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1. Introduction 

Computer Generated Hologram (CGH) is widely used for testing of large aspheric surfaces. 
It, however, is difficult to fabricate by the well-known E-beam methods because most of the 
CGH requires a large diameter (ø75 to 1,000 mm) and a tough precision (position accuracy 
of each line in the CGH should be less than 50 nm.). In this case, the direct laser lithography 
can be a proper choice to fabricate the CGH becuse it can easily extend the size (patterned 
area) with high precision.  
 

 

Fig. 1. (a) Configuration and (b) photographic view of the direct laser lithographic system. 

Figure 1 (a) shows the configuration of typical direct laser lithographic system, which 
includes (1) the intensity stabilization and control part, (2) the writing head with 
autofocusing mechanism, and (3) the moving part. The photographic view of the assembled 
lithographic system is shown in Fig. 1 (b). The blue light in this figure is the lithographic 
beam whose wavelength is 457.9 nm. The laser lithographic system requires a high stability 
of the intensity of the source. In the fluctuating spectrum of a gaseous laser, large variations 
may be found in the low frequency range, from dc to several hundred Hz, and considerably 
smaller variations in the frequency band to several hundred kHz. The first is attributed to 
such main factors as thermal variations of the resonant cavity, mechanical vibrations, dust 
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particles and air currents, instability, and the hum of the power supply. The second is 
mainly due to the oscillations in the plasma of the discharge column, especially in the region 
of the space charge at the cathode. The Ar+ laser that is used as a microfabrication source in 
our system also shows the above-mentioned beam fluctuations. For the source stabilization, 
we have introduced an Acousto-Optic Modulator (AOM), a photodetector, and produced a 
servo controller for controlling the AOM modulation depth. 
 

 

Fig. 2. Configuration of the writing head. 

The stabilized lithographic beam from the AOM comes into the writing head as shown in 
Fig. 2. The dotted line and the solid line represent the lithographic and the autofocusing 
beam, respectively. The tilting mirror permits a direction change of the lithographic beam 
with a 0.02o resolution in order to compensate for the run-out error of the rotary motor. One 
of important functions of the writing head is autofocusing. Furthermore, 20X, 50X, and 100X 
objectives are available in our system to alter the lithographic spot size. Each objective 
requires a different set of astigmatic lenses for the best autofocusing performance. Table 1 
shows the specifications of the moving part. A laser interferometer was also placed in the 
system to check the exact position of the writing head.  
 

Specification Rotary stage Linear stage 

Range 360o 200 mm 

Control type Closed loop Closed loop 

Feedback sensor Rotary encoder Linear encoder 

Resolution 0.0547 sec. 10 nm 

Max. Speed 600 rpm 100 mm/s 

Axis loads Wafer chuck + 1 kg 7 kg 

Table 1. Specification of the rotary and the linear stage. 

Figure 3 shows the main page of the operating software we developed. A pattern for 
fabrication is displayed in Part 1. Part 2 is a stage motion test panel. Part 3 shows the signals 
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from the motor encoders, the laser interferometer, the PD of the intensity control part, and 
the status of the shutter. The overall fabrication state is displayed in Part 4.  
The details of the intensity stabilization and the autofocusing are presented in Section 2. In 
Section 3, some applications are described. 
 

 

Fig. 3. Operating software. 

2. Key technologies 

2.1 Laser power stabilization 
The source beam is the Ar+ laser with and output power of 1.5 W at 514.5 nm and of 300 
mW at 457.9 nm wavelength. Its beam property is linearly polarized owing to plasma tube 
ends with Brewster angle cut. This is an important factor for power stabilization with our 
system. The stabilization system consists of the AOM, a cube beam splitter (BS), the photo-
detector (PD), and the control servo circuit.  The description of each part is as follow: The 
AOM is installed in the direction of propagation of the beam to conduct active power 
control, so that it is independent of the laser system used. For this reason, this setup will be 
able to apply to different kind of laser. The power control scheme using the AOM is that if 
its modulation depth is changed to minimize the intensity fluctuation in real time, the 
constant output power can be obtained. Hear the allowable modulation voltage limit 
corresponding to the modulation depth is up to 1 V. Therefore, to be well operated the 
AOM, the voltage between 0 V and 1 V have to be introduced to the AOM-RF driver. If the 
input voltage exceeds the limitation, the AOM loss their function as the active power 
controller. The first order beam passing through the AOM is split into two parts by BS. A 
small portion of reflected beam (about 8 %) is measured by the PD for stabilization itself. A 
linear polarizer (LP) is employed in front of the PD to prevent bring about serious damage 
to  the PD. The used PD has the damage threshold of 100 mW for continuous wave and 0.5 
J/cm2 for 10 ns pulse, respectively. We carried out our experiment with the power of 65 
mW. The servo controller was designed with an upper unity gain at 10 kHz to achieve high 
gain at low frequencies. The gain at frequencies below 100 Hz was at least 60 dB, which was 
sufficient gain to reduce the main fluctuation noise of around 100 Hz. 
The mechanism of the stabilization part is that the detected photocurrent by PD is converted 
to voltage and then is compared with extremely low noise voltage reference (Analogue 
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Devices AD581JH) in the servo controller. An error signal out of the controller is introduced 
into the AOM-RF driver to change the diffractive ratio of the AOM instantaneously. Also 
owing to time taken to circulate through the loop is very short (about 1 μs), continuous 
stabilization is achieved instantly. In this way, the first order beam power is maintained 
constantly. In our experiment, the AOM and the controller have 20 MHz and 5 MHz 
bandwidth, respectively. These are enough values that cover the noise frequency band of the 
used Ar+ laser. 
 

 

Fig. 4. Relative intensity noise of the Ar+ laser. The free-running mode shows the main noise 
frequency band of the laser. 

Figure 4 shows relative intensity noise as measured by a FFT spectrum analyzer with DC to 
102.4 kHz bandwidth (Stanford Research SR785) according to three different conditions 
which are free-running, control-on, and no signal detection. The free-running mode shows 
the large fluctuating noise at the low frequency range, from 20 Hz to 500 Hz. Once the 
control loop is on, we can see the noise level is dramatically reduced. If we look around the 
relative intensity noise level at relatively large fluctuation frequency of 100 Hz, we can see 
the value of 1.1 × 10-5 Hz-1/2 is reduced to 2.1 × 10-7 Hz-1/2 by about two orders. This result 
shows our stabilization system is able to carry out a function as a power controller. In the 
Fig. 4, there are regular bursts with 60 Hz spacing at the control-on or the no signal 
detection node. The reason is due to the florescent light incident on the PD. Later we could 
see that these bursts disappeared on the screen of the FFT spectrum analyzer as soon as the 
light was off. And if we expand the frequency band in the FFT spectrum analyzer, we can 
confirm our stabilization part has the noise control band up to 4 kHz. This range is sufficient 
to control the output power of various gaseous lasers including the Ar+ laser. 
The performance of the stabilization part is shown in Fig. 5. It shows clearly the difference of 
the power stabilities before and after operating the control loop. Long term stability 
obtained by the control loop is ± 0.20 % for 12 minutes. This is a considerably reduced 
quantity comparable with the free-running mode of ± 0.77 %. Normally, it takes 11 or 12 
hours to complete a piece of CGH. So we observed the long term stability for over 10 hours 
but the stability shown in the above result was not nearly changed. 
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Fig. 5. Long term stability of the Ar+ laser before and after operating the control loop. The 
a.u  means the arbitrary unit. 
 

 

Fig. 6. Long term stability of the internal mirror He-Ne laser. 

In addition, we have applied the stabilization part to a He-ne laser, and obtained the ± 0.12 
% stability as shown in Fig. 6. An important thing is that the laser has always to be linearly 
polarized. The reason is as follow. First, if non-polarized beam is used, the first order beam 
power is considerably decreased because the AOM efficiency is maximized when the 
direction of polarization of the beam has to be perpendicular to the direction of propagation 
of acoustic wave passing through the AOM crystal. The second, if we look into a laser gain 
profile with respect to multi longitudinal mode, each mode ha P or S-polarization, so that 
the oscillating beam is mixed with P and S-polarization each other. These non-polarization 
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beams were not controlled properly. In case of Ar+ laser, the plasma tube ends were cut 
with Brewster angle. Therefore the extracted beam was linearly polarized, so that we need 
not use any additional linear polarizer. 

2.2 Beam focusing using the autofocusing technique 
It is important to maintain constantly writing beam focus on the all of a surface during a 
fabrication for producing good quality of CGH and DOE. A principal factor affecting the 
variation of the focus is the tilted surface of a substrate. Because of the inclination, the size of 
the focal point is varied during the fabrication. In the result the line width is broader and the 
depth is shallower. In order to correct the defocusing amount which arises from the above 
reason, we have introduced an astigmatic strategy but enhanced new one, one of the active 
autofocusing methods, and produced an independent autofocusing controller to overcome 
speed limitation. The mechanism of the autofocusing system is as follows: an auxiliary 
reflection beam (LD in Fig. 1) from the surface of a substrate goes through a set of cylindrical 
lenses, and makes various intensity shapes on the focal plane depending on the distance 
variation between the surface and the cylindrical lens set. Here, the perpendicular 
cylindrical lens set plays an important role because it change sharply the intensity shape in x 
or y-direction according to the distance, so it maximizes astigmatism that it can increase 
defocusing amount and sensitivity. To this end, it is possible to make large scale optical 
fabrication maintaining uniform precision in comparison with the previous astigmatic 
method which is only applicable to small scale cases such as CD/DVD pickup. The intensity 
shape variation is accepted by a quadrant detector (EG&G UV140BQ-4) and then introduced 
to a computer by four different cables. The four signals from the quadrant detector (QD) 
make an error signal in the computer and feedback the error signal to the PZT actuator (PI 
P-721.0LQ) supported to the micro-objective lens to maintain the constant focal point on the 
substrate. By doing so, the constant focus can be formed on the surface. However, this 
method has a speed limitation of 9 Hz – if a spindle rotates one revolution in one second, 
then the autofocusing operates one time every 40 degrees – so that it is impossible to control 
the autofocusing on the high speed rotation with more than the angular velocity of 360 o/s. 
To improve the limitation, we have made an autofocusing controller built-in an electronic 
circuitry independent of the computer. The details of our system are explained as two 
following subsections. 
Depending on the LD beam shape reflected from a target surface through an optical system, 
QD makes different photocurrents at four detecting areas for the autofocusing. Figure 7 
shows the optical configuration of the autofocusing part. Firstly, we attached a band-pass 
filter, a linear polarizer, a biconvex lens, and a cube beam splitter to the writing head. The 
role of each part is as follows: the band-pass filter passes only 635 nm LD beam except for 
the 488 nm and 457.9 nm writing beam. The linear polarizer plays a role of reducing the 
residue reflection beam in the writing head that acts as a noise source on QD. The biconvex 
lens adjusts suitably beam scaling on QD and the optical distance from the target surface to 
QD, and the cube beam splitter reflects off most LD beam (about 90 %) coming from the 
surface to the cylindrical lens assembly. The other beam from the beam splitter (about 10 %) 
is monitored by a Charge Coupled Device (CCD). Secondly, we installed the cylindrical lens 
assembly composed of two cylindrical lenses right angle to each other on the linear stage. 
Lastly, QD mounted on a XYZ translator was also set up on the stage. In Fig. 7, the beam 
reflected from the material surface goes though the series of optics and makes a particular 
spot pattern near the focal planes. The QD is placed between two astigmatic foci that two 
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cylindrical lenses originally have, namely at the location where the intensity pattern looks to 
be a perfect circle as shown in Fig. 7 (position 2). The orientation of QD lines should be 45 o 
or 135 o with respect to the tangential plane of the cylindrical lenses. If the distance between 
the material surface and the objective is changed, the intensity patterns on QD will also be 
changed, thereby bringing about the error signal change. The radius of curvature of each 
cylindrical lens was 15.5 mm, the focal length was 30 mm, the space between two lenses was 
5.7 mm, and the effective focal length of two lenses was 15.7 mm.  
 

 

Fig. 7. Optical components to generate the auto-focusing error signal. The three different 
kinds of spot shape are formed on the QD according to the distance between the objective 
and the material surface. The position 2 indicates the exact focal point. 

Our autofocusing controller is possible to achieve the high speed control up to 150 Hz (PZT 
modulation limit). Each signal received by QD is guided into the controller through four 
different BNC cables. In the controller, first, the guided current signals are converted into 
the voltage signals by current to voltage converters. In this process, the capacitance of a 
condenser affect considerably to the response time of the PZT actuator. Figure 8 shows Bode 
diagram according to the capacitance change in which the reducer the capacitance, the faster 
the actuator response. The optimal capacitance we found here is 1 nF as shown in Fig. 8(c). 
When the capacitance was less than this, the actuator was overshot even to the minimum 
gain in our experiment. Especially if no condenser was used like in Fig. 8(d), a lot of noise 
was occurred in the process of current to voltage conversion. Under the larger capacitance 
such as Fig. 8(a), the autofocusing speed could not catch up with the rotation speed of 360 
o/s. Next, the converted voltage signals undergo a series of calculation (addition and 
subtraction), then makes a normalized error signal eN(I) as shown in the following Eq. (1). 

 
( )

( )
( )

a d b c
N

a d b c

I I I I
e I

I I I I

+ − += + + +  (1) 
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Fig. 8. Bode diagram about current to voltage conversion. (a) and (b) are the capacitance of 
100 nF and 10 nF. (c) is in the case of optimal capacitance of 1 nF for fast response of the PZT 
actuator. (d) shows no condenser case. 

 

Fig. 9. Alignment of QD to find out center at the exact focal point. (a) The exact QD center, 
(b) a case of off-center.  

where a, b, c, and d indicate the four sections of QD as shown in the Fig. 9(b), respectively. 

This normalization is able to reduce noise arising from the sudden light intensity fluctuation 

caused by dusts and/or stains on the surface of the substrate. In other words, this sudden 

intensity variation degrades the autofocusing function because of acting as a noise source. 

The normalized error eN(I) is divided into three parts and applied PID (Proportional Integral 

Derivative) control to each part. Multiplying suitable gains and summing each part, then a 

final focusing error signal (FES) is made. It can be written as 

 
( )

( ) ( ) ,N
p N i N d

de I
FES K e I K e I dI K

dI
= × + × + ×∫   (2) 
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where Kp, Ki, and Kd are the proportional, integral, and derivative gain, respectively. We 
have gotten better result than the case in which the proportional gain was only given. By 
doing so, residual error after the autofocusing was reduced more (less than 1 μm) and 
besides the control range was extended twice from ± 25 μm to ± 50 μm. Now, the remainder 
of work is to locate the laser beam shape to the center of QD. One problem is that when we 
look for the zero point for the autofocusing, the error signal would be zero even in the case 
of Fig. 9(b). To correct this we added a circuit which calculates position error signal (PES) to 
the controller. PES is given by 

 
( )

( ) ,
( )

a c b d
NP

a c b d

I I I I
e I

I I I I

+ − += + + +   (3) 

 ( ) ,p NPPES K e I= ×   (4) 

where eNP(I) represents a normalized error signal for the estimation of position error 
deviated from QD center and Kp is the proportional gain. By setting FES and PES to be zero, 
respectively, we can improve the accuracy of our autofocusing control. To find the zero 
point, QD position with respect to X and Y axes in Fig. 9 was tuned FES and PES to be 0.000 
± 0.001 V at the initial focal point, and then we turned the control switch on with suitable 
gains (Kp, Ki, and Kd, respectively). The autofocusing controller gives the error signal to PZT 
actuator to keep the focusing position during the fabrication.  
 

 

Fig. 10. (a) The experimental setup to check the performance of the autofocusing system, 
and (b) the residual error after the autofocusing. The higher frequency (larger than 75 Hz) 
test is meaningless because it is over the Nyquist sampling limitation. 

Figure 10 (a) shows a setup to measure the autofocusing error. The mirror attached on the 
linear stage oscillated, and we measured Dm (the mirror movement) and Do (the objective 
movement) at the same time. After whole test, the autofocusing error Dm-Do was less than 
1.1 μm in peak-to-valley (PV) value as shown in Fig. 10 (b). When the focusing point moved 
1 μm, the line width change of the pattern was approximately 3.6 % with 100X objective 
(NA: 0.7, depth of focus: 0.6 μm). Therefore we suppose that the 1-μm focusing error is 
allowable.  
Figure 11 shows CCD (charge coupled device) snap shots showing the focusing variation on 
the rotating surface. As shown in Fig. 11(a), the variation of the focus, due to surface tilting 
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(the greatest contribution to the focus variation), according to the rotation angle can be 
observed. The focus size at 0 o is increasing as the substrate rotates, and then back to normal 
after one rotation. On the contrary, however, once we apply the autofocusing control to it, 
the focus size is nearly invariant for one rotation. To confirm system performance in detail, 
we carried out writing tests divided into two parts, that is to say, with and without the 
autofocusing control. The target glass wafer is coated with chromium of 100 nm thickness. 
The test writing results given the surface radius change from 4.6 mm to 14 mm and 10 μm 
line to line spacing is shown in Fig. 12. As in the inner area of Fig. 12(a), when turn the 
autofocusing off, the fabricated pattern in the region out of the focus is entirely missed, and 
what is more, the written areas are also dimming even if the focusing region is little 
deviated from the focus. Applying the autofocusing control to the whole surface, on the 
  

 

Fig. 11. CCD snap shots of a focal point variation on the rotating substrate (a) before and (b) 
after the auto-focusing control. 

 

Fig. 12. Fabrication results: comparison of (a) before with (b) after the auto-focusing control. 
The arrowed circles in (a) is a result with the auto-focusing control to show the significance 
of it. 
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other hand, uniform patterns are well written as shown in the outermost arrowed circle in 

Fig. 12(a). Even in a small area there is a big difference whether the autofocusing is present 

or not, to say nothing of a large one. From the comparative results, the significance of 

autofocusing is emphasized here. Figure 12(b) shows that the patterns on the surface are 

successfully fabricated to the whole area by means of the autofocusing control. We could 

also confirm the uniform linewidth of 2.0 μm as shown in Fig. 13 using a commercial white-

light scanning interferometer. In addition, we have accomplished the linewidth of 0.6 μm by 

means of controlling the source laser power. In the light of these facts, we can assure that 

our autofocusing system is well operated. 
 

 

Fig. 13. Fabrication results obtained by a commercial white-light scanning interferometer 
(field of view: 124 μm × 93 μm, magnification: 50X). Region (a), (b), and (c) show uniform 
linewidth of 2.0 μm, respectively. 

3. Applications 

3.1 Computer Generated Hologram (CGH) 
Figure 14 (a) show a typical CGH fabricated by the direct laser lithographic system. The 

root-mean-square wavefront error of the CGH was 0.03 λ (λ means the wavelength of the 

He-Ne laser, 632.8 nm.) as shown in Fig. 15.  

When we fabricate a CGHm the center alignment of the writing head is an important error 

source. To align the center (origin) precisely, we used the tilt table and the Y stage as shown 

in Fig. 1. 

We used a new alignment method by using four spirals. The procedure is here: (a) 

Fabricating the first spiral on the sample. (b) Rotating the sample 90o using the rotary stage, 

and then fabricating the second spiral. (c) Rotating the sample 90o again, and fabricating the 

www.intechopen.com



 Lithography 

 

12 

third spiral. (d) Rotating the sample 90o, and fabricating the last spiral. If the center 

alignment is good enough, the spiral pattern looks like Fig. 16 (a). In this figure, the amount 

of misalignment was 168 nm. This number was calculated by the least square line fitting. 

 

 

Fig. 14. Typical CGH we fabricated. The fabrication results measured by the white-light 
scanning interferometer (field of view: 124 μm × 93 μm, magnification: 50X). 
 

 

Fig. 15. Wavefront error of the CGH measured by a commercial Fizeau interferometer. 

 

 

Fig. 16. Four spiral patterns: (a) good alignment case, (b) plus-direction misalignment case, 
and (c) minus-direction misalignment case. 
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3.2 Reference chromium patterns on a silicon wafer 
In this section, we describe the second application of the direct laser lithographic system. In 
recent years, the semi-conductor industry has required a new inspection method for internal 
defects of the silicon wafer. To effectively find these small defects, some companies are 
developing new inspection equipment using the infrared light source. The infrared beam 
usually penetrates the silicon, and is scattered on the defect. Using this phenomenon the 
inspection equipment is able to find out the precise position and the size of each defect in 
the silicon wafer. At this time the precision of the equipment mainly depends on the 
coordinate system of the equipment itself. Therefore the equipment should be calibrated 
before inspection by using a well-made reference specimen that has two-dimensional array 
patterns whose xy-coordinates are already known. A typical fabrication procedure of the 
reference wafer is as follows: (a) preparing a wafer that has no internal defect, (b) polishing 
both sides of the wafer, (c) coating the chromium on the top side of the wafer, (d) patterning 
on the coated side, and (e) etching the wafer. In this procedure, chromium is preferable to 
other materials because it can effectually block the infrared beam with a relatively thin 
thickness. The other advantage of chromium is its easiness for fabrication.  
 

 

Fig. 17. 300-mm-diameter reference wafer. Using pattern C, the equipment can 
automatically level the reference wafer. 

In spite of the advantages of the chromium, there are two problems. First, the semi-conductor 
industry requires a maximum 300-mm wafer as illustrated in Fig. 17. With the well-known E-
beam method, however, it is hard to achieve this size. Therefore we applied the direct laser 
lithography technique instead of the e-beam. The second problem is that the most effective 
chromium etchant (we used the etchant consisting of six parts of 25% solution of K3Fe(CN)6 
and one part of 25% solution of NaOH.) seriously erodes the silicon. To prevent this, we 
propose a new method using a SiO2 layer whose thickness is from 100 nm to 200 nm. This 
layer can protect the silicon wafer from the etchant, and does not disturb the measurement 
since the infrared beam penetrates the SiO2 laser. The details are described in Fig. 18. 
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Fig. 18. Proposed procedure to fabricate the reference wafer  

Figures 19, 20 and 21 show the fabrication result of each pattern. The thicknesses of the 
patterns are nearly 70 nm, which is enough to block the infrared light as shown in Fig. 19 (a) 
and 20 (a). 
 

 

Fig. 19. Pattern A: (a) infrared microscopic view, (b) three-dimensional shape measured by a 
white-light scanning interferometer, and (c) a section profile. The measured diameter of the 
pattern was 100.7 μm instead of 100.0 μm. We supposed that this deviation is mainly caused 
by the fluctuation of the intensity and the focus point. It is also affected by the etching time. 
 

 

Fig. 20. A column of pattern B: (a) infrared microscopic view, (b) three-dimensional shape 
measured by a commercial white-light scanning interferometer, and (c) a section profile. 
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Fig. 21. Pattern C. 

 

Fig. 22. Systematic error of the infrared inspection equipment (a) before and (b) after 
calibration. The triangular mark represents the designed position (see Fig. 17), while the 
circular mark means the measuring result. The positions of the circular marks are 
intentionally exaggerated. 

Using the reference wafer, we finally tested the inspection equipment. The circular marks 
shown in Fig. 22 (a) represent the systematic error of the inspection equipment, in which the 
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absolute values of the maximum error were measured as 8.9 μm for horizontal- and 12.6 μm 
for vertical-direction. We calibrated the equipment with the reference wafer, and 
successfully reduced the systematic error of the equipment as shown in Fig. 22 (b). After 
calibration, the maximum errors were 0.7 nm for horizontal- and 0.9 nm for vertical-
direction in absolute value. 

4. Conclusion 

The direct laser lithography is a useful technique to fabricate a large precision patterns such 
as CGHs, DOEs, and reference wafers. The typycal lithograpic system we have built can 
write up to 360-mm diameter substrate coated with chromium or photoresist film. The  
writing source were stabilized by using the AOM, the PD, and the servo controller. We also 
achieve the high speed and large range autofocusing system using two cylindrical lenses. 
Then we fabricated various CGH, zone plates, and the 300-reference wafer . 150-mm, 200-
mm, reference wafers were also successfully fabricated using our system. 
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