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Abstract

The concept of integrability of a quantum system is developed and studied. By
formulating the concepts of quantum degree of freedom and quantum phase space,
a realization of the dynamics is achieved. For a quantum system with a dynamical
group G in one of its unitary irreducible representative carrier spaces, the quantum
phase space is a finite topological space. It is isomorphic to a coset space G=R by
means of the unitary exponential mapping, where R is the maximal stability sub-
group of a fixed state in the carrier space. This approach has the distinct advantage
of exhibiting consistency between classical and quantum integrability. The formal-
ism will be illustrated by studying several quantum systems in detail after this
development.
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1. Introduction

In classical mechanics, a Hamiltonian system with N degrees of freedom is
defined to be integrable if a set of N constants of the motion Ui which are in
involution exist, so their Poisson bracket satisfies Ui,U j

� � ¼ 0, i, j ¼ 1, … ,N. For
an integrable system, the motion is confined to an invariant two-dimensional torus
in 2N-dimensional phase space. If the system is perturbed by a small nonintegrable
term, the KAM theorem states that its motion may still be confined to the N-torus
but deformed in some way [1–3]. The first computer simulation of nonequilibrium
dynamics for a finite classical system was carried out by Fermi and his group. They
considered a one-dimensional classical chain of anharmonic oscillators and found it
did not equilibrate.

Classically, chaotic motion is longtime local exponential divergence with global
confinement, a form of instability. Confinement with any kind of divergence is
produced by repeatedly folding, a type of mixing that can only be analyzed by using
probability theory. The motion of a Hamiltonian system is usually neither
completely regular nor properly described by statistical mechanics, but shows both
regular and chaotic motion for different sets of initial conditions. There exists
generally a transition between the two types of motion as initial conditions are
changed which may exhibit complicated behavior. As entropy or the phase space
area quantifies the amount of decoherence, the rate of change of the phase space
area quantifies the decoherence rate. In other words, the decoherence rate is the
rate at which the phase space area changes.
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It is important to extend the study of chaos into the quantum domain to better
understand concepts such as equilibration and decoherence. Both integrable as well
as nonintegrable finite quantum systems can equilibrate [4, 5]. Integrability does
not seem to play a crucial role in the structure of the quasi-stationary state. This is in
spite of the fact that integrable and nonintegrable quantum systems display differ-
ent level-spacing statistics and react differently to external perturbation. Although
integrable systems can equilibrate, the main difference from nonintegrable systems
may be longer equilibration times. This kind of behavior is contrary to integrable
classical finite systems that do not equilibrate at all. Nonintegrable classical systems
can equilibrate provided they are chaotic.

The properties of a quantum system are governed by its Hamiltonian spectrum.
Its form should be important for equilibration of a quantum system. The equilibra-
tion of a classical system depends on whether the system is integrable or not.
Integrable classical systems do not tend to equilibrate, they have to be
nonintegrable. Quantum integrability in n dimensions may be defined in an analo-
gous way requiring the existence of n mutually commuting operators, but there is
no corresponding theorem like the Liouville theorem. An integrable system in
quantum mechanics is one in which the spectral problem can be solved exactly, and
such systems are few in number [6, 7].

In closed classical systems, equilibration is usually accompanied by the appear-
ance of chaos. Defining quantum chaos is somewhat of an active area of study now.
The correspondence principle might suggest we conjecture quantum chaos exists
provided the corresponding classical system is chaotic and the latter requires
the system to be nonintegrable. Classical chaos does not necessarily imply
quantum chaos, which seems to be more related to the properties of the energy
spectrum.

It was proposed that the spectrum of integrable and nonintegrable quantum
systems ought to be qualitatively different. This would be seen in the qualitative
difference of the density of states. At a deeper level, one may suspect that changes
in the energy spectrum as a whole may be connected to the breaking of some
symmetry or dynamical symmetry. This is the direction taken here [8–10].

It is the objective to see how algebraic and geometric approaches to quantization
can be used to give a precise definition of quantum degrees of freedom and quan-
tum phase space. Thus a criterion can be formulated that permits the integrability of
a given system to be defined in a mathematical way. It will appear that if the
quantum system possesses dynamical symmetry, it is integrable. This suggests that
dynamical symmetry breaking should be linked to nonintegrability and chaotic
dynamics at the quantum level [11–13].

Algebraic methods first appeared in the context of the new matrix mechanics in
1925. The importance of the concept of angular momentum in quantum mechanics
was soon appreciated and worked out by Wigner, Weyl and Racah [14–16]. The
close relationship of the angular momentum and the SO 3ð Þ algebra goes back to the
prequantum era. The realization that SO 4ð Þ is the symmetry group of the Kepler
problem was first demonstrated by Fock. A summary of the investigation is as
follows. To familiarize those who are not familiar with algebraic methods in solving
quantum problems, an introduction to the algebraic solution of the hydrogen atom
is presented as opposed to the Schrödinger picture. This approach provides a plat-
form for which a definition of quantum integrability of quantum systems can be
established. Thus, at least one approach is possible in which a definition of concepts
such as quantum phase space, degrees of freedom as well as how an idea of quantum
integrability and so forth can be formulated [17–21]. After these issues are
addressed, a number of quantum models will be discussed in detail to show how the
formalism is to be used [22–24].
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1.1 The hydrogen atom

The hydrogen atom is a unique system. In this system, almost every quantity of
physical interest can be computed analytically as it is a completely degenerate
system. The classical trajectories are closed and the quantum energy levels only
depend on the principle quantum number. This is a direct consequence of the
symmetry properties of the Coulomb interaction. Moreover, the properties of the
hydrogen atom in an external field can be understood using these symmetry prop-
erties. They allow a parallel treatment in the classical and quantum formalisms.

The Hamiltonian of the hydrogen atom in atomic units is

H0 ¼ p2

2
� 1

r
: (1)

The corresponding quantum operator is found by replacement of p by �i∇. Due
to the spherical symmetry of the system, the angular momentum components are
constants of the motion,

L ¼ r� p, H0,L½ � ¼ 0: (2)

So H0,L2,Lz
� �

is a complete set of commuting operators classically, so three
quantities in mutual involution, which implies integrability of the system.

The Coulomb interaction has another constant of the motion associated with the
Runge-Lenz vector R. This has the symmetrized quantum definition

R ¼ 1
2

p� L� L� pð Þ � r
r
, H0,R½ � ¼ 0: (3)

If the R direction is chosen as the reference axis of a polar coordinate system in
the plane perpendicular to L, one deduces the equation of the trajectory as

r ¼ L2

1þ kRk cos ϑ : (4)

The modulus determines whether the trajectory is an ellipse, a parabola or a
hyperbola.

There are then 7 constants of the motion L,R,H0ð Þ are not independent and
satisfy

R � L ¼ 0, L2 � R2

2H0
¼ � 1

2H0
� 1: (5)

The minus one on the right in (5) is not present in classical mechanics. The
mutual commutation relations are given in terms of εijk, the fully antisymmetric
tensor as follows,

Li,L j
� � ¼ iεijkLk, Li,R j

� � ¼ iεijkRk, Ri,R j
� � ¼ iεijk �2H0ð ÞLk, (6)

Let us look at the symmetry group of the hydrogen atom. The symmetry group is
the set of phase space transformations which preserve the Hamiltonian and the
equations of motion. It can be identified from the commutation relations between
constants of motion. For hydrogen, for negative energies, the group of rotations in
4-dimensional space is called SO 4ð Þ.
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The generators of the rotation group in an n-dimensional space are the
n� 1ð Þn=2 components of the n-dimensional angular momentum

Lij ¼ xip j � x jpi, 1≤ i, j≤ n: (7)

In (7), Lij is the generator of the rotations in the i, jð Þ-plane and has the following
commutation relations

Lij,Lkl
� � ¼ 0, Lij,Lik

� � ¼ iLjk: (8)

The first bracket in (8) holds if all four indices are different.
Define the reduced Runge-Lenz vector to be

R0 ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffi�2H0
p : (9)

The commutation relations (6) are those of a four-dimensional angular
momentum with the identification

L12 ¼ Lz L23 ¼ Lz L31 ¼ Ly

L14 ¼ Rz0 L24 ¼ Ry0 L34 ¼ Rz0 ,
(10)

and Casimir operator

L2 ¼
X
i< j

Lij
� �2 ¼ L2 þ R2 ¼ � 1

2H0
� 1: (11)

The classical trajectory is thus uniquely defined with the 6 components of L and
L � R0 ¼ 0. Any trajectory can be transformed into any other one having the same
energy by a 4-dimensional rotation. An explicit realization of this four-dimensional
invariance is to use a stereographic projection from the momentum space onto the
4-dimensional sphere with radius p0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi�2H0

p
. On this sphere, the solutions to

Schrödinger’s equation as well as the classical equations of motion are those of the
free motion. Schrödinger’s equation on the four-dimensional sphere can be sepa-
rated into six different types of coordinates each associated with a set of commuting
operators.

Spherical coordinates correspond to the most natural set, and choosing the
quantization axis in the 4 direction and inside the (1,2,3) subspace, the z-axis or
usual 3-axis as reference axis, the three operators can be simultaneously
diagonalized,

L2 ¼ � 1
2H0

� 1,

L2 ¼ L2
12 þ L2

31 þ L2
23 ¼ L2

x þ L2
y þ L2

z,

Lz ¼ L12,

(12)

The respective eigenvalues of these operators are n2 � 1, l lþ 1ð Þ andM such that
∣M∣ ≤ l≤ n� 1, so the total degeneracy is n2. It corresponds to a particular subgroup
chain given by

SO 4ð Þn ⊃ SO 3ð Þl ⊃ SO 2ð ÞM: (13)
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Other choices are possible, such as other spherical coordinates obtained from the
previous by interchanging the role of the 3 and 4 axes. This simultaneously diago-
nalizes the three operators

L2 ¼ � 1
2H0

� 1,

λ2 ¼ L2
12 þ L2

14 þ L2
24 ¼ R02

x þ R‘02y þ L02
z,

Lz ¼ L12:
(14)

The respective eigenvalues of these operators are n2 � 1, λ λþ 1ð Þ and M such
that ∣M∣ ≤ λ≤ n� 1. The subgroup chain for this situation is

SO 4ð Þn ⊃ SO 3ð Þλ ⊃ SO 2ð ÞM: (15)

Another relevant case is the adoption of cylindrical coordinates on the 4-dimen-
sional sphere associated with the following set of commuting operators

L2 ¼ � 1
2H0

� 1,

L12 ¼ Lz,

L34 ¼ R0
z:

(16)

This set has the following associated subgroup chain,

SO 4ð Þ⊃ SO 2ð Þ⊗ SO 2ð Þ: (17)

In configuration space, this is associated with separability in parabolic coordi-
nates. This is a specific system but it exhibits many of the mathematical and
physical properties that will appear here.

2. Quantum degrees of freedom

The time evolution of a system in classical mechanics in time is usually
represented by a trajectory in phase space and the dynamical variables are functions
defined on this space. The dimension of phase space is twice the number of degrees
of freedom, and a point represents a physical state. The space is even-dimensional
and it is endowed with a symplectic Poisson bracket structure. Dynamical
properties of the system are described completely by Hamilton’s equations within
this space.

For a quantum system, on the other hand, the dynamical properties are
discussed in the setting of a Hilbert space. Dynamical observables are self-adjoint
operators acting on elements of this space. A physical state is represented by a ray of
the space, so the Hilbert space plays a role similar to phase space for a classical
system. The Hilbert space cannot play the role of a quantum phase space since its
dimension does not in general relate directly to degrees of freedom. Nor can it be
directly reduced to classical phase space in the classical limit. Let us define first the
quantum degrees of freedom as well as giving a suitable meaning to quantum phase
space.

SupposeH is a Hilbert space of a system characterized completely by a complete
set of observables denoted C. Set C is composed of the basic physical observables,
such as coordinates, momenta, spin and so forth, but excludes the Hamiltonian. The
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basis vectors of the space can be completely specified by a set of quantum numbers
which are related to the eigenvalues of what are usually referred to as the fully non-
degenerate commuting observables C0 of C. A fully degenerate operator or observ-
able O∈ C has for some constant λ the action

O ∣ψ ii ¼ λ ∣ψ ii, ∣ψ ii∈H: (18)

Definition 1: (Quantum Dynamical Degrees of Freedom) Let C :

O jj Oi,O j
� � ¼ 0; i, j ¼ 1, … ,N

� �
be a complete set of commuting observables of a

quantum system. A basis set of its Hilbert space H can be labeled completely by M
numbers αi : i ¼ 1, … ,Mf g called quantum numbers which are related to the
eigenvalues of the non-fully degenerate observables Oi : i ¼ 1, … ,M M≤Nð Þf g, a
subset of C. Then the number M is defined to be the number of quantum dynamical
degrees of freedom. □

Since the members of C are provided by the system, not including the Hamilto-
nian, it depends only on the structure of the system’s dynamical group G. Thus the
number of quantum dynamical degrees of freedom based on this definition is
unique for a given system with a specific Hilbert space H.

The physical and mathematical considerations for defining the dimension of the
nonfully degenerate operator subset C0 of C, not the dimension of C itself, as the
number of quantum dynamical degrees of freedom is as follows. In a given H, all
fully degenerate operators in C are equivalent to a constant multiple of the identity
operator guaranteeing the irreducibility of H. The expectation values of any fully
degenerate operator is a constant and contains no dynamical information.

A given quantum system generally has associated with it a well-defined
dynamical group structure due to the fact that the mathematical image of a quan-
tum system is an operator algebra g in a linear Hilbert space. This was seen in the
case of hydrogen. It comes about from the mathematical structure of quantum
mechanics. The dynamical group G with algebra g is generated out of the basic
physical variables, with the corresponding algebraic structure defined by the
commutation relations.

The Hamiltonian H and all transition operators Of g can be expressed as
functions of a closed set of operators

H ¼ H Tið Þ, O ¼ O Tið Þ, Ti,T j
� � ¼X

k

Ck
ij Tk: (19)

The Ck
ij in (19) are called the structure constants of algebra g. The Hilbert space

is decomposed into a direct sum of the carrier spaces of unitary irreducible (irrep)
representations of the group. Consequently, the dynamical symmetry properties of
the system can be restricted to an irreducible Hilbert space which acts as one of the
irrep carrier spaces of G.

From group representation theory, it will be given that a total of σ subgroup
chains exist for a given group

Gα ¼ Gα
sα ⊃Gα

sα�1 ⊃⋯⊃Gα
1

� �
, α ¼ 1, … , σ: (20)

For each subgroup chain Gα of G, there is a complete set of commuting operators
Cwhich specifies a basis set of its irreducible basis carrier spaceH, so the dimension
of C for all subgroup chains of G is the same. A subgroup chain of dynamical group
G serves to determine the M quantum dynamical degrees of freedom for a given
quantum system with Hilbert space H an irrep carrier space of G.
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Definition 2: For a quantum system with M independent quantum dynamical
degrees of freedom the quantum phase space is defined to be a 2M-dimensional
topological space. The space is isomorphic to the coset space G=R with explicit
symplectic structure. Here G is the dynamical group of the system and R⊂G is the
maximal stability subgroup of the Hilbert space. □

3. Quantum integrability and dynamical symmetry

Quantum phase space defined here can be compact or noncompact depending
on the finite or infinite nature of the Hilbert space. A consequence of this develop-
ment is that the classical definition of integrability can in general be directly trans-
ferred to the quantum case.

Definition 3: (Quantum Integrability) A quantum system with M independent
dynamical degrees of freedom, hence a 2M-dimensional quantum phase space, is
integrable if and only if there are M quantum constraints of motion, or good
quantum numbers, which are related to the eigenvalues of M non-fully degenerate
observables: O1,O2, … ,On. □

Any set of variables that commute may be put in the form of a complete set of
commuting observables C by including certain additional observables with it. The
definition then says that if the system is integrable, a complete set of commuting
variables C can be found so that the Hamiltonian is always diagonal in the basis
referred to by C. In the reverse sense, the definition implies that if the system is
integrable, simultaneous accurate measurements of M non-fully degenerate
observables in the energy eigenvalues can be carried out.

The link with the dynamical group structure can be developed. This specifies
exactly the integrability of a quantum system. To this end the definition of dynam-
ical symmetry is needed.

Definition 4: (Dynamical Symmetry) A quantum system with dynamical group G
possesses a dynamical symmetry if and only if the Hamiltonian operator of the
system can be written and presented in terms of the Casimir operators of any
specific chain with α fixed

H ¼ F Cα
kj

	 

(21)

The index of a particular subgroup chain Cα
kj the i-th Casimir operator of subgroup

Gα
k, k ¼ sα, … , 1, i ¼ 1, … , lαk and lαk denotes that the rank of subgroup Gα

k is l. It is
now possible to state a theorem which gives a condition for integrability to apply.

Proposition 1: (Quantum Integrability) A quantum system with dynamical group
G is said to be integrable if it possesses a dynamical symmetry of G.

To prove this, note that it can be broken down into two cases or subgroup classes
for a given dynamical group G and are referred to as canonical and noncanonical.

First consider the case in which Gα is a canonical subgroup chain of G. The
Casimir operators of G, CGif g and all Casimir operators Cα

ki

� �
corresponding to the

subgroups in chain Gα form a complete set of commuting operators Cα of any
carrier irrep space H of Gα so for fixed α,

Cα : CGif g∪ Cα
ki

� � � Q j, j ¼ 1,⋯,N
n o

: (22)

When Gα is the dynamical symmetry of the system, all operators in Cα are
constants of motion
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H,Q j

h i
¼ 0: (23)

There are always M nonfully dynamical operators in Cα. By the third definition,
the system is integrable.

For a non-canonical subgroup chain Gα the number of Casimir operators CGif g
of G and all Casimir operators of Cα

ki

� �
of Gα is less than the number of the complete

set of commuting operators C of any irrep carrier space of G. By definition, of any
complete set of commuting operators, there must exist other commuting operators
O j
� �

that commute with CGif g and Cα
ki

� �
. These have to be included in the union as

well when putting together Cα

Cα : CGif g∪ Cα
ki

� �
∪ O j
� � � Q j : j ¼ 1, … ,N

n o
: (24)

When the system is characterized by the dynamical symmetry of Gα, the oper-
ators in (24) satisfy relation (23) as well. In this case as well, there must exist M
non-fully degenerate operators of constants of motion as in the previous case.

Based on this proposition, it can be stated that nonintegrability of a quantum
system involves the breaking of the dynamical symmetry of the system. It may be
concluded that dynamical symmetry breaking can be said to be a property which
characterizes quantum nonintegrability. □

Let us summarize what has been found as to what quantum mechanics tells us.
In a given quantum system with dynamical Lie group G which is of rank l and
dimension n, the dimension of a complete set of commuting operators C of G with
any particular subgroup chain is d ¼ lþ n� lð Þ=2 in which the l operators are
Casimirs of G and are fully degenerate for any given irrep of G. The number M of
the non-fully degenerate operators in C for a given irrep of G cannot exceed
M≤ n� lð Þ=2. When dynamical symmetry is broken such that any of the M con-
stants of the motion for the system is destroyed the system becomes nonintegrable.

4. Quantum phase space

It is of interest then to develop a model for phase space for quantum mechanics
which may be regarded as an analogue to classical physics. By what has been said so
far, the Hilbert space H of the system can be broken up into a direct sum of the
unitary irreps carrier spaces of G,

H ¼
X
Λ

⊕YΛHΛ: (25)

In (25), the subscript Λ labels a particular irrep of Lie group G, Λ is the largest
weight of the irrep and YΛ the degeneracy of Λ in H with no correlations existing
between various HΛ. The study of the dynamical properties of the system can be
located on one particular irreducible subspace HΛ of H. For a quantum system with
MΛ independent quantum dynamical degrees of freedom, the corresponding quan-
tum phase space should be a 2MΛ-dimensional, topological phase space without
additional constraints.

To construct the quantum phase space from the quantum dynamical degrees of
freedom for an arbitrary quantum system, the elementary excitation operators can
be obtained from the structures of G and HΛ. Let a†i

� �
be a subset of generators of G

such that any states ∣Ψi of the system are generated for all ∣Ψi∈HΛ by means of
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∣Ψi ¼ F a†i
� �

∣0i: (26)

Moreover F a†i
�

) is a polynomial in the operators a†i
� �

and ∣0i∈HΛ is the refer-
ence state. The requirement placed on state ∣0i is that one can use a minimum subset
of g to generate the entire subspace HΛ from ∣0i. In this event, the collection a†i

� �
is

called the set of elementary excitation operators of the quantum dynamical degrees of
freedom. If G is compact, ∣0i is the lowest ∣Λ, � Λi or highest weight ∣Λ,Λi state of
HΛ. If G is noncompact, it is merely the lowest state. The number of a†i

� �
is the same

as the number of quantum dynamical degrees of freedom. Physically this has to be
the case since that is how the operators are defined. Thus the set a†i

� �
and Hermitian

conjugate aif g in gΛ form a dynamical variable subspace μ of g so we can write

μ : a†i , ai; i ¼ 1, … ,MΛ
� �

: (27)

With respect to μ there exists a manifold whose dimension is twice that of the
quantum dynamical degrees. It can be realized by means of a unitary exponential
mapping of the dynamical variable operator subspace μ

Ω ¼ exp
XMΛ

i¼1

ηia
†
i � η ∗

i ai
� � !

∈∐: (28)

The ηi are complex parameters and i ¼ 1, … ,MΛ. In fact, Ω is a unitary coset
representation of G=R, where R⊂G is generated by the subalgebra κ ¼ g � μ. Thus
(28) shows that q is isomorphic to the 2MΛ-dimensional coset space G=R, and will
be denoted this way from now on. The discussion will apply just to semi-simple Lie
groups whose g satisfies the usual Cartan decomposition g ¼ κ þ μ and κ, κ½ �⊂ κ,
κ, μ½ �⊂ μ and μ, μ½ �⊂ κ. Thus G=R will be a complex homogeneous space with
topology and a group transformation acting on G=R is a homomorphic mapping of
G=R into itself.

The homogeneous space G=R has a Riemannian structure with metric

gij ¼
∂
2 logK z, zð Þ

∂zi∂z j
(29)

The function K z, zð Þ is called the Bergmann kernel of G=R and can be
represented as

K z, zð Þ ¼
X
λ

f λ zð Þ f ∗
λ zð Þ: (30)

The functions f λ zð Þ in (30) constitute an orthogonal basis for a closed linear
subspace L2 G=Rð Þ of L2 G=Rð Þ such thatð

G=R
f λ zð Þ f ∗

λ0 zð ÞK�1 z, zð Þdν z, zð Þ ¼ δλλ0 , (31)

and dν z, zð Þ is the group invariant measure on the space G=R. It will be written

dν z, zð Þ ¼ ζ det gij
	 
h iYMλ

i¼1

dzidzi
π

: (32)
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In (32) ζ is a normalization factor given by the condition that (32) integrated
over the space G=R is equal to one. There is also a closed, nondegenerate two-form
on G=R which is expressed as,

ω ¼ iℏ
X
i, j

gij dzi ∧ dz j: (33)

Corresponding to this two form there is a Poisson bracket which is given by

f , hf g ¼ 1
iℏ

X
i, j

gij
∂f
∂zi

∂h
∂z j

� ∂f
∂z j

∂h
∂zi

� �
: (34)

In (34) f and h are functions defined on G=R. By introducing canonical coordi-
nates q,pð Þ these quantities can be rewritten in terms of these coordinates.

4.1 Phase space quantum dynamics

Based on what has been stated about G=R, it would be useful to describe the
quantum phase space. This means for a given quantum system a phase space
representation must exist. Such a representation can be found if there exists an
explicit mapping such that

O Tið Þ ! U q,pð Þ, ∣Ψi ! ρ qþ ipð Þ: (35)

Here O is given by (19), and ρ q,pð Þ∈L2. For a quantum system with a quantum
phase space G=R, this mapping can be realized by coherent states. To construct
coherent states of G and HΛ defined on G=R, the fixed state ∣0i is chosen as the
initial state

g∣0i ¼ Ωr∣0i ¼ ∣Λ,Ωieiφ rð Þ, g∈G, r∈R, Ω∈G=R: (36)

Then R is the maximal stability subgroup of ∣0i so any r∈R acting on ∣0i will
leave ∣0i invariant up to a phase factor

r∣0i ¼ eiφ rð Þ∣0i: (37)

The ∣Λ,Ωi are the coherent states which are isomorphic to G=R. Therefore,

∣Λ,Ωi � Ω∣0i ¼ exp
XMΛ

i¼1

ηia
†
i � η ∗

i ai
� � !

∣0i ¼ K1=2 z, zð Þ exp
XMΛ

i¼1

zia
†
i

 !
∣0i

¼ K�1=2 z, zð ÞkΛ, zi:
(38)

K z, zð Þ ¼ 0j exp
XMΛ

i¼1

ziai

 !
exp

XMΛ

i¼1

zia
†
i

 !
j0

* +
¼ Λ, zkΛ, zh i ¼ ∣i0 Λ, 0ij j2

¼
X
λ

fΛλ zð Þ f ∗
Λλ zð Þ:

The Bargmann kernel was introduced in (30), and for a semisimple Lie group,
the parameters zi are given by
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z ¼
η
tan η†ηð Þ1=2

η†ηð Þ1=2
, Gcompact,

η
tanh η†ηð Þ1=2

η†ηð Þ1=2
, Gnoncompact:

8>>>>><
>>>>>:

(39)

Here η represents the nonzero k� p block matrix of the operatorPMΛ
i¼1 ηiai � η ∗

i a
†
i

� �
. The state kΛ, zi in (38) is an unnormalized form of ∣Λ,Ωi and

fΛ,λ zð Þ is the orthogonal basis of L2 G=Rð Þ the function space

fΛ,λ zð Þ ¼ Λ, λkΛ, λh i, (40)

where ∣Λ, λi is a basis for HΛ, a particular irreducible subspace of the Hilbert
space. The coherent states of (38) are over-completeð

G=R
∣Λ,ΩihΛ,Ω∣dν zð Þ ¼ I: (41)

A classical-like framework or analogy has been established in the form of a
quantum phase space specified by G and HΛ. Variables which reside in this classical
analogy are denoted thus ~c. The 2MΛ-dimensional quantum phase space G=R has all
the required structures of a classical mechanical system. It is always possible a
classical dynamical theory can be established in G=R whose motion is confined to
G=R and is determined by the following equations of motion

d ~U
dt

¼ ~U q, pð Þ, ~H q, pð Þ� �
, q, p∈G=R: (42)

This equation can be replaced by Hamilton’s equations

dqi
dt

¼ ∂~H q, pð Þ
∂pi

,
dpi
dt

¼ � ∂~H q, pð Þ
∂qi

: (43)

In (42) and (43), ~H q, pð Þ is the Hamiltonian of the system, and ~U q, pð Þ is a
physical observable. A correspondence principle is implied here and requires that
suitable conditions can be found such that the quantum dynamical Heisenberg
equations can be written this way.

Clearly, if suitable conditions hold the phase space representation of the com-
mutator of any two operators is equal to the Poisson bracket of the phase space
representation of these two operators so that

1
iℏ

Λ,Ωj AH,BH½ �jΛ,Ωh i ¼ ~A, ~B
n o

: (44)

Then the phase space representation of the Heisenberg equation

dAH

dt
¼ 1

iℏ
AH,HH½ �, (45)

given by (42) is therefore equivalent to (43). In (45),AH is the Heisenberg operator

AH ¼ UAU�1, U ¼ eiHt=ℏ, (46)
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and A is time-independent in the Schrödinger picture. The coherent state on the
left of (44) is time-independent. Observables on the right side are the expectation
values of the Schrödinger operators in the time-dependent coherent state. The quan-
tum phase space maintains many of the quantum properties which are important,
such as internal degrees of freedom, the Pauli principle, statistical properties and
dynamical symmetry. Formally the equation of motion is classical. The phase space
representation is based on the whole quantum structure of the coset space G=R.

Let us discuss integrability and dynamical symmetry. A quantum system with
MΛ independent degrees of freedom is integrable if and only if the MΛ non-fully
degenerate observables can simultaneously be measured in the energy representa-
tion. There exist non-fully degenerate observables Ci : i ¼ 1, … ,MΛ � 1f g which
commute with each other and H

Ci,C j
� � ¼ 0, Ci,H½ � ¼ 0: (47)

It follows that in the classical limit which has been formulated,

~Ci, ~C j
� � ¼ 0, ~Ci, ~H

� � ¼ 0: (48)

Together with the Hamilton equations, (47) also formally defines classical inte-
grability, so quantum integrability is completely consistent with the classical theory.
In the classical analogy, the group structure of the system is defined by Poisson
brackets. The concept of dynamical symmetry is naturally preserved in the classical
analogy, so the theorem on dynamical symmetry and integrability is also meaning-
ful for the classical analogy. If the Hamiltonian has the symmetry S, then its phase
space picture representation has the same symmetry. To see this, if

SHS�1 ¼ H, (49)

in the phase space representation, it holds that

Λ,ΩjHjΛ,Ωh i ¼ Λ,ΩjSHS�1jΛ,Ω � ¼ Λ,Ω0jHjΛ,Ω0h i: (50)

To put this concisely, we write

~H q, pð Þ ¼ ~H q0, p0ð Þ, (51)

where S�1∣Λ,Ωi ¼ S�1Ω∣0i ¼ ∣Λ,Ω0ieiφ hð Þ.

5. Applications to physical systems

5.1 Harmonic oscillator

The harmonic oscillator has dynamical group H4 and is a single-degree of
freedom system [13–15, 23]. To the dynamical group corresponds the algebra h4
defined by the set a†, a, a†a, If g with Hilbert space the Fock space VF :
jni, n ¼ 1, 2, …f g, so the fixed state is the ground state ∣0i, and elementary

excitation operator a†. The quantum phase space is constructed from the unitary
exponential mapping of the subspace μ : a†, af g of h4,

Ω zð Þ ¼ exp za† � za
� �

∈H4=U 1ð Þ⊗U 1ð Þ: (52)
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With generators a†a and I, U 1ð Þ⊗U 1ð Þ in (52) is the maximal stability subgroup
of ∣0i. As H4=U 1ð Þ⊗U 1ð Þ is isomorphic to the one-dimensional complex plane, the
quantum phase space has metric gij ¼ δij and dν zð Þ ¼ dzdz=π. It is noncompact due
to the infiniteness of the Fock space. There is a well-known symplectic structure on
the complex plane with Poisson bracket of two functions ~F1, ~F2 defined by

~F1, ~F2
� � ¼ 1

iℏ
∂~F1

∂z
∂~F2

∂z
� ∂~F1

∂z
∂~F2

∂z

� �
: (53)

It is useful to introduce the standard canonical position and momentum
coordinates

z ¼ 1ffiffiffiffiffiffi
2ℏ

p qþ ipð Þ, z ¼ 1ffiffiffiffiffiffi
2ℏ

p q� ipð Þ: (54)

The Glauber coherent states can be realized by the states ∣zi with the set of these
states isomorphic to H4=U 1ð Þ⊗U 1ð Þ and given as

∣zi � Ω zð Þ∣0i ¼ exp za† � za
� �

∣0i ¼ e� zj j2=2 exp za†
� �

∣0i: (55)

The normalization constant in (55) is the Bargmann kernel

K z, zð Þ ¼ e zj j2 : (56)

The phase space representation of the wavefunction ∣Ψi∈VF is

f zð Þ ¼ Ψkzh i ¼
X∞
n¼0

f n
znffiffiffiffi
n!

p : (57)

By Wick’s Theorem, it is always possible to write an operator A in normal
product form

A ¼ A a†, a
� � ¼X

k, l

An
k,l a†
� �k að Þl: (58)

The phase space representation of A is just

~U z, zð Þ ¼ zjAjzh i ¼
X
k, l

An
k,lz

kzl: (59)

In the case A is simply a generator of H4, we can write (59) as

~a† ¼ zja†jz �
, ~a ¼ zjajzh i,

~a†~a ¼ zja†ajz � ¼ zj j2, ~I ¼ zjIjzh i ¼ I:
(60)

The corresponding algebraic structure of H4 in the phase-space representation is

iℏc ~a, ~a†
� � ¼ ~I, iℏc ~a†~a

� � ¼ �~a, iℏc ~a†~a, ~a†
� � ¼ ~a†: (61)

Here ℏc is used in the classical analogy. The algebraic structure of the H4
generators is preserved when commutators are replaced by Poisson brackets in
phase space. Using (54) the Dirac quantization condition and ~H are given by
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q, p½ � ¼ iℏc q, pf g, ~H q, pð Þ ¼ zjHjzh i: (62)

For the forced harmonic oscillator, the classical analogy of the Hamiltonian is
given by

~H q, pð Þ ¼ ω

2
p2 þ q2
� �þ i

ffiffiffi
2

p
ℜ λ tð Þqð Þ �

ffiffiffi
2

p
ℑ λ tð Þpð Þ

¼ ω

2
p2 þ q2
� �þ 1ffiffiffi

2
p λ tð Þ þ λ tð Þ� �

qÞ þ 1ffiffiffi
2

p
i

λ tð Þ � λ tð Þ� �
p

� �
:

(63)

Hamilton’s equations in (44) can be used to evaluate the t derivatives of q and p:

dq
dt

¼ ωpþ 1ffiffiffi
2

p
i
λ tð Þ � λ tð Þ� �

,
dp
dt

¼ �ωq� 1ffiffiffi
2

p λ tð Þ þ λ tð Þ� �
: (64)

Hence combining these two derivatives, we obtain

d
dt

qþ ipð Þ ¼ �iω qþ ipð Þ �
ffiffiffi
2

p
iλ tð Þ: (65)

Multiplying both sides by the integrating factor eiωt and then integrating with
respect to t, the solution is

q tð Þ þ ip tð Þ ¼ e�iωt q 0ð Þ þ ip 0ð Þð Þ � i
ffiffiffi
2

p
e�iωt

ðt
0
λ τð Þeiωτ dτ ¼ z tð Þ

ffiffiffiffiffiffiffi
2ℏc

p
: (66)

If the initial state is ∣0i or a coherent state ∣z 0ð Þi, then the exact quantum
solution is

∣ψ tð Þi ¼ ∣z tð Þieiφ tð Þ (67)

and z tð Þ is given by (66). The phase φ is a quantum effect obtained from z tð Þ

φ tð Þ ¼ � 1
2
ωt�

ðt
0
ℜ λ τð Þz τð Þ½ �dτ: (68)

This seems to imply the classical analogy provides an exact quantum solution if
the Hamiltonian is a linear function of the generators of G.

5.2 SU 2ð Þ spin system

The phase space structure of a spin system will be constructed and as well the
phase-space distribution and classical analogy.

Since the dynamical group of the spin system is SU 2ð Þ and the Hilbert space is
described by the states V2jþ1 ¼ jj,mif g where m ¼ �j, � jþ 1, … , j and j is an
integer or half-integer, the fixed state is ∣j, � ji. This is the lowest weight state of
V2jþ1. Thus the elementary excitation operator of the spin system is Jþ and the
explicit form of ∣ j,mi is

∣ j,mi ¼ 1
jþmð Þ!

2j
jþm

� ��1=2

Jþð Þ jþm∣ j, � ji: (69)
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Any state ∣Ψi ¼P j
m¼�j f m∣j,mi∈V2jþ1 can be generated by a polynomial of Jþ

acting on ∣j, � ji. This means the number of quantum dynamical degrees of freedom
is equal to the number of elementary excitation operators. The quantum phase
space can be found by mapping μ : Jþ, J�

� �
to the coset space SU 2ð Þ=U 1ð Þ by means

of ηJþ � ηJ�ð Þ ! exp ηJþ � ηJ�ð Þ where η ¼ ϑ=2ð Þe�iφ, 0≤ϑ≤ π, 0≤φ≤ 2π. The
coset space SU 2ð Þ=U 1ð Þ is isomorphic to a two-dimensional sphere. The coherent
states of SU 2ð Þ=U 1ð Þ are well known

∣jΩi ¼ exp ηJþ � ηJ�ð Þ∣j, � ji ¼ 1þ zj j2
	 
�j

exp zJþð Þ∣ j, � ji ¼ 1þ zj j2
	 
�j

kjzi,

z ¼ tan
ϑ

2
e�iφ:

(70)

The generalized Bargmann kernel on S2 is K z, zð Þ ¼ 1þ zj j2
	 
2j

. Then the metric

gij and measure are given by

gij ¼ δij
2j

1þ zj j2
	 
2 , dν ¼ 1

π
2jþ 1ð Þ dzdz

1þ zj j2Þ2 : (71)

Given the canonical coordinates

1ffiffiffiffiffiffiffi
4jℏ

p qþ ipð Þ ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zj j2

q ¼ sin
ϑ

2

� �
e�iφ, (72)

there obtains the bracket

~F1, ~F2
� � ¼ ∂~F1

∂q
∂~F2

∂p
� ∂~F1

∂p
∂~F2

∂q
, (73)

where q2 þ p2 ≤ 4jℏ, which implies the phase space of a spin system is compact.
The phase space representation of the state ∣Ψi∈V2jþ1 is for f ∈L2 S2

� �
,

f zð Þ ¼ ΨkjΩh i ¼
X∞
n¼0

f n
2j

jþm

� �1=2

z jþm, (74)

The phase space representation of an operator B ¼ B Jið Þ is

~B z, zð Þ ¼ jΩjBj jΩh i: (75)

When the operator B in (75) is chosen to be one of the three operators Jþ, J� or J0,
the results are

~Jþ ¼ jΩjJþj jΩ
 � ¼ 2jz

1þ zj j2 ,
~J� ¼ jΩjJ�j jΩh i ¼ 2jz

1þ zj j2
	 
 ,

~J0 ¼ jΩjJ0j jΩh i ¼ j
zj j2 � 1

1þ zj j2 :
(76)
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These can also be given in terms of q, p by using (72). The algebraic structure of
SU 2ð Þ in the phase space representation is given by the Poisson bracket

iℏc ~J�,~Jþ
� � ¼ �2~J0, iℏc ~J0,~J�

� � ¼ �~J�: (77)

The classical analogy of an observable B Jið Þ is given by the following expression

~B q, pð Þ ¼ j,ΩjB Jið Þjj,Ωh i: (78)

The classical limit is found by taking j ! ∞ and the classical Hamiltonian
function is

~HC q, pð Þ ¼ H j,ΩjJijj,Ωh ið Þ ¼ H ~Jþ,~J�,~J0
� �

: (79)

5.3 SU 1, 1ð Þ quantum systems and a two-level atom

A two-level atom is considered which interacts with two coupled quantum
systems that can be represented in terms of a su 1, 1ð Þ Lie algebra. When for example
mixed four-waves are injected into a cavity containing a single two level-atom an
interaction occurs between the four waves and the atom that is electromagnetic
radiation and matter. The Hamiltonian has the form

1
ℏ
H ¼

X2
i¼1

ωi a†i ai þ
1
2

� �
þ 1
2
ω0 σz þ λ a21a

2
2σþ þ a†21 a†22 σ�

	 

: (80)

It is similar to 5.1, so we sketch the physical situation. The σ�, σz are raising
lowering and inversion operators which satisfy the commutation relations
σz, σ�½ � ¼ 2σ�, σþ, σ�½ � ¼ σz, whereas the a†i , ai are basic creation and annihilation

operators with a j, a
†
j

h i
¼ δij. The interaction term in (80) can be thought of as the

interaction between two different second harmonic modes. This can be cast in
terms of three su 1, 1ð Þ Lie algebra generators Kþ, K� and Kz which satisfy the
commutation relations,

Kz,K�½ � ¼ �K�, K�,Kþ½ � ¼ 2Kz: (81)

The corresponding Casimir K which has eigenvalue k k� 1ð Þ given by

K2 ¼ K2
z �

1
2

KþK� þ K�Kþð Þ: (82)

Given that this is the Lie algebra, it can be said that the Fock space is spanned by
the set of vectors VF : jm; kif g and the operators in (81) act on these states as follows,

Kz∣m; ki ¼ mþ kð Þ∣m; ki, K2∣m; ki ¼ k k� 1ð Þ∣m; ki,
Kþ∣m; ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1ð Þ mþ 2kð Þ

p
∣mþ 1; ki, K�∣m; ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m mþ 2k� 1ð Þ

p
∣m� 1; ki:

(83)

It is the case that K�∣0;mi ¼ 0 so this is the lowest level state. The su 1, 1ð Þ Lie
algebra can be realized in terms of boson annihilation and creation operators and
it is isomorphic to the Lie algebra of the non-compact SU 1, 1ð Þ group. For the
Hamiltonian (80) define operators K ið Þ

� and K ið Þ
z as
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K ið Þ
þ ¼ 1

2
a†

2

i , K ið Þ
� ¼ 1

2
a2i , K ið Þ

z ¼ 1
2

a†i ai þ
1
2

� �
, i ¼ 1, 2, (84)

where the Bargmann index k is either 1=4 for the even parity states while 3=4
applies to the odd-parity states.

Using these operators, (80) is written in terms of su 2ð Þ and su 1, 1ð Þ operators
such that it has the form,

1
ℏ
H ¼

X2
i¼1

ηi K
ið Þ
z þ ω

2
σz þ λ K 1ð Þ

þ K 2ð Þ
þ σ� þ K 1ð Þ

� K 2ð Þ
� σþ

	 

: (85)

The Heisenberg equations of motion obtained from (85) gives

i
d
dt

K 1ð Þ
z ¼ λ K 1ð Þ

þ K 2ð Þ
þ σ� � K 1ð Þ

� K 2ð Þ
� σþ

	 

, i

d
dt

K 2ð Þ
z ¼ λ K 1ð Þ

þ K 1ð Þ
þ σ� � K 1ð Þ

� K 2ð Þ
� σþ

	 

,

i
d
dt

σz ¼ λ K 1ð Þ
� K 2ð Þ

� σþ � K 1ð Þ
þ K 1ð Þ

þ σ�
	 


:

(86)

The following two operators N1 and N2 are constants of the motion

N1 ¼ K 1ð Þ
z þ σz, N2 ¼ K 2ð Þ

z þ σz: (87)

Hamiltonian (80) can now be put in the equivalent form

1
ℏ
H ¼ N þ Cþ I, (88)

where I is the identity operator and N and C are the operators

N ¼
X2
i¼1

ηiNi, C ¼ Δσz þ λ K 1ð Þ
þ K 2ð Þ

þ σ� þ K 1ð Þ
� K 2ð Þ

� σþ
	 


: (89)

The constant Δ is the detuning parameter defined as

Δ ¼ ω

2
� η1 � η2: (90)

As N and C commute, each commutes with the Hamiltonian H so N and C are
constants of the motion. The time evolution operator U tð Þ is given by

U tð Þ ¼ exp �i
H
ℏ
t

� �
� exp �iNtð Þ � exp iCtð Þ: (91)

In the space of the two-level eigenstates

e�iNt ¼ e�iW1t 0

0 e�iW2t

� �
: (92)

The operators Wi, i ¼ 1, 2 are defined by W1 ¼ η1K
1ð Þ
z þ η2K

2ð Þ
z þ 1 and W2 ¼

η1K
1ð Þ
z þ η2K

2ð Þ
z � 1. The second exponential on the right of (91) takes the form,
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exp �iCtð Þ ¼
cos τit� iΔ

τ
sin τ1t �iλ

sin τ1t
τ1

K 1ð Þ
� K 2ð Þ

�

�iλK 1ð Þ
þ K 2ð Þ

þ
sin τ1t
τ1

cos τ2t� iΔ
τ2

sin τ2t

0
BB@

1
CCA (93)

where τ2j ¼ Δ2 þ ν j, j ¼ 1, 2 and

τ1 ¼ λ2K 1ð Þ
� K 1ð Þ

þ K 2ð Þ
� K 2ð Þ

þ , τ2 ¼ λ2K 1ð Þ
þ K 1ð Þ

� K 2ð Þ
þ K 2ð Þ

� (94)

The coherent atomic state ∣ϑ,φi is considered to be the initial state that contains
both excited and ground states and has the structure,

∣ϑ,φi ¼ cos
ϑ

2

� �
∣ei þ sin

ϑ

2

� �
e�iφ∣gi: (95)

where ϑ is the coherence angle, φ the relative phase of the two atomic states. The
excited state is attained by taking ϑ ! 0, while the ground state of the atom is
derived from the limit ϑ ! π. The initial state of the system that describes the two
su 1, 1ð Þ Lie algebras is assumed to be prepared in the pair correlated state ∣ξ, qi
defined by

K 1ð Þ
� K 2ð Þ

� ∣ξ, qi ¼ ξ∣ξ, qi, K 1ð Þ
z � K 1ð Þ

z

	 

∣ξ, qi ¼ q∣ξ, qi: (96)

Since the operators K 1ð Þ
� K 2ð Þ

� and K 1ð Þ
z � K 2ð Þ

z

� �
commute, ∣ξ, qi can be introduced

which is simultaneously an eigenstate of both operators,

∣ξ, qi ¼
X∞
n¼0

Cn ∣qþ nþ k2 � k1; k1; n, k2i: (97)

Then applying K 2ð Þ
� and then K 1ð Þ

� we obtain,

K 1ð Þ
� K 2ð Þ

� ∣ξ, qi

¼
X∞
n¼0

Cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nþ 2k� 1ð Þ qþ nþ k2 � k1ð Þðqþ nþ k2 � k1 þ 2k1 � 1

q
∣qþ nþ k2 � k1 � 1, k1; n� 1, k2i,

¼
X∞
n¼0

Cnþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ nþ 2kð Þ qþ nþ k2 � k1 þ 1ð Þð qþ nþ k2 � k1 þ 2k1ð Þ

q
∣qþ nþ k2 � k1, k1; n, k2i:

(98)

This calculation implies that the normalization constant Cn can be obtained by
solvingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1ð Þ nþ 2kð Þ qþ nþ k2 � k1 þ 1ð Þ nþ qþ k1 þ k2ð Þ
q

Cnþ1 ¼ ξC0: (99)

The new state is of the form,

∣ξ, qi ¼ Nq

X∞
n¼0

Cn ∣qþ nþ k2 � k1, k; n, k2i, N�2
q ¼

X∞
n¼0

Cnj j2: (100)

If it is assumed that at t ¼ 0 the wave function of the system is ∣ψ 0ð Þi ¼
∣ϑ,φi⊗ ∣ξ, qi, using (91) on ∣ψ 0ð Þi, the state can be calculated for t>0 can be
determined
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∣ψ tð Þi ¼ e�iW1t cos τ1tð Þ � i
Δ
τ1

sin τ1tÞ cos ϑ

2

� �
� i

λ

τ1
sin τ1tð ÞK 1ð Þ

� K 2ð Þ
� e�iφ sin

ϑ

2

� �
∣ei⊗ ∣ξ, qi

þeiW2t cos τ2tþ i
Δ
τ2

sin τ2t
� �

e�iφ sin
ϑ

2
� i

λ

τ2
sin τ2tK

1ð Þ
þ K 2ð Þ

þ cos
ϑ

2

� �
∣gi⊗ ∣ξ, qi:

(101)

The reduced density matrix is constructed from this

ρ f tð Þ ¼ Tratom ∣ψ tð Þihψ tð Þ∣: (102)

6. Summary and conclusions

Explicit structures for quantum phase space have been examined. Quantum
phase space provides an inherent geometric structure for an arbitrary quantum
system. It is naturally endowed with sympletic and quantum structures. The num-
ber of quantum dynamical degrees of freedom has a great effect on determining the
quantum phase space. Inherent properties of quantum theory, the Pauli principle,
quantum internal degrees of freedom and quantum statistical properties are
included. A procedure can be stated for constructing this quantum phase space and
canonical coordinates should be derivable for all semi-simple dynamical Lie groups
with Cartan decomposition. The coset space G=R provides a way to define coherent
states which link physical Hilbert space and quantum phase space. This motivates
the study of the algebraic structure of the phase space representation of observables.
The algebraic structure of operators is preserved in phase space if the operators are
those of the dynamical group G. Through this approach, this property results in an
explicit realization of the classical limit of quantum systems. A classical analogy was
developed and seen in the examples as well for an arbitrary quantum system
independently of the existence of the classical counterpart, so the classical limit of
the quantum system can be obtained explicitly if it exists. The classical analogy will
contain the first-order quantum correlation. A theorem which pertains to the rela-
tionship between dynamical symmetry and integrability has been proved, and is
also valid in classical mechanics. It is then possible to construct a way to look for the
quantum manifestation of chaos. Finally, it is then consistent with Berry’s defini-
tion, the study of semi-classical but nonclassical, behavior characteristic of systems
whose classical motion exhibits chaos.
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