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1. Introduction 

Augmented Reality copes with the problem of dynamically augmenting or enhancing the 
real world with computer generated virtual objects [Azuma, 1997; Azuma, 2001]. 
Registration is one of the most pivotal problems in augmented reality applications. Typical 
augmented reality applications track 2D patterns on rigid planar objects in order to acquire 
the pose of the camera in the scene. Although the problem of rigid registration has been 
widely studied [Yuan et al., 2005; Yuan et al., 2006; Guan et al., 2008a; Guan et al., 2008b; Li 
et al., 2008], non-rigid registration is recently receiving more and more attention. There are 
many non-rigid objects existing in the real world such as animated faces, deformable cloth, 
hand and so forth. How to overlaid virtual objects on the non-rigid objects is particular 
challenging. 
Recently, many related non-rigid registration approaches have been reported. In many cases 
(e.g. human faces), only a few feature points can be reliably tracked. In [Bartoli et al., 2004], a 
non-rigid registration method using point and curve correspondences was proposed to 
solve this problem. They introduced curves into the non-rigid factorization framework 
because there are several curves (e.g. the hairline, the eyebows) can be used to determine the 
mapping. The mapping function is computed from both point and curve correspondences. 
This method can successfully augment the non-rigid object with a virtual object. In [Pilet et 
al., 2005; Pilet et al., 2007], they presented a real-time method for detecting deformable 
surfaces with no need whatsoever for a prior pose knowledge. The deformable 2D meshes 
are introduced. With the use of fast wide baseline matching algorithm, they can 
superimpose an appropriately deformed logo on the T-shirt. These methods are robust to 
large deformations, lighting changes, motion blur and occlusions. To align the virtual 
objects generated by computers with the real world seamlessly, the accurate registration 
data should be provided. In general, registration can be achieved by solving a point 
matching problem. The problem is to find the correspondence between two sets of tracked 
feature points. Therefore, the detection of feature points and the points tracking are the two 
main problems. Rigid object detection and tracking have been extensively studied and 
effective, robust, and real-time solutions proposed [Lowe, 2004; Lepetit & Fua, 2005; Lepetit 
et al., 2005; Rosten & Drummond, 2005]. Non-rigid object detection and tracking is far more 
complex because the object is deformable and not only the registration data but also a large 
number of deformation parameters must be estimated. 
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Active Appearance Models (AAM), introduced a few years ago [Cootes et al., 1998; Cootes 
et al., 2001], are commonly used to track non-rigid objects, such as faces and hands. There 
are many methods have been proposed to track non-rigid objects using AAM. A working 
system for finding and tracking a human face and its features using active appearance 
models was presented in [Ahlberg, 2001]. A wireframe model is adapted to the face in each 
image. Then the model is matched to the face in the input image using active appearance 
algorithm. In [Sung & Kim, 2004], the previous 2D AAM is extended to 3D shape model and 
modified model fitting algorithm was proposed. In [Markin & Prakash, 2006], occluded 
images are included into AAM training data to solve the occlusion and self-occlusion 
problem. This approach can improve the fitting quality of the algorithm. 
With known coordinates of 3D points in the world coordinates and the corresponding 2D 
image points, the camera pose can be estimated. For non-rigid objects, AAM algorithm is a 
robust method to acquire the 2D image points. It has been proven to be a useful method for 
matching any of the statistical models to a new image rapidly. The 3D points of the non-
rigid objects can be represented by a linear combination of a set of 3D basis shapes. By 
varying the configuration weights and camera pose parameters, the error between the 
estimated 2D points (projected by the estimated 3D shapes using estimated camera pose 
parameters) and 2D tracking points can be minimized.  
Many methods have been proposed to recover 3D shape basis from 2D image sequences. In 
[Tomasi & Kanade, 1992], the factorization method is used to recover shape and motion 
from a sequence of images under orthographic projection. The image sequence is 
represented as a measurement matrix. It is proved that under orthography, the 
measurement matrix is of rank 3 and can be factored into 3D pose and 3D shape matrix. 
Unfortunately this technique can not be applied to non-rigid deforming objects, since they 
are based on the rigidity assumption. The technique based on a non-rigid model is proposed 
to recover 3D non-rigid shape models under scaled orthographic projection [Bregler et al., 
2000]. The 3D shape in each frame can be expressed by a linear combination of a set of K 
basis shapes. Under this model, the 2D tracking matrix is of rank 3K and can be factored into 
3D pose, object configuration and 3D basis shapes with the use of SVD. 
In this chapter, a novel non-rigid registration method for augmented reality applications 
with the use of AAM and factorization method is introduced. We focus on AAM algorithm 
and factorization method which can obtain the 3D shape basis, object configuration and 3D 
pose simultaneously. The following demonstrations are mainly based on the researches 
presented in [Tomasi & Kanade, 1992; Cootes et al., 1998; Bregler et al., 2000; Cootes et al., 
2001; Xiao et al., 2004; Zhu et al., 2006; Tian et al., 2008]. In section 2, we will have a detailed 
review of active appearance models and focus on the way of how to track non-rigid objects. 
In section 3, we will illustrate how to compute the 3D shape basis, the camera rotation 
matrix and configuration weights of each training frame simultaneously from the 2D 
tracking data using factorization algorithm. In section 4, we will introduce how to compute 
the precise configuration weights and camera rotation matrix by optimization method and 
the experimental results are also given. 

2. Tracking non-rigid objects using AAM 

Tracking non-rigid objects using AAM includes five main steps. The first step is to obtain 
landmarks in training image set. Then establish the shape model and texture model 
separately. These two models are unified into one appearance model in the next step. Finally 
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the difference between the closest synthesized AAM model and input image is minimized to 
get the accurate tracking result. The flowchart is shown in Fig. 1. 
 

 

Fig. 1. The flowchart of tracking non-rigid objects using AAM. 

2.1 Obtain landmarks 
 

 

Fig. 2. Examples of traning images manually labeled with consistent landmarks. 

Before establishing the models, we should place hundreds of points in each 2D training 
image. The landmarks in each image should be consistent. We usually choose the points of 
high curve or junctions as landmark points which will control the shape of the target object 
strictly. The acquisition process is cumbersome especially when it is done manually. 
Researchers have looked for different ways to reduce the burden. Ideally, one only need to 
place points in one image and the corresponding points in the remain traning images can be 
found automatically. Obviously, this is impossible. However many semi-automatic methods 
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have been proposed and can successfully find the correspondences accross an image set. 
Here we focus on the tracking procedure, more details about semi-autometic placement of 
landmarks can be found in [Sclaroff & Pentland, 1995; Duta et al., 1999; Walker et al., 2000; 
Andresen & Nielsen, 2001]. The examples of training images manually labeled with 
consistent landmarks are shown in Fig. 2. We use 7 training images taken from different 
viewpoints. Each image is labeled with 36 landmarks shown as the “× ” in the figures. 
Given a training image set with key landmark points are marked on each example object, we 
can establish the shape and texture variations. These approaches will be detailedly 
illustrated in the following sections. 

2.2 Establish shape model 
Suppose L denotes the number of shapes in a training image set and m is the number of key 
landmark points on each image. The vector representation for each shape would then be: 

 [ ]1 2 1 2, , , , , , ,
T

i m mX x x x y y y= … … , 1,2, ,i L= …  (1) 

Then the training image set 1 2( , , , )LX X XΩ = … .  

The shape and pose (include position, scale and rotation) of the object in each training image 
is different, so the shapes should be aligned to filter out the pose effects. We will first 
explain how to align two shapes and then extend it to a set of shapes. 
If X and X’ are two shape vectors, the goal is to minimize the square sum of corresponding 
landmarks after alignment using similarity transformation technique. That is to minimize E: 

 
2

( )E T X X′= −    (2) 

where 

 
x

y

tx u v x
T

ty v u y

⎛ ⎞−⎛ ⎞ ⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠   (3) 

Choose three kinds of transformation factors: scale factor-s, rotation factor-θ and translation 

factor-t. And cosu s θ= ⋅ , sinv s θ= ⋅ . Hence 2 2 2s u v= + , 1tan ( )v uθ −= . Then equation (2) 

can be rewritten as: 

 
2 2 2

1

( , , , ) ( ) ( ) ( )
m

x y i i x i i i y i
i

E u v t t T X X ux vy t x vx uy t y
=

′ ′ ′= − = − + − + + + −∑   (4) 

To solve the minimum value of equation (4) is equivalent to let the partial derivative equals 
to zero. Then the transformation parameters are: 

 
2

( )

| |

x x
u

x

′⋅= , 1
2

( )

| |

m

i i i i
i

x y y x

v
x

=
′ ′−

=∑ , 
1

1 m

x i
i

t x
m =

′= ∑ , 
1

1 m

y i
i

t y
m =

′= ∑   (5) 

The alignment of a set of shapes can be processed by iterative approach suggested by 
[Bookstein, 1996]. The detailed process is shown in Table 1. 

So the new training image set 1 2
ˆ ˆ ˆˆ ( , , , )LX X XΩ = … . The mean shape is calculated by: 
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Table 1. The process of aligning a set of shapes. 

 
1

1 ˆ
L

i
i

X X
L =

= ∑   (6) 

The covariance matrix can thus be given as: 

 
1

1 ˆ ˆ( )( )
1

L
T

s i i
i

X X X X
L =

= − −−∑ ∑   (7) 

Calculate the eigenvalue ,s iλ  of s∑  and the corresponding eigenvector ,s iη : 

 , , ,s i s i s iη λ η=∑   (8) 

Sort all the eigenvalues in descending order: 

 , , 1s i s iλ λ +≥ , 1,2, ,2 1i m= −…   (9) 

The corresponding set of eigenvectors is ,1 ,2 ,2[ , , , ]s s s s mη η ηΗ = … . 

To reduce the computational complexity, the principal component analysis (PCA) method is 
used to reduce the space dimensions. Choose t largest eigenvalues which satisfy the 
following condition: 

 
2

, ,
1 1

0.98
t m

s i s i
i i

λ λ
= =

⎛ ⎞≥ ⎜ ⎟⎝ ⎠∑ ∑   (10) 

Then any shape instance can be generated by deforming the mean shape by a linear 
combination of eigenvectors: 

 ˆ
s sX X b≈ + Φ   (11) 

where sΦ  is a matrix of dimension 2m t×  and contains t  eigenvectors corresponding to the 

largest eigenvalues, ,1 ,2 ,( | | | )s s s s tϕ ϕ ϕΦ = … . sb  is a t  dimensional vector and the 

eigenvectors are mutually orthogonal, so it can be given by: 

 )ˆ()ˆ(1 XXXXb
T
s

s
s −Φ=−Φ= −   (12) 

By varying the elements of bs, new shape instance can be generated using equation (11). 

Step 1: Choose one shape as the initial estimate of the mean shape. 

Step 2: Scale the mean shape so that 0| | 1X = . 

Step 3: Align all the remaining shapes to the mean shape using the 
method described above. 
Step 4: Re-estimate the mean shape from aligned shapes. 

Step 5: Scale the new mean shape so that | | 1newX = . 

Step 6: If the new calculated mean shape doesn’t change significantly, 
convergence is declared; else return to step 3. 
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2.3 Establish texture model 
To establish a complete appearance model, not only the shape but also the texture should be 

considered. We should firstly acquire the pixel information over the region covered by the 

landmarks on each training image. Then the image warping method is used to consistently 

collect the texture information between the landmarks on different training images. Finally 

establish the texture model using the PCA method. 

The texture of a target object can be represented as: 

 1 2[ , , , ]Tng g g g= …   (13) 

where n denotes the number of pixel samples over the object surface. 

In an image, the target object may occupy a small region of the whole image. The pixel 

intensities and global changes in illumination are different in each training image. The most 

important information is the texture that can reflect the characteristic of the target object. 

Due to the number of pixels in different target region is different and it is difficult to acquire 

the accurate corresponding relationship between different images, the texture model can not 

be established directly. We need to obtain a texture vector with the same dimension and 

corresponding relationship. So we warp each example image so that its control points match 

the reference shape. The process of image warping is described as follows: 

Firstly, apply Delaunay triangulation to the reference shape to obtain the reference mesh 

which is consisted of a set of triangles. We choose the mean shape as the reference shape. 

Secondly, suppose 1v , 2v  and 3v  are three vertices of a triangle in the example mesh, any 

internal point v of the triangle can be written as: 

 1 2 1 3 1 1 2 3( ) ( )v v v v v v v v vβ γ α β γ= + − + − = + +   (14) 

where 1α β γ+ + = . Constrain 0 , , 1α β γ≤ ≤  because v  is inside the triangle. Given 

[ , ]Tv x y= , 1 1 1[ , ]Tv x y= , 2 2 2[ , ]Tv x y= , 3 3 3[ , ]Tv x y= , then , ,α β γ  can be calculated by: 

 1 ( )α β γ= − +   (15) 

 3 1 3 1 3 1 3 1

2 3 2 1 1 3 3 2 3 1 1 2

x x x

-x x x x x x

yx y x y y x y y

y y y y y y
β − − − + += + + + − −   (16) 

 2 1 1 2 2 2 1 1

2 3 2 1 1 3 3 2 3 1 1 2

x x x x x

-x x x x x x

y y x y y y y

y y y y y y
γ − − − + += + + + − −    (17) 

Finally, the corresponding point v’ of the triangle in the reference mesh can be calculated by: 

 1 2 1 3 1 1 2 3( ) ( )v v v v v v v v vβ γ α β γ′ ′ ′ ′ ′ ′ ′ ′ ′= + − + − = + +   (18) 

where 1v′ , 2v′  and 3v′  are the vertices of the corresponding triangle in the reference mesh. 

After image warping process, each shape in the training set is warped to the reference shape 

and sampled. The influence from the global linear changes in pixel intensities is removed. 

To reduce the effects that caused by global lighting variations, the example samples are 

normalized by applying a scaling a and offset b: 
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 1 2 3
1 2 3( , , , , ) ( , , , , )n

n

g b g b g b g b
g g g g g

a a a a

− − − −′ ′ ′ ′ ′= =… …   (19) 

where  

 
1

1 n

i
i

b g
n =

′= ∑ , a σ= , 

2
2

1

1
( )

n

i
i

g b
n

σ
=

′= −∑    (20) 

 

The establishment of the texture model is identical to the establishment of the shape model 
which is also analyzed by PCA approach. The mean texture is calculated by: 

 
1

1 L

i
i

g g
L =

′= ∑    (21) 

The covariance matrix can thus be given as: 

 
1

1
( )( )

1

L
T

g i i
i

g g g g
L =

′ ′= − −−∑ ∑   (22) 

Calculate the eigenvalue ,g iλ  of g∑  and the corresponding eigenvector ,g iη : 

 , , ,g i g i g iη λ η=∑   (23) 

Sort all the eigenvalues in descending order: 

 , , 1g i g iλ λ +≥ , 1,2, ,2 1i n= −…    (24) 

The corresponding set of eigenvectors is ,1 ,2 ,2[ , , , ]g g g g nη η ηΗ = … . 

To reduce the computational complexity, the PCA method is used to reduce the space 
dimensions. Choose t largest eigenvalues which satisfy the following condition: 

 
2

, ,
1 1

0.98
t n

g i g i
i i

λ λ
= =

⎛ ⎞≥ ⎜ ⎟⎝ ⎠∑ ∑   (25) 

Then any texture instance can be generated by deforming the mean texture by a linear 
combination of eigenvectors: 

 g gg g b′ ≈ + Φ    (26) 

where gΦ  is a matrix of dimension 2n t×  and contains t eigenvectors corresponding to the 

largest eigenvalues, ,1 ,2 ,( | | | )g g g g tφ φ φΦ = … . gb  is a t dimensional vector and the 

eigenvectors are mutually orthogonal, so it can be given by: 

 1( ) ( )T
g g gb g g g g− ′ ′= Φ − = Φ −   (27) 

By varying the elements of gb , new texture instance can be generated using equation (26). 
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2.4 Establish combined model 
Since the shape model and texture model have been established, any input image can be 
represented using the shape parameter vector bs and texture parameter vector bg. Since there 
are some correlations between shape and texture variations, the new vector b can be 
generated by combining bs and bg: 

 
ˆ( )

( )

T
s s s s

T
g g

W b W X X
b

b g g

⎛ ⎞Φ −⎛ ⎞ ⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟′Φ −⎝ ⎠ ⎝ ⎠
  (28) 

where Ws is a diagonal matrix which adjust the weighting between pixel distances and pixel 
intensities. Ws is calculated by: 

 

0

0
s

r

W rI

r

⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥⎣ ⎦

A
B D B

A
  (29) 

where r2 is the ratio of the total intensity variation to the total shape variation: 

 
g

s

r
λ
λ= , ,g g iλ λ=∑ , ,s s iλ λ=∑   (30) 

Apply PCA on b, then 

 cb c= Φ    (31) 

where cΦ  is the eigenvectors of covariance matrix corresponding to b: 

 
,

,

c s
c

c g

Φ⎛ ⎞Φ = ⎜ ⎟⎜ ⎟Φ⎝ ⎠   (32) 

c is a vector of appearance model parameters controlling both the shape and texture of the 
models. 
Using the linear nature of the model, the combined model including shape X and texture g 
can be expressed as: 

 1
,s c sX X W c−= + Φ Φ   (33) 

 ,g c gg g c= + Φ Φ   (34) 

Then a new image can be synthesised using equation (33) and (34) for a given c. 

2.5 Fitting AAM to the input image 
Fitting a AAMs to an image is considered to be a problem of minimizing the error between 
the input image and closest model instance [Wang et al., 2007]: 

 modimage elI I Iδ = −    (35) 
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Fig. 3. Results of tracking hand using AAM fitting. 

where imageI  is the texture vector of the input image, and mod elI  is the texture vector of the 

model instance. The goal is to adjust the appearance model parameters c to minimize 2| |Iδ . 

The simplest way is to construct a linear relationship: 

 c R Iδ δ=    (36) 

where R can be computed by the following process: 

• Suppose c0 is the model parameter of the current image, new model parameter c can be 
generated by variating c0: 

 0c c cδ= +   (37) 

• Generate new shape model X and normalized texture model gm according to equation 
(33) and (34).  

• Deform the current image and get the corresponding texture model gi, the difference 
vector can be written as: 

 i mg g gδ = −    (38) 

gδ  will change along with the variation of cδ  and the shape model X . 
The fitting procedure is shown in Table 2 and the object tracking results are shown in Fig. 3 
and Fig. 4. From the tracking results we can see that when the camera moves around the 
scene, the tracking results are satisfying. 

3. Factorization algorithm 

The flowchart of the factorization algorithm is shown in Fig. 5, and the detailed 
demonstration will be given in the following sections. 

3.1 Basic knowledge 

The 3D shape of the non-rigid object can be described as a key frame basis set 1 2, , , KS S S… . 

Each key frame basis  iS  is a  3 P×  matrix describing P  points. The 3D shape of a specific 

configuration is a linear combination of the basis set: 

   

   

www.intechopen.com



 Augmented Reality 

 

166 

 

Fig. 4. Results of tracking face using AAM fitting. 

 

Table 2. The procedure of fitting the input image to the model instance. 

 
1

K

i i
i

S l S
=

= ⋅∑        3, ,P
i iS S R l R×∈ ∈   (39) 

where 
1 2

1 2

1 2

...

...

...

P

P

P

x x x

S y y y

z z z

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦
. 

Under a scaled orthographic projection, the P points of S are projected into 2D image points 
(ui,vi): 

 1 2

1 2 1

...

...

K
P

i i
P i

u u u
R l S T

v v v =
⎛ ⎞⎡ ⎤ = +⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠∑   (40) 

Step 1: Generate the normalized texture vector mg . 

Step 2: Sample the image ig  below the model shape. 

Step 3: Evaluate the error vector 
0g i mg gδ = − . 

Step 4: Evaluate the error 
00 | |gE δ= . 

Step 5: Calculate the pose displacement 
0t t gRδ δ= . 

Step 6: Calculate the displacement in model parameters 
0c c gRδ δ= . 

Step 7: Set 1i = . 

Step 8: Update model parameters i cc c k δ= − . 

Step 9: Transform the shape to invert the tδ  transformation. 

Step 10: Repeat step 1-4 to form a new error iE . 

Step 11: If 0iE E>  set 1i i= +  and go to step 8. 

Step 12: Accept the new estimate. 

where [ ]1.5,0.5,0.125,0.0125,0.0625
T

k =  is the damping vector. 
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Fig. 5. The flowchart of the factorization algorithm. 

 1 2 3

4 5 6

r r r
R

r r r

⎡ ⎤= ⎢ ⎥⎣ ⎦ , [ ]1 2 3T t t t=    (41) 

 

R contains the first two rows of the 3D camera rotation matrix. T is the camera translation 

matrix. As mentioned in [Tomasi & Kanade, 1992], we eliminate the camera translation 

matrix by subtracting the mean of all 2D points, and henceforth can assume that the 3D 

shape S is centred at the origin. 

 1 2 1 2

1 2 1 2

... ...

... ...

P P

P P

u u u u u u u u u

v v v v v v v v v

⎡ ⎤′ ′ ′ − − −⎡ ⎤ =⎢ ⎥⎢ ⎥′ ′ ′ − − −⎢ ⎥⎣ ⎦ ⎣ ⎦   (42) 

 

where 
1

P

i
i

u u
=

=∑ , 
1

P

i
i

v v
=

=∑ . 

Therefore, we can rewrite equation (40) as: 

 1 2

1 2 1

...

...

K
P

i i
P i

u u u
R l S

v v v =
′ ′ ′ ⎛ ⎞⎡ ⎤ = ⎜ ⎟⎢ ⎥′ ′ ′⎣ ⎦ ⎝ ⎠∑   (43) 

 

Rewrite the linear combination in equation (43) as a matrix-matrix multiplication: 

 [ ]
1

1 2 2
1 2

1 2

...
...

... ...
P

K
P

K

S

u u u S
l R l R l R

v v v

S

⎡ ⎤⎢ ⎥′ ′ ′⎡ ⎤ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥′ ′ ′⎣ ⎦ ⎢ ⎥⎣ ⎦
  (44) 

get the 2D tracking matrix W

factorize W into matrixes 
Qand B using SVD method 

extract shape basis l and 
rotation matrix Rt  from Q 

compute true rotation matrix tR#  and shape 

matrix iS#  by imposing the metric constraints 
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The 2D image points in each frame can be obtained using AAM. The tracked 2D points in 

frame t can be denoted as ( ),ti tiu v . The 2D tracking matrix of N frames can be written as: 

 

11 12 1

11 12 1

21 22 2

21 22 2

1 2

1 2

...

...

...

...

... ... ... ...

P

P

P

P

N N NP

N N NP

u u u

v v v

u u u

v v vW

u u u

v v v

′ ′ ′⎡ ⎤⎢ ⎥′ ′ ′⎢ ⎥⎢ ⎥′ ′ ′⎢ ⎥′ ′ ′= ⎢ ⎥⎢ ⎥⎢ ⎥′ ′ ′⎢ ⎥⎢ ⎥′ ′ ′⎣ ⎦

  (45) 

Using equation (44) we can rewrite equation (45) as: 

 

11 1 12 1 1 1 1

21 2 22 2 2 2 2

1 2

K

K

N N N N NK N K

l R l R l R S

l R l R l R S
W

l R l R l R S

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A
A

A A A A A
A

  (46) 

 

where Rt denotes the camera rotation of frame t. lti denotes the shape parameter li of frame t. 

3.2 Solving configuration weights using factorization 

Equation (46) shows that the 2D tracking matrix W  has rank 3K , and can be factored into 

the product of two matrixes: W Q B= ⋅ , where Q  is a 2 3N K×  matrix, B  is a 3K P×  

matrix. Q  contains the camera rotation matrix tR  and configuration weights 1 2, , ,t t tKl l lA of 

each frame. B  contains the information of shape basis 1 2, , , KS S SA . The factorization can be 

done using singular value decomposition (SVD) method: 

 2 2 3 3N P T N K K PW U D V Q B× × ×= ⋅ ⋅ = ⋅## # # #   (47) 

Then the camera rotation matrix Rt and shape basis weights ltiof each frame can be extracted 

from the matrix Q# : 

 [ ] 1 1 1 2 1 3 1 2 3
1 2

1 4 1 5 1 6 4 5 6

K K K
t t t t t tK t

K K K

l r l r l r l r l r l r
q l R l R l R

l r l r l r l r l r l r

⎡ ⎤= = ⎢ ⎥⎣ ⎦
A

A
A

  (48) 

Transform tq  into a new matrix tq# : 

 

1 1 1 2 1 3 1 4 1 5 1 6 1

2 1 2 2 2 3 2 4 2 5 2 6 2
1 2 3 4 5 6

1 2 3 4 5 6

[ ]

t

t
t t t t t t t

K K K K K K tK

l r l r l r l r l r l r l

l r l r l r l r l r l r l
q r r r r r r

l r l r l r l r l r l r l

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
#

A A A A A A B
 (49) 

here, the tq#  can be factored using SVD method. 

www.intechopen.com



AAM and Non-rigid Registration in Augmented Reality  

 

169 

3.3 Solving true rotation matrix and shape basis 

As mentioned in [Tomasi & Kanade, 1992], the matrix tR#  is a linear transformation of the 

true rotation matrix tR . Likewise, iS#  is a linear transformation of the true shape matrix iS : 

 t tR R G= ⋅# , 1
i iS G S−= ⋅ #   (50) 

 

where 3 3G ×  is found by solving a nonlinear data-fitting problem. In each frame we need to 

constrain the rotation matrix to be orthonormal. The constraints of frame t are: 

 [ ] [ ]1
1 2 3 1 2 3 1

T
t t t t t tr r r GG r r r− =   (51) 

 [ ] [ ]1
4 5 6 4 5 6 1

T
t t t t t tr r r GG r r r− =   (52) 

 [ ] [ ] 0654
1

321 =− T

tttttt rrrGGrrr    (53) 

In summary, given 2D tracking data W , we can get the 3D shape basis iS# , camera rotation 

matrix tR#  and configuration weights til  of each training frame simultaneously using 

factorization method. 

4. Non-rigid registration method 

The 2D tracking data can be obtained using the AAM algorithm mentioned in section 2. 

With the use of the factorization method mentioned in section 3, we can acquire the 3D 

shape basis. The 3D shape is represented as 3D points in the world coordinates. Given the 

configuration weights, the 3D shape can be recovered by linear combination of the 3D shape 

basis. By projecting the 3D points to the 2D image with known camera rotation matrix 

(suppose the intrinsic camera matrix has been calculated), the estimated 2D points can be 

acquired. If the error between the 2D tracking data and the estimated 2D points is small 

enough, we can accept the configuration weights and the rotation matrix. Finally, the virtual 

object can be overlaid to the real scene using the camera rotation matrix. 

The initial configuration weights and camera rotation matrix can not be precise. 

Optimization of the configuration weights should be done to minimize the error between 

the 2D tracking points detected by AAM and the estimated 2D points which is projected by 

the 3D shape points. This is a non-linear optimization problem which can be successfully 

solved by the optimization methods. Different with [Zhu et al., 2006], we use the Levenberg-

Marquardt algorithm. Equation (54) shows the cost function. 

 

2
2

1 1

min min
N K

j j j i i
j j i

s s s R l S
= =

⎛ ⎞′− → = − →⎜ ⎟⎝ ⎠∑ ∑ ∑   (54) 

where js  is the 2D tracking data j , js′  is the projected point. 

The procedure of non-rigid registration is shown in Table 3. 
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Table 3. The procedure of non-rigid registration. 

 
 

 

 
Fig. 6. Examples of augmented images using our method. 

 

 

 

Step 1: Track the 2D points js  using AAM. 

Step 2: Initialize the configuration weights il . 

Step 3: Initialize the camera rotation matrix R . 

Step 4: Calculate the 3D shape 
1

K

i i
i

S l S
=

=∑ . 

Step 5: Project the 3D points S  to 2D image: [ ]|js A R T S′ = ⋅ .

Step 6: Evaluate the projection error 

2

1

N

j j
j

E s s
=

′= −∑ . 

Step 7: If E  is not small enough, improve il  and R , then 

repeat step 4-6. 

Step 8: Accept the configuration weights il , and the camera 

rotation matrix R . 
Step 9: Overlaid the virtual object to the scene. 
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Furthermore, we should take the orthonormality of rotation matrix into consideration. The 

proposed method has been implemented in C using OpenGL and OpenCV on a DELL 

workstation (CPU 1.7G×2, RAM 1G).  

In offline stage, we construct the AAM hand models using 7 training images which are 
manually labelled with 36 landmarks as shown in Fig. 1. We establish the hand shape basis 
using 300 training frames which is captured with a CCD camera. In online stage, the 2D 
points are tracked using AAM algorithm, and then Levenberg-Marquardt algorithm is used 
to optimize the parameters. Our experiment results are shown in Fig. 6. From the results we 
can see that the virtual teapot can be overlaid on the hand accurately when the camera 
moves around the scene. 

5. Conclusion 

In this chapter, a non-rigid registration method for augmented reality applications using 

AAM and factorization method is proposed. The process is divided into two stages: offline 

stage and online stage. In the offline stage, the 3D shape basis is constructed. To obtain the 

shape basis of the object, we firstly factorize the 2D data matrix tracked by the AAM into the 

product of two matrixes. One matrix contains the camera rotation matrix and the 

configuration weights, and the other matrix contains the shape basis. Then the rotation 

matrix and the configuration weights can be separated using SVD method. Finally the 

orthonormality of the rotation matrix should be the constraints to get the true rotation 

matrix and configuration weights. In online stage, the 3D pose parameters and the shape 

coefficients are estimated. The purpose is to minimize the error between the 2D tracking 

points detected by AAM and the estimated 2D points which is projected by the 3D shape 

points. The Levenberg-Marquardt method is used to solve this problem. The rotation matrix 

and the configuration weights are optimized. Some experiments have been conducted to 

validate that the proposed method is effective and useful for non-rigid registration in 

augmented reality applications.  
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