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1. Introduction    

The use of wind farms to generate electricity is growing due to the importance of being a 

renewable energy source. These installations can have over a hundred turbines of up to 120 

m height each. Wind farm installations relatively near to radar systems cause clutter returns 

that can affect the normal operation of these radars. Wind turbines provoke clutter 

reflectivity returns with unpredictable Doppler shifts.  

Wind turbines exhibit high radar cross sections (RCS), up to 1000m2 in some instances, and 

then, they are easily detected by radars. A typical wind turbine is made up of three main 

components, the tower, the nacelle and the rotor. The tower is a constant zero velocity return 

that can be suppressed by stationary clutter filtering. Unlike the tower, the turbine nacelle RCS 

is a function of the turbine yaw angle, and then, the radar signature will depend on this factor. 

Moreover, most wind turbines present curved surface nacelles which will scatter the energy in 

all directions and so the variability of the RCS is prominent. In addition, the rotor makes the 

blades move fast enough to be unsuppressed by conventional clutter filtering. 

In this chapter, we will examine the characteristics of wind turbine clutter in great detail. For 

this purpose, we will use examples derived from real experimental data. After describing 

the experimental data gathered, we will perform several studies.  

First of all, a complete statistical characterization of the experimental data will be 
accomplished. This statistical study will show the distinctive properties of this variety of 
clutter and then, it will give us clues for its correct detection, as every detection theory must 
rely on statistics. In this case we will study isolated turbines, so that the obtained 
characteristics will be accurate. After that, we will make an extensive frequency analysis.  
Different configurations will be studied, with variations such us the number of turbines, the 
yaw angle or the radar dwell time. This will show various wind turbine clutter situations 
that most affected radar systems have to deal with. 

Finally, some mitigation techniques that have been published to date will be reviewed. Their 

main purposes, techniques and results will be analyzed and illustrated with descriptive 

examples.  

2. Wind turbine clutter 

2.1 Wind power 
Wind power has proved to be one of the most profitable energy sources both in terms of 

economy and ecology.  In fact, many countries have launched programs in order to deploy 
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wind turbines as alternative sources of energy, trying to tackle the climate change as well as 

the increasing oil costs.  As it can be seen in Fig. 1, wind energy production has been 

exponentially increasing (World Wind Energy Association, 2009) since the early 90s. 
 

 

Fig. 1. Evolution of the wind power installed in the world.  

Traditionally, Europe has leaded the wind energy market, with 70% of the sales by 2000 

(Hatziargyriu & Zervos, 2001). However, the wind energy capacity has been promoted all 

over the world, and countries such as China or India are now using this technology to 

produce large amounts of electrical energy. USA is currently the largest wind power market, 

followed by Germany and Spain, Fig. 2 (World Wind Energy Association, 2009). With 

respect to penetration rates, this power provides 19% of the total energy consumed in 

Denmark, 11% in Spain and Portugal, 6% in Germany and 1% in USA (Thresher & 

Robinson, 2007). In terms of growth, world wind generation capacity more than quadrupled 

between 2000 and 2006. Wind farms will continue its expansion, as it is expected that within 

the next decades wind energy will occupy 20 % of the total annual power consumed both in 

Europe and USA (Thresher & Robinson., 2007). As a consequence, the impact of wind 

turbine clutter on radars is going be more and more important.  
 

 

Fig. 2. Cumulative wind power capacity in the world.  

2.2 Effects of wind turbines on radar systems 
A typical wind turbine is made up of three components, the tower, the nacelle and the rotor. 

The tower means a constant zero velocity return than can be easily minimized by means of 

an appropriate clutter cancellation. Unlike the tower, the turbine nacelle radar cross section 
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(RCS) is a function of the turbine yaw angle and then, the radar signature will depend on 

this factor. More over, most wind turbines present curved surface nacelles which will scatter 

the energy in all directions and so, will increment the variability of the RCS (Poupart, 2003). 

Some studies conclude (Greving, 2008a) that the traditional RCS scheme is not applicable for 

objects on the ground and, therefore, it is not a useful parameter for the definition of 

safeguarding distances of wind farms to radars. Besides, the rotor makes the blades move 

fast enough to be unsuppressed by stationary clutter filtering, with maximum angular 

velocities between 30 and 50 rpm (Freris, 1992). To sum up, the main effects wind turbines 

have on radars are the following (Perry & Biss, 2007): 

- The magnitude of the reflections from the wind turbine can cause radar receivers to be 

driven to saturation. In fact, typical tower heights reach 100 m, with blades from 30 to 

50 m long, see Table 1 (Gamesa, 2009). Some studies address this problem and propose 

stealth technologies to mitigate this effect. The solutions involve both shaping and 

development of absorbing materials (Matthews et al., 2007) 
 

Model G58 G83 G90 

Turbine rating (kW) 850 2000 2000 

Blade length (m) 28.3 40.5 44 

Tower height (m) 44-71 67-78 67-100 

Rotation rate (rpm) 14.6-30.8 9-19 9-19 

Max Tip speed (m/ s) 91 80.5 87.5 

Table 1. Typical Wind Turbine parameters. 

- The rotation movement of blades cause Doppler shifts. The velocity of a blade depend 

on the distance from the centre, therefore, there is an increasing Doppler shift from the 

centre to the tip of the blade. This spectrum can fall within the limits of some radars or 

exceed them. 

These effects result in various situations in different radars.  

- For primary surveillance radars, air traffic control and air defence (Jackson, 2007), wind 

turbine effects include clutter, increased number of unwanted returns in the area of 

wind farms; desensitisation, reduced probability of detection for wanted air target; and 

a consequent loss of wanted target plotting and tracking. In conclusion, they provoke 

higher probability of false alarm and lower probability of detection. 

- In weather radars (Vogt et al., 2008), the clutter, signal blockage and interference may 

cause the misidentification of thunderstorm features and meteorological algorithm 

errors such us false radar estimates of precipitation accumulation, false tornadic vortex 

and mesocyclone signatures and incorrect storm cell identification and tracking. 

- Monopulse secondary radars performance is also affected by the presence of wind 

turbines (Theil & van Ewijk, 2007). The azimuth estimate obtained with the monopulse 

principle can be biased when the interrogated target emits its response when partially 

obscured by an large obstacle such as a wind turbine. 

3. Radar signature of wind turbine clutter 

3.1 Experimental data 
In the experiments, made with the aid of the Spanish weather C-band radar network, we 

gathered data in normal and spotlight operation modes. In the first case, the aim is to 
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calculate the Doppler spectrum in two ways:  for each range gate, for a specific azimuth 

angle; and for each azimuth angle, for a specific range gate. This will show the variations of 

the wind turbine clutter Doppler spectrum as functions of range and azimuth angle. This 

spectrum is expected to have specific features which would aid the identification and 

mitigation of these clutter returns. In the second case, spotlight operation mode, the data are 

collected from a particular cell, known to experiment wind turbine clutter and so defined by 

specific range and azimuth angle. That is to say, the radar dish is stationary and a large and 

contiguous set of time series is collected. Thus, the information about temporal evolution of 

the amplitude of the signal and its Doppler spectrum can be easily extracted. These 

experiments allow us to do a detailed examination of the spectral characteristics and 

statistics of the wind turbine clutter signal.  

All data were taken from a C-band weather radar near Palencia, Spain. Up to three different 

wind farms can be seen in a narrow sector between 30 and 45 km away from the radar. The 

main wind farm is composed by 54 wind turbines model G-58 (Gamesa, 2009), which 

provide an average power of 49300 kW. It was a clear day, so there weren’t interfering 

weather signals. In the following figure we can distinguish the three wind farms. 
 

 

Fig. 3. PPI representation of the data under study.  

The turbines layout within the wind farm let the radar resolve the different rows. It is usual 

to maintain a minimum distance between turbines (Jenkins, 1993) because when a wind 

turbine extracts energy from the wind it creates a wake of slower, more turbulent air which 

will negatively impact on the performance of adjacent turbines. This spacing is usually set 

from five to eight times the blade diameter, that is, about 200 m. Therefore, with a radar 

range resolution of 125 m it is possible to resolve different turbines in range. However, 

azimuth resolution does vary with the distance and most of the times two or more turbines 

will occupy the same resolution cell. 
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3.2 Scanning radar 
By calculating the Doppler spectrum, defined as the power weighted distribution of radial 

velocities within the resolution volume of the radar (Doviak & Zrnic, 1984), for each 

azimuth angle, for a particular range gate, the spectral content versus the azimuth angle can 

be studied. I-Q radar data were gathered with the slowest antenna velocity, the lowest 

elevation angle (the most affected by the presence of wind farms) and the highest pulse 

repetition frequency (PRF). See Table 2 for detailed radar parameters. The spectral content 

of several range bins has been studied using a Short-time Fourier Transform (STFT) of 

partially overlapped time sectors to build a spectrogram. A Hamming window was used in 

order to diminish windowing effects.  

An example has been represented in Fig. 4 (Gallardo-Hernando et al. 2008b). There was an 

isolated wind mill in the selected range gate, so, the spectrum is located at a very specific 

azimuth angle. This spectrum is extremely wide, as some of its components seem to be 

overlapped. 
 

 

Fig. 4. Doppler spectrum versus azimuth angle.  

Frequency 5500 MHz 

Beam width 0.8º 

Power 250 kW 

Antenna gain 43 dBi 

Pulse repetition frequency (PRF) 1300 Hz 

Elevation angle 0.5º 

Antenna velocity 12º/ s 

Pulse length 0.5 μs 

Table 2. Scanning radar parameters. 
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The spectrum of two different turbines in the same range bin is plotted in Fig. 5. The 
Doppler frequency shift is different for each turbine for two reasons. First, the rotors can 
have different velocities of rotation. Second, although the turbines were rotating at the same 
velocity, the yaw angle could be different and so the radial velocity.  

 

Fig. 5. Doppler spectrum of two adjacent wind turbines. 

Fig. 6 shows a similar variation of the Doppler spectrum, now as a function of range. This 
spectrum is also extremely wide, and it obviously appears at every range gate with wind 
turbines located in.  

 
Fig. 6. Doppler spectrum calculated on the 54º azimuth bin. 
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3.2 Spotlight radar 
In this operation mode, defined in (Isom et al., 2008), a large set of time series was collected 

while the radar dish was stationary and the azimuth angle defined to get data from the 

wind farm, 54.03º. Radar parameters are similar to those of Table 2, but for the radar 

antenna, zero velocity. 

Fig. 7 shows the variation of the signal amplitude versus time. It shows a clear periodicity 

that is supposed to be caused by the motion of blades. Later on this periodicity will be 

studied, see section 3.3. The noise level seems to be 20 dB under the signal and the effect of 

target scintillation is clearly seen. 
 

 

Fig. 7. Amplitude variation at 42.5 km bin versus time. 

A frequency transform was made to calculate the Doppler spectrum. Fig. 8 shows the 

Doppler spectrogram in time, and the same periodicities seen in Fig. 7 seem to be here. The 

echo of the blades is characterized by short flashes, which occur when one blade is 

orthogonal with respect to the propagation direction of the transmitted signal (Gallardo-

Hernando et al., 2008b). Once again, the spectrum is spread all over Doppler frequencies, 

and so, we cannot assure which components are moving towards or away from the radar.  

Then, there are five very intense Doppler returns in Fig. 8. These flashes are separated 

approximately 1.33 seconds. By considering a three-blade wind turbine, this period means 

than one blade takes over 4 seconds to do an entire rotation of 360º, that is to say, the 

angular velocity of the blades is estimated to be 15 rpm. The reason why negative Doppler 

shifts (blades going down) are less powerful lies in the elevation angle, the differences of 

RCS between blade sides, and also in a possible shadowing of the radar beam. The aspect of 

these flashes is explained by the fact that the sum of the contributions of the different parts 

of a blade is coherent only when the blade is perpendicular to the line of sight. If there is no 

perpendicularity, the vector sum is destructive, as a consequence of the variability of the 

phase. Just in the blade tip the vectors are not enough to cancel the signal and a peak 

www.intechopen.com



 Radar Technology 

 

94 

appears. This peak is visible in Fig. 8, and as the blade describes a circumference, a 

sinusoidal function appears in the spectrogram.  

Although the blades tip velocities can be much higher than the maximum non ambiguous 

velocity of approximately 18m·s-1, the yaw angle involves a lower radial velocity. 

 

Fig. 8. Doppler spectrum at 42.5 km bin versus time. 

In most cases the blade’s energy returns are distributed over the entire Doppler frequency 

spectrum, there is a total ambiguity scheme, Fig. 9. 

 
Fig. 9. Ambiguous WTC. 
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Focusing on the most powerful flashes, the wind turbine whose time behaviour has been 
represented in Fig. 9 rotates at 20 rpm. But, what is the meaning of the weaker flashes 
between them? There are several possibilities. First, they can correspond to the same blades 
on a different position than the perpendicular as they seem to have the same period. Second, 
there is another wind turbine in the same range bin with apparently the same rotation rate. 
Third, and more probable, they are the effect of the antenna side lobes. Then, for most wind 
farms and wind turbines, not even the time between flashes will be completely clean of 
clutter. More examples of spotlight WTC are plotted in Fig. 10. 
 

 

Fig. 10. Examples of WTC. 
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3.3 Statistics 
The aim of the characterization of wind turbine clutter by means of statistical analysis is to 

model it as a stochastic process.  Although this kind of clutter is not strictly stationary, it 

may exhibit some features that would allow an optimal detection of wind turbines for a 

latter mitigation. 

Doppler statistics 

This section focuses on detailing the dynamic behaviour of the Doppler spectrum as well as 

the relationship between amplitude and spectral qualities (Gallardo-Hernando et al., 2008b). 

As it can be seen in Fig. 11, the amplitude variations follow the behaviour of the Doppler 

centroid, defined as the centre frequency of the Doppler spectrum of the data. Its most 

significantly variations take place at the same time the amplitude maximums appear. The 

Doppler Bandwidth is centred on 200 Hz and has very small variations. 
 

 

Fig. 11. Comparison of Doppler Centroid, Doppler Bandwidth and Amplitude of the signal 

versus time. 

 
Fig. 12. Autocorrelation. 
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Amplitude statistics 

The autocorrelation of the signal in time, Fig. 12, confirms the periodicities we mentioned 

before, as a main lobe appear at 1.15 seconds. 

A modelling of the experimental amplitude probability density function has also been done. 

This empirical PDF has been fitted to the Log Normal, Weibull, Rayleigh, Gamma and K 

distribution. We employed the maximum-likelihood method in all the distributions except 

for K, where we implemented the method of moments. Fig. 13 shows the result of the fitting 

process of the experimental PDF to the different theoretic functions.  The K distribution 

seems to provide the best fit.  In order to determine the best fit, another technique has been 

used. The experimental and theoretic moments of the distributions have been calculated 

from the fitting resulting parameters and then compared. The experimental moments are 

better approximated by the K distribution, Fig. 14. 
 

 

Fig. 13. Comparison of several distribution functions. 

 
Fig. 14. Comparison of several distribution moments. 
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4. Mitigation concepts 

As it has been shown in previous sections, wind turbine clutter is unpredictable. It can 
fluctuate from one scan to the following. The blades rotate at such a rate to produce Doppler 
shifts on the order of 70 or even 90 m·s-1. These values can exceed the maximum non-

ambiguous Doppler velocity of some radars and then, make more difficult WTC detection 
and mitigation.  
This section summarizes some of the mitigation techniques that have been published to 
date. These state-of-the-art processing techniques have been categorized in function of the 
affected radar: primary air surveillance radars and meteorological radars.  
Apart from processing techniques, stealth solutions are also being studied to reduce the 
problem (Matthews et al., 2007). These techniques try to develop radar absorbing materials 
as well as to design new wind turbines with reduced radar cross section, preserving the 
efficiency of turbines in terms of electricity production and construction costs. The main 
inconvenient of these solutions is that the materials employed might be only efficient for 
very specific radar frequency bands. 

4.1 Air surveillance radars 
Several techniques can be employed to minimise the effect of signal blocking and ghost 
target appearance which wind turbines can provoke. Some of them are listed below (Perry 
& Biss, 2007) and (Sergey et al., 2008): 

- Moving Target Detection (MTD) Doppler processing would reduce the magnitude of 

the blade returns separating the blade spectrum into Doppler increments.  

- Range Averaging Constant False Alarm Reduction (CFAR) processing. Wind turbines 

provoke the detection threshold to rise, and then, the shadow effect appears. CFAR 

would then be applied for each Doppler increment from MTD and then anomalous 

power bins would be substituted with average noise power. 

- Increased System Bandwidth would allow detections between wind turbines by using a 

higher resolution clutter map. 

- Plot and Track Filters would reduce false alarms on returns with non-aircraft profiles. 

- Range and Azimuth Gating (RAG) maps would enable unique mitigation algorithms to 

be implemented only in wind farm areas, maintaining normal performance outside the 

wind farms. 

- Sensitivity Time Control (STC) would minimize the radar sensitivity at short range in 

order to limit the return from the wind turbine while not affecting target detection and 

so, prevent the receptor to be driven to saturation. 

- Enhanced target tracking techniques can be used after detection. Feature aided tracker 

(FAT) identifies features from signals and process them in a probabilistic manner. The 

tracker would incorporate special processing techniques such us adaptive logic, map 

aided processing, processing priorization, enhanced tracking filters or classification 

algorithms. 

These techniques can be used all together and, theoretically, they would allow the detection 
of aircrafts in wind farm areas with similar results in terms of detection and false alarm 
probabilities than in areas free from wind turbine clutter. 

4.2 Meteorological radars 
Weather radars are one of the most affected radio systems by wind turbine clutter. This 
radar is a special type of primary radar intended to measure atmospheric volumetric targets: 
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large volumes of clouds and rain. The main distorting effects include reflections from the 
static parts, reflections from the rotating parts and shadowing or blocking (Greving & 
Malkomes, 2008b). These effects cause the meteorological algorithms to fail and give false 
radar estimates of precipitation and wind velocity, as it can be seen in Fig. 15. 
 

 

Fig. 15. PPI reflectivity image in a clear day. All the returns come from wind farms. 

Prevention 

Some of the mitigation efforts are focused on the prevention of this clutter (Donaldson et al., 

2008). The assessment for new wind farms should be planned taking into account nearby 

weather radars by using line of sight calculations, standard 4/ 3 radio propagation model 

and echo statistics. But already built wind farms are still distorting weather radars, and 

then, specific processing is needed. 

Interpolation 

Wind turbine clutter spectrum usually exceeds most weather radar Doppler capacities. 

Current clutter filtering techniques are capable of removing the tower component effectively 

but the effects of the blade motion remains. The objective is to remove the blade components 

without distorting the desired weather signal. Some studies (Isom et al., 2007) propose 

interpolation techniques to mitigate WTC. These techniques use uncontaminated data to 

estimate the weather signal in bins which have been previously detected as contaminated. 

Results are plotted in Fig. 16. However large wind farms will cause an important loss of 

valuable weather information in their areas if the separation between turbines is narrower 

than twice the resolution distance, as none clean bins can be used. 

Rain rate dependence 

Interpolation has also been used in other works (Gallardo-Hernando et al.,2009) to show the 

dependence of this technique on rain rate variations. The study included simulated weather 

data as well as real clutter data retrieved from the radars described in section 3. The 
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Fig. 16. Interpolation in PPI plots (Isom et al., 2007). 

mitigation algorithm is based on the interpolation of correct values in the range bins which 

had been previously detected as contaminated by WTC. This interpolation is made in the 

direction of the velocity of the wind. The simulated rain Doppler spectrum was directly 

added to the WTC spectrum. Zero velocity clutter was previously removed. Fig. 17 shows 

the result of the addition of simulated rain spectrum to the WTC spectrum data in range 

plots. The estimated values of reflectivity, Fig. 17a, and velocity, Fig. 17b are drawn for all of 

the circumstances: WTC plus rain, simulated rain and corrected values. The simulated 

spectrum uses a rain intensity of 1 mm/ h, which implies that the rain would be barely 

visible under the wind farms. The wind velocity does not vary with range. In reflectivity, 

the error drops from 32 to 4 dB. In velocity, the error drops from 23 to 0.5 m/ s. 
 

(a) 
 

(b) 

Fig. 17. Total, rain and corrected reflectivity and velocity values for R=1mm/ h. In 

reflectivity, the error drops from 32 to 4 dB. In velocity, the error drops from 23 to 0.5 m/ s.  

Rain Doppler spectra were simulated from 1mm/ h to 70 mm/ h and used the same 

mitigation algorithm, with the previous detection of WTC contaminated range bins. The 

results are summarized in Fig. 18. Fig 18a shows the errors found in the reflectivity 
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estimation, in dB before and after the algorithm. The error decreases almost exponentially as 

the rain intensity increases and there is a point where the error is almost the same using or 

not the algorithm. This happens when rain is much more powerful than clutter. Fig 18b 

shows the errors found in the velocity estimation before and after applying the algorithm. In 

this case at certain rain intensity WTC stops affecting the estimation of reflectivity, and the 

error is slightly greater when using the algorithm due to the evident loss of information. 

 

(a) 
 

(b) 

Fig. 18. Absolute error in reflectivity and velocity estimations.  

Adaptive thresholding 

As we have seen, these techniques require the previous detection of contaminated cells. 

However, it has also been shown that an adaptive detection can be applied in spotlight 

mode (Gallardo-Hernando et al., 2008c). This technique is based on the removal of flashes 

by means of adaptive thresholding. In Fig 19a a real WTC spotlight spectrum can be 

observed. Flashes are spread over the entire spectrum. Fig. 19b shows a spectrogram of the 

addition of real wind turbine spectrum and simulated 5mm/ h variable velocity rain 

spectrum. 
 

(a) 
 

(b) 

Fig. 19. WTC spotlight data spectrum and its addition to simulated weather data.  
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The election of an appropriate threshold has to be made regarding the significant changes in 

the amplitude of the signal, Fig. 20a. Finally, Fig. 20b shows the results after the flashes 

detection, removal and replacement with information of adjacent time bins. 
 

(a) 
 

(b) 

Fig. 20. Adaptive thresholding.  

Tomographic techniques 

In (Gallardo-Hernando et al., 2008a), an image processing technique to remove WTC in 

spotlight operation mode is presented. If Fig. 19b is considered as an image, it can be 

handled by means of specific image processing. The Radon transform of an image is 

calculated by integrating the intensity values among straight lines characterized by an angle 

and a distance. Therefore the vertical lines in the original image are going to be seen as 0º 

points in the Radon domain, as they only appear at 0º integrations. In particular, variations 

of 0.1º were used in a -90º≤θ<90º interval. Fig. 21a shows the result of the transformation of 

Fig. 19b into the Radon domain. The six clutter flashes that appeared before are now six 0º 

points, whereas the rain is mostly near 90º, as well as the ground clutter. WTC is now very 

easy to remove without distorting the weather information, in this case, values between -

5º≤θ<5º were filtered. Fig. 21b shows the results after the removal of the clutter points and 

the inverse transformation. 
 

(a) 
 

(b) 

Fig. 21. Radon transformation and results after filtering.  
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Adaptive Arrays 

Adaptive phased array radars have also been proposed as possible solution to WTC in 

weather radars (Palmer et al., 2008). These arrays offer the capability to obtain a signal that 

accurately represents the weather only scattering field. By carefully using the interfence of 

the radiation pattern, the WTC near the ground is rejected while the scattered energy of the 

weather above the ground is preserved. 

5. Conclusion 

In this chapter the main effects of wind turbines on the performance of radar systems have 

been explained. The radar signature of wind turbine clutter is unique and then, it requires a 

special treatment when developing mitigation techniques. WTC clutter remains spatially 

static, but it fluctuates continuously in time. In surveillance radars the return from wind 

turbines can be completely different from one scan to the following. In addition, apart from 

the powerful tower return, the movement of blades produces large Doppler shifts. Some of 

the latest mitigation techniques have been described; however, a more extensive study has 

to be accomplished. As future research, novel automatic detection techniques as well as 

accurate mitigation schemes in scanning radars have been planned to be developed. 
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