on z; j ;. The optimization of (21) is performed by

using the Reweighted Least Squares method, as before in the first step, to cope with the non

quadratic prior terms. The minimizer of the convex energy function (21), Z" is also the
minimizer of the following energy function with quadratic terms

A —Xt
E (Z, }\,Y) = Z{e 1]t — Yi,j,tZi,j,t} +

t

C{W(Z;j,t )|:(Zi,j,t - Zi—l,j,t)2 + (Zi,j,t - Zi,j—l,t)z} +

2 2
w(zis ],) Z1+1,j,t_zi,j,t) +(Zi+1,j,t_zi+1,j—1,t) + (22)

2 2
w 21 S+, t)|: Z1,j+1,t_zi—1,j+1,t) +(Zi,j+1,t—Zi,j,t) ﬂ+

2 2
ﬁ{v(zi,jﬂ,t)(zi,j,t - Zi,j,t—l) + V(Zi,j,t+1)(zi,j,t+1 - Zi,j,t) } +C

where

wlz, )= !
Lt . . )2 ( N N ’ (23)
Zijt —Zi-1,jt) T\Zijt —Zij-1,t
and

vl )e (24)

Zijt ~ Zi,j,t—l‘

Since the weights w( ij, t) (Z;Jrl,j,t), w(z;jﬂrt) , v(z;j,t) and V(Z;LHJ) depend on the

unknown minimizer Z~, the same iterative procedure used in the first step is adopted here,

where the estimation of Z" at the previous (k — 1)th iteration, Z&™1 , is used. Let us denote

these weights by W, w,, W,, vV, and V_ respectively.

The minimization of (22) with respect to z; ; ; is obtained by finding its stationary point,
OEZ1,Y) _ ozt

aZi,j Y1,],t + hl,],t =0 (25)
where
hi,]-,t = Z(Zaw +ow. +oawg +Bv, +Bv, )zi,j/t - 2cxw(zi_1,j,t +Zi 1t )— 2awczi+1,j,t -
20W4z; ji1,t = 2B\Vazi jt1 +VeZij i1 @0
Using the Newton’s method the solution of (25) can be obtained iteratively by
L) _ () e T et R @)

ijt Ljt

eZi M 202w +w +wyq)+2B(v, +ve)
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3. Experimental Results

In this section experimental results with synthetic and real data are presented.

3.1 Synthetic data

The synthetic data is formed by a set of 64 images of a white circle moving from the left top
corner of the first image down to the right, along the diagonals of 64 squares, 64x64 pixels,
with constant velocity, over a grey background. This set of images was conceived having in
mind the real situation where the morphology of a cell nucleus changes along the image
with time. For the first image of the sequence (t=0), the intensities of the circle and of the
background were set equal to 50 and 10 respectively. The final sequence of synthetic data
was then generated by applying an exponential decay in time (t=0,...,63) with rate equal to
A=0.025 image! , followed by corruption with Poisson noise. This rate of decay can be
considered realistic under the hypothesis of an acquisition rate of 10s, which means
2=0.0025s"1 .

Fig. 1 shows images for three time instants of the synthetic sequence. The images on the first
double row (a) belong to the original sequence, before being corrupted by Poisson noise.
The same images corrupted with Poisson noise are shown in (b). The third double row (c),
with the results of the reconstruction according to eq. 16 of the second step of the algorithm,
show the ability of this methodology for removing noise, although providing good
preservation of the edges of the moving circle.

@

UE2h.
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Fig. 1. (a),(b),(c) Three time instants (1, 20, 40) of the true, noisy and reconstructed synthetic
sequences and respective mesh representations.

The mesh representations of the estimated morphology for three different time instants of
the sequence show the ability of the algorithm to recover the true morphology whose shape
is a constant height cylinder and whose behaviour in time is to slide down along the
diagonal of a 64x64 pixels square. Both the position and the height of the cylinder are
correctly estimated for the complete sequence.
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Fig. 2. Mesh representation of the estimated morphology fi’j,t for images 1 (a), 20 (b) and 40
©):

An example of the denoising and recovery capabilities of the presented methodology is
shown in Fig. 3. where the true (a), the noisy (b) and the estimated (c) morphologies
corresponding to image 48 of the sequence are displayed. Subplot (d) shows profiles taken
along the diagonal of (a), (b) and (c). In spite of the degradation of the image, it is noticeable
how well the algorithm manages to recover the morphology.

@) (b) © (d)

100

50

: ]
20 40 60 20 40 &0 0 40 60 0 20 40 60

Fig. 3. (d) Morphology profiles, image 48, (a) True (black line in (d)), (b) Noisy (blue line in
(d)), (c) Estimated (red line in (d)).

The root mean square error (RMSE) of the estimated morphology of the complete sequence
was computed for each of the 300 iteration of the second step and its plot can be seen in Fig.
4. During the first 20 iterations the RMSE drops very quickly and keeps that trend till the
end of the iterative procedure, which suggests effective convergence of the algorithm.
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Fig. 4. Root mean square error (RMSE) of the estimated morphology of the complete
sequence, in every iteration.

In order to evaluate the quality of the presented algorithm, the signal to noise ratio (SNR), the
mean square error (MSE) and the Csiszdér I-divergence (I-div) were adopted. The literature is
not very conclusive on what concerns to the choice of the figure of merit more suitable to
evaluate the quality of an algorithm that deals with Poisson multiplicative noise.

Some authors use the SNR although there is strong evidence that it gives a more efficient
quality evaluation in the Gaussian denoising situations than in the Poissonian ones.

As in section 2, let X = {xi,j,t} and X = {ii/j,t} with 0 <1, j,t <N - 1,M - 1,L-1, be respectively

the noiseless and the estimated sequences of images. The SNR of image t of the estimated
sequence can be defined as:
_Z(Xi,j,t)2

SNR(t) = 101og | —=2—— 28
Z(Xi,j,t BRSHE: )
ij
The MSE is extensively used with the purpose of evaluating the quality of the denoising
algorithm, independently of the noise statistics and is defined as:

1 n
MSE(t)=WZ(Xi,j,t _Xi,j,t)2 2
1,]

According to (N. Dey et al., 2004), to quantify the quality of the denoising procedure in the
presence of non-negativity constraints, which is the case of the Poisson denoising, the
Csiszaér I-divergence (Csiszaér, 1991) is the best choice.

The I-Divergence between the tth image of the original (noiseless) sequence X and the tth

image of the restored sequence Xis given by:

. Xijt N
I—dIVX,X (t) =Z lxi,j,tlog [A 1 J J - ( Xij,tXijt )‘| 30

i,j Xl,],t

The I-Divergence can be interpreted as a quantifier of the difference between the true image
and the estimated one. Ideally, a perfect denoising should end with an I-div equal to zero.
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A Monte Carlo experiment with 500 runs, based on sequences similar to the described
above, was carried out. For each run, the rate of decay A was estimated in the first step and
used to estimate the morphology f;;, in the second step. The final reconstruction is

At

obtained by X; ; ; =f; j re”
The SNR, the MSE and the I-div were computed for every image in each of the 500 runs and
the means and standard deviations of the estimated lambda, A™™, of the SNR of the

reconstruction, SNR(;m) , of the MSE of the morphology, MSEgun) , of the MSE of the
reconstruction, MSE (™), of the I-div of the morphology, I-div{™" and of the I-div of the
reconstruction I—divgun) , were computed.

The mean of the estimated rate of decay is 0.025061, with a mean square error (MSE) of

0.00011126, which is very close to the original one (0.025) .

Fig. 5. (a) shows the mean of the SNR for each image of the noisy sequences used in the
Monte Carlo experiment (black line) and the mean of the SNR of the respective
reconstruction. As can be noticed, the SNR improvement is ~10dB and is almost constant
throughout the sequence of images.

The mean of the MSE of the reconstruction is plotted in Fig. 5. (b) strengthen the evidence of
the ability of the presented algorithm to restore this type of sequences.
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Fig. 5 (a) Mean of the SNR over the 500 runs computed from the noisy sequence (black line)

and from the reconstructed sequence X (red line), (b) Mean of the MSE of the reconstructed
sequence.

In the present situation the mean of the I-div of the reconstructed images (Fig. 6.) is not zero

as it would be in an ideal case, but it is well bellow the one obtained with the noisy
sequences.
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Fig. 6. I-div mean over 500 runs from the noisy sequence y (black line) from the

reconstructed sequence X (red line).

3.2 Real data
Three sets of real CLSFM images of cell nucleus, identified as 2G100, 7GREEN_FRAP and
BDM_FLIP, were analyzed.

The sequence 2G100 consists of 100 CLSFM images of a Hela cell nucleus, acquired at a rate
of 23s, in normal laboratory conditions, using a continuous, low intensity laser illumination.
During the acquisition of the 2G100 sequence, no additional techniques such as FRAP
(Fluorescence Recovery After Photobleaching) or FLIP (Fluorescence Loss In
Photobleaching) were employed. The aim is the observation of a cell nucleus where certain
particles are tagged with fluorescent proteins, for quite a long time, in order to acquire data
where the photobleaching effect occurs without the interference of important diffusion and
transport phenomena.

Three images, 1, 20, 45 of this sequence, corresponding to the time instants 0Os, 460s and
1035s after the beginning of the acquisition process, are displayed in Fig. 7. (a), (b) and (c).
The appearance of these images is noisy, with an SNR decreasing very quickly with the
time.

Using the previously described methodology, the rate of decay due to the photobleaching, A,
and the cell nucleus morphology, F; ; ; = {fi,]-,t },were estimated. The achieved value for the

rate of decay was A =3.9988x10"*s71 .

Fig. 8. (a), (b) and (c) show images of the reconstructed sequence for the same time instants
as in Fig. 7, where a considerable reduction of noise can be observed while their
morphological details are preserved.
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(@) (b) ©

Fig. 7. Noisy images 1 (a), 20 (b), 45 (c) from the real data set 2G100.

(@) (b) ©

Fig. 8. Images 1 (a), 20 (b), 45 (c) from reconstructed sequence (2G100).

Three images of the estimated morphology can be seen in Fig. 9. (a), (b) and (c). It is
noticeable the substantial improvement in the quality of the details of the cell nucleus
structure. In particular, the comparison between the images displayed in Fig.7.c) and Fig.9.c)
reveals the ability of the algorithm to recover information from original images where
almost no information is available.

(@) (b) (©)

Fig. 9. Estimated morphology corresponding to images 1 (a), 20 (b), 45 (c) of the data set
2G100.

The plot of the horizontal and vertical profiles along the dashed lines in image (Fig. 10. (a),
(b) and (c)) reinforces this idea. The intensity valleys become more perceptible and
identifiable. The noise undergoes an effective reduction and the edges are well defined and
preserved.
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Fig. 10. (a) Reconstructed image 20 of the sequence 2G100. The red dash line corresponds to
the horizontal profile in (b). The green dashed line stands for the vertical profile in (c).

The means and standard deviations (std) of the images of the noisy and reconstructed
sequences were computed and the results are presented in the plot of Fig. 11. (a) and (b). As
can be observed in (a), the mean of the images is well preserved in the reconstruction; in
addition, the pattern of the std becomes smoother.
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Fig. 11. (a) Mean of each image of the sequence 2G100. Dark and light green lines
correspond to the reconstructed and to the noisy sequences respectively. (b) Standard
deviation of each image of the sequence 2G100. Dark and light red lines correspond to the
reconstructed and to the noisy sequences respectively.

In order to test the behaviour of the proposed algorithm in more complex situations where
diffusion and transport phenomena are present, the sequences 7GREEN_FRAP and
BDM_FLIP are used.

Sequence 7GREEN_FRAP consists of 108 images acquired at a rate of 9.4s per image, using
the FRAP (Fluorescence Recovery After Photobleaching) technique (R. Underwood, 2007). In
this technique a pre-defined region in the cell is illuminated with a high intensity focused
laser beam, during a small period of time, to force the irreversible photobleaching of the
fluorescence tagged molecules present within that region. The movements of the bleached
molecules out of the bleached region and of the surrounding unbleached molecules into the
bleached area lead to a recovery of fluorescence into the bleached area. The acquisition
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process consists on monitoring this recovery over time, at low laser power, to prevent
further bleaching. In this situation the fluorescence recovery superimposes the global
photobleaching due to the low intensity illumination of the cell nucleus, which explains the
slight increase of the intensity with the time.

As expected, the estimated rate of decay is negligible. Eventual small intensity fluctuations
that may be observed in the images are due to the manual fine tuning required to keep the
target points in focus during the experiment.

In Fig. 12. (a), (b) and (c) and Fig. 13. (a), (b) and (c), images corresponding to the time
instants t=9.4s, 460.6s and 1005.8s of the raw data and of the reconstruction are shown. Also
the corresponding estimated morphology is presented in Fig. 14. (a), (b) and (c). These
images denote a substantial improvement in the details of the nucleus structure.

(@) (b) ©

Fig. 12. (a) Noisy images 2 (a), 50 (b), 108 (c), real data set 7GREEN_FRAP.

Fig. 14. (a) Morphology 2 (a), 50 (b), 108 (c), sequence 7GREEN_FRAP.
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The profiles in Fig. 15. (a), (b) and (c) confirm this assertion. In this figure two images and
respective profiles are displayed to illustrate the increase of the intensity with time.

(b) ©

140 140
£ 100 Z100
o o
= =
Zz Zz
£ £
a0 a0
100 200 240 50 100 150 200 50 100 1a0 200
150 150
£ 100 £ 100
w w
= =
et} et}
E E
50 50
0 100 200 240 50 100 150 200 50 100 150 200

Fig. 15. (a) Reconstructed image 2 (first row) and 108 (second row) of the sequence
7GREEN_FRAP. The red dash line corresponds to the horizontal profile in (b). The green
dashed line stands for the vertical profile in (c).

Plots of the intensity means of the noisy and of the reconstructed sequences show the
constancy characteristic of an almost zero rate of decay. In addition, the reconstruction mean
(Fig.16. (a)), is well preserved while the std (Fig. 16. (b)) is smoother than the corresponding
to the noisy sequence.

From all these assertions it is possible to assume that the presented methodology is
appropriate for denoising and for morphology estimation when the FRAP technique is used.
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Fig. 16. (a) Mean of each image of the sequence 7GREEN_FRAP. Dark and light green lines
correspond to the reconstructed and to the noisy sequences respectively. (b) Standard
deviation of each image of the sequence 7GREEN_FRAP. Dark and light red lines

correspond to the reconstructed and to the noisy sequences respectively.
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The BDM_FLIP sequence consists of 175 images acquired at a rate of 7.4s and is the result of
applying the FLIP (Fluorescence Loss In Photobleaching) technique (R.Underwood, 2007)to
the Hela cell nucleus. This technique makes use of the photobleaching effect as a perturbing
agent of the distribution of fluorescent molecules in the cell nucleus. In a FLIP experiment,
during a certain time interval, a small defined region within the nucleus, expressing
fluorescently tagged proteins, is illuminated with repetitive bleach pulses of a high intensity
focused laser beam, in order to force the occurrence of the photobleaching effect. The
surrounding area is then monitored for a decrease in the level of fluorescence. Any fraction
of the cell nucleus connected to the area being bleached will gradually fade owing to the
movement of bleached molecules into the bleached region. The resulting information from
the experiment can then be used to determine the kinetic properties, including diffusion
coefficients, mobile fraction and transport rate of the fluorescently labeled molecules.

Three images from the sequence (t=29.6s, t=362.6s and t=843.6s) and respective
reconstruction are displayed in Figs. 17. (a), (b) and (c) and Figs. 18. (a), (b) and (c). It is easy
to perceive that the intensity decrease is quite fast which is very inconvenient when the
acquisition times are long.

(@) (b) (©

Fig. 17. (a) Noisy images 5 (a), 50 (b), 115 (c), real data set BDM_FLIP.

(@) (b) ©

Fig. 18. (a) Reconstructed images 5 (a), 50 (b), 115 (c), sequence BDM_FLIP.

The estimated value of the rate of decay of the intensity is A=15x10"s7". This value is
obviously larger than the one obtained for the sequence 2G100, due to the use of the FLIP
technique that reinforces the decrease of the intensity.

The estimated morphology is shown in Fig. 19. (a), (b) and (c) and the improvement in the
details of the nucleus structure are noticeable.
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(a) (b) ©

Fig. 19. (a) Morphology images 5 (a), 50 (b), 115 (c), BDM_FLIP.

The profiles in Fig. 20. (a), (b) and (c) were chosen to show the bleached region of the
nucleus. This region can be identified in the profiles as a depression of the intensity.
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Fig. 20. (a) Reconstructed image 10 of the sequence BDM_FLIP. The red dash line
corresponds to the horizontal profile in (b). The green dashed line stands for the vertical

profile in (c).

The mean of the reconstruction (Fig. 21. (a)) is preserved and the std (Fig. 21. (b)) is
smoothed.
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Fig. 21. (a) Mean of each image of the sequence BDM_FLIP. Dark and light green lines
correspond to the reconstructed and to the noisy sequences respectively. (b) Standard
deviation of each image of the sequence BDM_FLIP. Dark and light red lines correspond to

the reconstructed and to the noisy sequences respectively.
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4. Conclusion

In this chapter a new denoising algorithm for fluorescence microscopy (FM) imaging, to
deal with the Poissonian multiplicative noise corrupting the images, is proposed.
Furthermore, image sequences acquired along the time present an intensity decreasing due
to the permanent fluorophore loss of its ability to fluoresce. This effect is caused by
photochemical activity induced by the incident light that favours reactions of the fluorescent
protein with other surrounding molecules. This intensity decrease prevents long time
acquisition experiments because of the lack of morphological details in the last images of the
sequence, making the biological information recovery a difficult task.

The proposed algorithm is designed in the Bayesian framework, as an optimization task,
with the maximum a posteriori (MAP) criterion. The observation model takes into account
the photobleaching effect in order to recover as much as possible all the information present in
the sequence, even from the last images exhibiting a very low signal to noise ratio (SNR). This
is possible because the algorithm establishes temporal correlation between consecutive
images within the sequence.

The algorithm is developed iteratively in two steps. The intensity decay rate due to the
photobleaching is estimated in the first step assuming a time invariant cell morphology. The
goal in this step is to capture exclusively the intensity time variation caused by the
photobleaching in the exponential term. In the second step the time and space varying cell
morphology is estimated after compensating the photobleaching effect with the decay rate
estimated in the first step.

The energy functions used in the optimization problem are designed to be convex and their
minimizers are computed by using the Newton’s algorithm and a reweighted least squares
based method. This approach guarantees a continuous convergence towards the global
minimum. Furthermore, the prior distributions needed to regularize the solutions use edge
preserving potential functions. The associated Gibbs energy function is based on log-
Euclidean total variation functions in time and in space, appropriated to this positively
constrained optimization problem.

Monte Carlo tests with synthetic data were used to assess the performance of the algorithm.
These tests have shown the ability of the algorithm to strongly reduce the Poisson
multiplicative noise, to estimate both the decay rate due to the photobleaching and the
underlying morphology and, simultaneously, to preserve the transitions.

Tests with real data from laser scanning fluorescence confocal microscopy were also performed
where it is shown the effectiveness of the algorithm to cope with this type of noise and low
SNR, even when the FRAP and FLIP techniques are used. Images and profiles extracted
from the original and processed images are displayed for visualization and comparison
purposes.
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