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1. Introduction 

Computational intelligence provides a variety of means that can perform complex image 
processing in a rather effective way. Among them, self-learning systems, especially self-
learning artificial neural networks (self-organizing maps, ART neural networks, ‘Brain-
State-in-a-Box’ neuromodels, etc.) (Haykin, 1999) and fuzzy clustering systems (fuzzy c-
means, algorithms of Gustafson-Kessel, Yager-Filev, Klawonn-Hoeppner, etc) (Bezdek et al., 
2005; Sato-Ilic & Jain, 2006), occupy a significant place as they make it possible to solve a 
data processing problem in the absence of a priori knowledge of it. 
While there are many artificial neural networks that can be successfully used in image 

processing tasks, the most prominent of them are networks of a new, the third generation, 

commonly known as spiking neural networks (Maass & Bishop, 1998; Gerstner  & Kistler, 

2002). On the one hand, spiking neural networks are biologically more plausible than neural 

networks of the previous generations that is of fundamental importance for computational 

intelligence from theoretical point of view. On the other hand, networks of spiking neurons 

appeared to be computationally more powerful than conventional neural networks (Maass, 

1997b). In addition, complex data processing via artificial neural networks of the second 

generation is time consuming due to multi-epoch learning; instead, spiking neural networks 

can perform the same processing tasks much faster as they require a few learning epochs 

only (Bohte et al., 2002; Berredo, 2005; Meftah et al., 2008; Lindblad & Kinser, 2005). All these 

facts are causing considerable interest in networks of spiking neurons as a powerful 

computational intelligence tool for image processing 

Although spiking neural networks are becoming a popular computational intelligence tool 

for various technical problems solving, their architecture and functioning are treated in 

terms of neurophysiology rather than in terms of any technical sciences apparatus in the 

most research works on engineering subjects. Yet none technically plausible description of 

spiking neurons functioning has been provided. 

In contrast to artificial neural networks, fuzzy logic systems are capable of performing 
accurate and efficient data processing under a priori and current uncertainty, particularly if 
classes to be separated overlap one another. Integrating artificial neural networks and fuzzy 
systems together allows of combining capabilities of both in a synergetic way (Jang et al., 
1997), thus producing hybrid intelligent systems that achieve high performance and 
reliability in real life problems solving, particularly in image processing. Obviously, 
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designing hybrid intelligent systems based on the new generation of artificial neural 
networks attracts both practical and theoretical interest. 
In the present chapter of the book, analog-digital self-learning fuzzy spiking neural network 
that belongs to a new type of computational intelligence hybrid systems combining spiking 
neurons computational capabilities and fuzzy systems tolerance for uncertainty is proposed. 
It is demonstrated that both fuzzy probabilistic and fuzzy possibilistic approaches can be 
implemented on spiking neural network basis.  A spiking neural network is treated in terms 
of well-known and widely used apparatus of classical automatic control theory based on the 
Laplace transform. It is shown that a spiking neuron synapse is nothing other than a second- 
order critically damped response unit, and a spiking neuron soma is a kind of threshold 
detection system. An improved unsupervised learning algorithm for the proposed neural 
network based on ‘Winner-Takes-More’ rule is introduced. Capabilities of the neural 
network in solving image processing problems are investigated. From theoretical point of 
view, the proposed neural network is another step toward evolution of artificial neural 
networks theory as a part of computational intelligence paradigm.  

2. Formal models of spiking neurons 

Biological neuron constructive features that are significant for the discussion that follows are 
sketched on Fig. 1 (Dayan & Abbott, 2001; Scott, 2002). As illustrated, neuron includes 
synapses, dendritic tree, soma and axon and its terminals. Synapse connects axonal 
terminals of a neuron with dendrites of another neuron. Soma processes incoming 
information and transmits it through axon and axonal terminals to synapses of the 
subsequent neurons. Neurons communicate one another by nerve pulses (action potentials, 
spikes). 
 

 

Fig. 1. Biological neuron 

Neuron behaviour can be briefly described in the following way (Fig. 2). Spike arrived to 
synapse from presynaptic neuron generates postsynaptic potential (either excitatory or 
inhibitory – depending on synapse type). Postsynaptic potential reaches neuron soma 
through a dendrite and either increases membrane potential, or decreases it. Neuron soma 
accumulates all postsynaptic potentials incoming from different synapses. When membrane 
potential exceeds firing threshold, neuron fires and emits outgoing spike that moves 
through axon to postsynaptic neurons. Once neuron has fired, its soma produces spike after-
potential, namely, the membrane potential drops steeply below the rest potential and then it 
ascends gradually to the rest potential back. Period when membrane potential is below the 
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rest potential is called refractory period. Within this period, appearance of another spike is 
unlikely.  If the firing threshold is not reached after arrival of a postsynaptic potential, 
membrane potential gradually descends to rest potential until another postsynaptic 
potential incomes. 
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Fig. 2. Biological neuron behaviour: a) Dynamics of membrane potential )(tu  ( θ  is the firing 

threshold, )(rest tu  is the rest potential); b) Incoming spikes; c) Outgoing spike 

Traits of any artificial neural networks generation depend upon the formal model of 

biological neuron that is considered within scope of that generation. Any formal model 

treats biological neuron on a certain level of abstraction. It takes into account some details of 

biological neuron behaviour and features, but disregards other ones. On the one hand, 

prescribing complexity level of formal model sets computational and performance 

properties of artificial neural networks originated by that model. On the other hand, chosen 

level of abstraction of formal model defines how realistic artificial neural networks are. 

Both the first and the second generations of artificial neural networks (Maass, 1997b) rest on 
the rate model that neglects temporal properties of biological neuron (Maass & Bishop, 
1998). One of the essential elements for both generations is a neuron activation function. The 
rate model based on the threshold activation function (McCulloch & Pitts, 1943) gave birth 
to the first generation of artificial neural networks. Though such networks were capable of 
performing some elementary logic functions, their computational capabilities were very 
limited (Minsky & Papert, 1969). Replacing the threshold activation function with 
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continuous one resulted in appearance of the second generation, that turned out to be 
significantly powerful than networks of the previous generation (Cybenko, 1989; Hornik et 
al., 1989). Nevertheless, neurons of the second generation are even far from real biological 
neurons than the first generation neurons since they ignore soma firing mechanism totally 
(Gerstner  & Kistler, 2002). This gap is avoided in threshold-fire models (Maass & Bishop, 
1998). One of such models, namely, the leaky integrate-and-fire model (Maass & Bishop, 
1998; Gerstner  & Kistler, 2002), is the basis for the third generation of artificial neural 
networks.  
The leaky integrate-and-fire model is the one of the simplest and well-known formal models 

of a biological neuron that are used in different areas of neuroscience. It captures neuron 

behaviour described above except the neuron refractoriness. The model considers that on 

firing, membrane potential drops to the rest potential, not below it.   

The spike-response model (Maass & Bishop, 1998; Gerstner & Kistler, 2002), another 
threshold-fire model, captures biological neuron behaviour more accurately. Besides 
postsynaptic potentials accumulating and spike firing, it models the neuron refractoriness 
also. This model will be used in the subsequent discussion.   
It makes sense to mention here that computational neuroscience and computational 
intelligence sometimes understand spiking neurons in a different way. Spiking neuron in 
computational neuroscience is any model of biological neuron that transmits and processes 
information by spike trains. Within scope of computational intelligence, spiking neuron is a 
leaky integrate-and-fire model usually. This results from the fact that self-learning 
properties of spiking neurons are caused by capability of any threshold-fire model to detect 
coincidences in input signal. Since the leaky integrate-and-fire model is the simplest one 
among the threshold-fire models, there is no sense to use any complicated ones.  Obviously, 
if any more complicated model reveals some particular properties that are useful for solving 
technical problems, the concept of spiking neurons will be extended in computational 
intelligence. 

3. Self-learning spiking neural network 

3.1 Introduction 
Ability of spiking neurons to respond to incoming signal selectively was originally 

discovered by J. Hopfield in 1995 (Hopfield, 1995). He found that spiking neuron soma 

behaviour was similar to a radial basis function: the neuron fired as earlier as higher degree 

of coincidence of incoming spikes was; if the degree was sufficiently low, the neuron did not 

fire at all. And spiking neuron synapses appeared to be acting as a spike pattern storing 

unit: one was able to get a spiking neuron to fire to a certain spike pattern by adjusting 

synaptic time delays the way that they evened out (in temporal sense) incoming signal and 

made it to reach the neuron soma simultaneously. Spike pattern encoded in synaptic time 

delays of a neuron was called a center of spiking neuron in the following. Here it is worth to 

note that synchronization phenomena is of primary importance in nature (Pikovsky et al., 

2001), particularly in the brain functioning (Malsburg, 1994). 

The discovered capabilities of spiking neurons provided the basis for constructing self-

learning networks of spiking neurons. Original architecture of self-learning spiking neural 

network and its learning algorithm, namely, a temporal Hebbian rule were introduced in 

(Natschlaeger & Ruf, 1998). The proposed self-learning network was able to separate 

www.intechopen.com



Analog-Digital Self-Learning Fuzzy Spiking Neural Network in Image Processing Problems  

 

361 

clusters as long as their number was not greater than dimensionality of input signal. If 

clusters number exceeded number of input signal dimensions, spiking neural network 

performance decreased. This drawback was overcome by using population coding of 

incoming signal based on pools of receptive neurons in the first hidden layer of the network 

(Bohte et al., 2002). Such spiking neural network was shown to be considerably powerful 

and significantly fast in solving real life problems. Henceforward we will use this network 

as a basis for its further improvements and hybrid architectures designing.  

3.2 Architecture 
Self-learning spiking neural network architecture is shown on Fig. 3. As illustrated, it is 
heterogeneous two-layered feed-forward neural network with lateral connections in the 
second hidden layer. 

The first hidden layer consists of pools of receptive neurons and performs transformation of 

input signal. It encodes an ( )1×n -dimensional input sampled pattern )(kx  (here n  is the 

dimensionality of input space, Nk ,1=  is a patter number, N  is number of patterns in 

incoming set) into ( )1×hn -dimensional vector of input spikes ))((]0[ kxt (here h  is the 

number of receptive neurons in a pool) where each spike is defined by its firing time. 

Spiking neurons form the second hidden layer of the network. They are connected with 

receptive neurons with multiple synapses where incoming vector of spikes transforms into 

postsynaptic potentials. Number of spiking neurons in the second hidden layer is set to be 

equal to the number of clusters to be detected. Each spiking neuron corresponds to a certain 

cluster. The neuron that has fired to the input pattern defines cluster that the pattern 

belongs to. Thus, the second hidden layer takes ( )1×hn -dimensional vector of input spikes 

))((]0[ kxt  and outputs ( )1×m -dimensional vector of outgoing spikes ))((]1[ kxt  that defines 

the membership of input pattern  )(kx . 
This is the basic architecture and behaviour of self-learning spiking neural network. The 
detailed architecture is stated below. 

3.3 Population coding and receptive neurons 

The first hidden layer is constructed to perform population coding of input signal. It acts in 

such a manner that each dimensional component )(kxi , ni ,1= , of input signal )(kx  is 

processed by a pool of h  receptive neurons liRN , hl ,1= . Obviously, there can be different 

number of receptive neurons ih   in a pool for each dimensional component in the general 

case. For the sake of simplicity, we will consider here that the number of neurons is equal 

for all pools. 

As a rule, activation functions of receptive neurons within a pool are bell-shaped (Gaussians 

usually), shifted, overlapped, of different width, and have dead zone. Generally firing time 

of a spike emitted by a receptive neuron liRN  upon incoming signal )(kxi  lies in a certain 

interval { } ],0[1 ]0[
maxt∪−  referred to as coding interval and is described by the following 

expression: 

 
( )( )⎣ ⎦ ( )( )⎪⎩

⎪⎨
⎧

θ<σ−ψ−
θ≥σ−ψσ−ψ−=
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,,)(,,)(1
))((
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.r.n
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lilii
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Fig. 3. Self-learning spiking neural network (spiking neurons are depicted the way to stress 
they act in integrate-and-fire manner) 
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where ⎣ ⎦•  is the floor function, ),,( ••ψ  ,]0[
lic  liσ , and r.n.θ  are the receptive neuron’s 

activation function, center, width and dead zone, respectively ( r.n.  in the last parameter 

means ‘receptive neuron’), -1 indicates that the neuron does not fire. An example of 

population coding is depicted on Fig. 4. It is easily seen that the closer )(kxi  is to the center 
]0[

lic  of receptive neuron liRN , the earlier the neuron emits spike ))((]0[ kxt ili . 
 

ix)(kxi
]0[

,1 ic ]0[
,2 ic ]0[

,3 ic
]0[

,1 ihc − ]0[
hic

))(( ]0[
,2 ii ckx −ψ

))(( ]0[
,3 ii ckx −ψ
)( ixψ
1
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Fig. 4. An example of population coding. Incoming signal )(kxi  fires receptive neurons 

iRN ,2  and iRN ,3 . It is considered here that width of activation function of all receptive 

neurons within the pool is the same 

In this work, we used Gaussian as activation function of receptive neurons:  

 ( ) ( ) ⎟⎟⎠
⎞

⎜⎜⎝
⎛

σ
−−=σ−ψ

2

2]0[
]0[

2

)(
exp,)(

li

lii
lilii

ckx
ckx . (2) 

There can be several ways to set widths and centers of receptive neurons within a pool. As a 

rule, activation functions can be of two types – either ‘narrow’ or ‘wide’. Centers of each 

width type of activation function are calculated in different ways but in either case they 

cover date range uniformly. More details can be found in (Bohte et al., 2002). 

3.4 Spiking neurons layer 
Spiking neuron is considered to be formed of two constituents, they are: synapse and soma.  
As it was mentioned above, synapses between receptive neurons and spiking neurons are 
multiple structures. As shown on Fig. 5, a multiple synapse jliMS  consists of a set of q  

subsynapses with different time delays pd , 01 >− −pp dd , ]0[
max

1 tddq >− , and adjustable 

weights p
jliw  (here qp ,1= ). It should be noted that number of subsynapses within a 
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multiple synapse are fixed for the whole network. Having a spike ))((]0[ kxt ili  from the li -th 

receptive neuron, the p -th subsynapse of the j -th spiking neuron produces delayed 

weighted postsynaptic potential   

 ( )( )p
ili

p
jli

p
jli

p
jli

p
jli dkxttwtwtu +−ε=ε= ))(()()( ]0[ , (3) 

where )(•ε  is a spike-response function usually described by the expression (Natschlaeger 

& Ruf, 1998) 

 
( )( ) ( ) ( )

( )( ),))((

))((
1exp

))((
))((

]0[
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]0[

PSP
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p
ili

p
ili

p
ilip

ili

dkxttH

dkxttdkxtt
dkxtt

+−×
×⎟⎟⎠
⎞

⎜⎜⎝
⎛

τ
+−−τ
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PSPτ  – membrane potential decay time constant whose value can be obtained empirically 

( PSP  means ‘postsynaptic potential’), )(•H  – the Heaviside step function. Output of the 

multiple synapse jliMS  forms total postsynaptic potential 

 ∑== q

p

p
jlijli tutu

1

)()( . (5) 

 

 

Fig. 5. Multiple synapse 

Each incoming total postsynaptic potential contributes to membrane potential of spiking 

neuron jSN  as follows: 

 ∑∑= =
= n

i

h

l
jlij tutu

1 1

)()( . (6) 
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Spiking neuron jSN  generates at most one outgoing spike ))((]1[ kxt j  during a simulation 

interval (the presentation of an input pattern )(kx ), and fires at the instant the membrane 

potential reaches firing threshold s.n.θ  ( s.n.  means here ‘spiking neuron’). After neuron has 

fired, the membrane potential is reset to the rest value restu  (0 usually) until the next input 

pattern is presented. 
It is easily seen that the descried behaviour of spiking neuron corresponds to the one of the 
leaky integrate-and-fire model. 
Spiking neurons are linked with lateral inhibitory connections that disable all other neurons 
to fire after the first one has fired. Thus, any input pattern makes only one spiking neuron to 
fire that is only one component of the vector of outgoing spikes has non-negative value. 
There can be cases when a few spiking neurons fire simultaneously for an input pattern. 
Such cases are rare enough, and their appearance depends directly on initial synaptic 
weights distribution. 

3.5 Crisp data clustering 
As it was mentioned above, a spiking neuron acts similarly to a radial basis function, and its 
response depends on degree of coincidence of the input. There was considered a spiking 
neuron center to describe such neuron behaviour in a convenient way (Natschlaeger & Ruf, 
1998). In the general case, it is considered to possess the following property: the closer input 
pattern is to the neuron’s center, the earlier output spike fires. Hence, a spiking neuron 
firing time reflects the similarity (Natschlaeger & Ruf, 1998) (or distance (Bohte et al., 2002)) 
between the input pattern and the neuron center. Degree of coincidence is utilized here as a 
similarity (distance) measure. 
Center of spiking neuron is encoded in the synaptic time delays. They produce coincidence 
output (and in its terns it makes the soma to fire at the earliest possible time) if incoming 
pattern is similar to the encoded one. Thus, the learned spiking neuron can respond 
selectively to the input set of patterns. Data clustering in the described neural network rests 
on this property of spiking neuron. Input pattern fires the neuron whose center is the most 
similar (the closest) to it, and the fired spike prevents the rest neurons to fire through the 
lateral inhibitory connections. This way self-learning spiking neural network performs 
clusters separation if classes to be detected do not overlap one another. 
One can readily see that the unsupervised pattern classification procedure of the spiking 

neurons layer is identical with the one of self-organizing maps (Kohonen, 1995). 

4. Spiking neural network learning algorithms 

4.1 Winner-takes-all 
The purpose of an unsupervised learning algorithm of spiking neural network is to adjust 

centers of spiking neurons so as to make each of them to correspond to centroid of a certain 

data cluster. Such learning algorithm was introduced on the basis of two learning rules, 

namely, ‘Winner-Takes-All’ rule and temporal Hebbain rule (Natschlaeger & Ruf, 1998; 

Gerstner et al., 1996). The first one defines which neuron should be updated, and the second 

one defines how it should be updated. The algorithm updates neuron centers through 

synaptic weights adjusting, whereas synaptic time delays always remain constant. The 

concept here is that significance of the given time delay can be changed by varying 

corresponding synaptic weight.  
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Each learning epoch consists of two phases. Competition, the first phase, defines a neuron-
winner. Being laterally linked with inhibitory connections, spiking neurons compete to 
respond to the pattern. The one wins (and fires) whose center is the closest to the pattern.  
Following competition phase, weights adjusting takes place. The learning algorithm adjusts 
synaptic weights of the neuron-winner to move it closer to the input pattern. It strengthens 
weights of those subsynapses which contributed to the neuron-winner’s firing (i.e. the 
subsynapses produced delayed spikes right before the neuron firing) and weakens ones 
which did not contribute (i.e. the delayed spikes appeared right after the neurons firing or 
long before it). Generally, the learning algorithm can be expressed as 

 ⎪⎩
⎪⎨⎧ ≠

=Δη+=+
,

~
),(

,
~

),()()(
)1(

w

jjKw

jjtLKKw
Kw

p
jli

p
jli

p
jlip

jli  (7) 

where K  is the current epoch number, 0)(w >•η  is the learning rate (while it is constant in 

(Natschlaeger & Ruf, 1998), it can depend on epoch number in the general case; w  means 

‘weights’), )(•L  is the learning function (Gerstner et al, 1996), j
~

 is the number of neuron 

that has won on the current epoch, p
jlitΔ  is the time delay between delayed spike 

p
ili dkxt +))((]0[  produced by the p -th subsynapse of the li -th synapse and spiking neuron 

firing time ))((]1[ kxt j : 

 ))(())(( ]1[]0[ kxtdkxtt j
p

ili
p
jli −+=Δ . (8) 

As a rule, the learning function has the following form (Berredo, 2005):  

  ( ) ( ) β−⎟⎟
⎟
⎠
⎞

⎜⎜
⎜
⎝
⎛

−κ
α−Δ−β+=Δ

)1(2
exp1)(

2p
jlip

jli

t
tL , (9) 

 

⎟⎟⎠
⎞⎜⎜⎝

⎛
β+

β
ν−=κ
1

ln2

1
2

, (10) 

where 0<α , 0>β , ν  are the shape parameters of the learning function )(•L  that can be 

obtained empirically (Berredo, 2005; Natschlaeger & Ruf, 1998). The learning function and 

its shape parameters are depicted on Fig. 6. The effect of the shape parameters on results of 

information processing performed by spiking neural network can be found in (Meftah et al., 

2008). 
Upon the learning stage, center of a spiking neuron represents centroid of a certain data 

cluster, and spiking neural network can successfully perform unsupervised classification of 

the input set. 

4.2 Winner-takes-more 
The learning algorithm (7) updates only neuron-winner on each epoch and disregards other 

neurons. It seems more natural to update not only spiking neuron-winner, but also its 

neighbours (Bodyanskiy & Dolotov, 2009). This approach is known as ‘Winner-Takes-More’  
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Fig. 6. Learning function )(•L  

rule. It implies that there is a cooperation phase before weights adjustment. Neuron-winner 
determines a local region of topological neighbourhood on each learning epoch. Within this 
region, the neuron-winner fires along with its neighbours, and the closer a neighbour is to 
the winner, the more significantly its weights are changed. The topological region is 

represented by the neighbourhood function )( ~
jj

tΔϕ  that depends on difference  
jj

t ~Δ  

between the neuron-winner firing time ))((]1[
~ kxt
j

 and the neighbour firing time ))((]1[ kxt j  

(distance between the neurons in temporal sense) and a parameter that defines effective 
width of the region. As a rule, )(•ϕ  is a kernel function that is symmetric about its 

maximum at the point where 0~ =Δ
jj

t . It reaches unity at that point and monotonically 

decreases as 
jj

t ~Δ  tends to infinity. The functions that are the most frequently used as 

neighbourhood function are Gaussian, paraboloid, Mexican Hat, and many others 
(Bodyanskiy & Rudenko, 2004). 
For self-learning spiking neural network, the learning algorithm based on ‘Winner-Takes-
More’ rule can be expressed in the following form (Bodyanskiy & Dolotov, 2009): 

 )()()()()1( ~w
p
jlijj

p
jli

p
jli tLtKKwKw ΔΔϕη+=+ , (11) 

where temporal distance 
jj

t ~Δ  is  

 ))(())(( ]1[]1[
~~ kxtkxtt jjjj

−=Δ . (12) 

Obviously, expression (11) is a generalization of (7). 
Analysis of competitive unsupervised learning convergence showed that width parameter 
of the neighbourhood function should decrease during synaptic weights adjustment 
(Cottrell & Fort, 1986). For Gaussian neighbourhood function 
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width parameter ρ  can be adjusted as follows (Ritter & Schulten, 1986): 

 ⎟⎟⎠
⎞⎜⎜⎝

⎛
γρ=ρ K

K exp)0()( , (14) 

where 0>γ  is a scalar that determines rate of neuron-winner effect on its neighbours. 
Noteworthily that exponential decreasing of width parameter can be achieved by applying 
the simpler expression instead of (14) (Bodyanskiy & Rudenko, 2004): 

 10),1()( <γ<−γρ=ρ KK . (15) 

Learning algorithm (11) requires modification of self-learning spiking neural architecture. 
Lateral inhibitory connections in the second hidden layer should be replaced with excitatory 
ones during the network learning stage in order to implement ‘Winner-Takes-More’ rule. 
In the following sections, it will be shown that the learning algorithm based on ‘Winner-
Takes-More’ rule is more natural than the one based on ‘Winner-Takes-All’ rule to learn 
fuzzy spiking neural network.   

5. Spiking neural network as an analog-digital system 

5.1 Introduction 
Hardware implementations of spiking neural network demonstrated fast processing ability 
that made it possible to apply such systems in real-life applications where processing speed 
was a rather critical parameter (Maass, 1997a; Maass & Bishop, 1998; Schoenauer et al., 2000; 
Kraft et al., 2006). From theoretical point of view, the current research works on spiking 
neurons hardware implementation subject are very particular, they lack for a technically 
plausible description on a general ground. In this section, we consider a spiking neuron as a 
processing system of classical automatic control theory (Feldbaum & Butkovskiy, 1971; Dorf 
& Bishop, 1995; Phillips & Harbor, 2000; Goodwin et al., 2001). Spiking neuron functioning 
is described in terms of the Laplace transform. Having such a general description of a spiking 
neuron, one can derive various hardware implementations of self-learning spiking neural 
network for solving specific technical problems, among them realistic complex image processing. 

Within a scope of automatic control theory, a spike ))(( kxt  can be represented by the Dirac 

delta function ( )))(( kxtt −δ . Its Laplace transform is  

 ( ){ } skxtekxttL ))(())(( −=−δ , (16) 

where s is the Laplace operator. Spiking neuron takes spikes on its input, performs spike–
membrane potential–spike  transformation,  and produces spikes on its output. Obviously, it 
is a kind of analog-digital system that processes information in continuous-time form and 
transmits it in pulse-position form. This is the basic concept for designing analog-digital 
architecture of self-learning spiking neural network. Overall network architecture is 
depicted on Fig. 7 and is explained in details in the following subsections. 
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5.2 Synapse as a second-order critically damped response unit 

Multiple synapse jliMS  of a spiking neuron jSN  transforms incoming pulse-position signal ( )))((]0[ kxtt ili−δ  to continuous-time signal )(tu jli . Spike-response function (4), the basis of 

such transformation, has form that is similar to the one of impulse response of second-order 

damped response unit. Transfer function of a second-order damped response unit with unit 

gain factor is 

 ( )( ) 1

1

11

1
)(

~

3
22

421 +τ+τ=+τ+τ=
ssss

sG , (17) 

where 2
4

2
33

2,1
42

τ−τ±τ=τ , 21 τ≥τ , 43 2τ≥τ , and its impulse response is 

 ⎟⎠⎞⎜⎝⎛ −τ−τ=ε ττ −−
21

21

1
)(~ tt

eet . (18) 

Putting PSP21 τ=τ=τ  (that corresponds to a second-order critically damped response unit) 

and applying l'Hôpital's rule, one can obtain  

 PSP

2
PSP

)(~ τ−τ=ε t

e
t

t . (19) 

Comparing spike-response function (4) with the impulse response (19) leads us to the 
following relationship: 

 )(~)( PSP tet ετ=ε . (20) 

Thus, transfer function of the second-order critically damped response unit whose impulse 
response corresponds to a spike-response function is 

 ( )2PSP

PSP
SRF

1
)( +τ

τ=
s

e
sG , (21) 

where SRF  means ‘spike-response function’. 

Now, we can design multiple synapse in terms of the Laplace transform (Bodyanskiy et al., 

2009). As illustrated on Fig. 7, multiple synapse jliMS  is a dynamic system that consists of a 

set of subsynapses that are connected in parallel.  Each subsynapse is formed by a group of 

time delay, second-order critically damped response unit, and gain. As a response to 

incoming spike ( )))((]0[ kxtt ili−δ , the subsynapse produces delayed weighted postsynaptic 

potential )(sup
jli , and the multiple synapse produces total postsynaptic potential )(su jli  that 

arrives to spiking neuron soma. 

Taking into account (21), transfer function of the p -th subsynapse of jliMS  takes the 

following form:  

 ( )2PSP

1
PSP

SRF
1

)()( +τ
τ==

−
−

s

ew
sGewsU

sdp
jlisdp

jli
p
jli

p

p

, (22) 
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and its response to a spike ( )))((]0[ kxtt ili−δ  is  
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So finally, considering transfer function of multiple synapse jliMS  
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the Laplace transform of the multiple synapse output can be expressed in the following form: 
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Here it is worth to note that since it is impossible to use δ -function in practice (Phillips & 

Harbor, 2000), it is convenient to model it with impulse of a triangular form (Feldbaum & 

Butkovskiy, 1971) as shown on Fig. 8. Such impulse is similar to δ -function under the 

following condition  

 )(),(lim
0

tta δ=Δ→Δ . (26) 

t

),( Δta

0
2

Δ
2

Δ−

Δ
2

 

Fig. 8. Triangular impulse ),( Δta  

In this case, numerator of (21) should be revised the way to take into account finite peak of 

),( Δta  (in contrast to the one of the Dirac delta function). 

5.3 Soma as a threshold detection unit 

Spiking neuron soma performs transformation that is opposite to one of the synapse. It takes 

continuous-time signals )(tu jli  and produces pulse-position signal ( )))((]1[ kxtt j−δ . In doing 
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so, soma responds each time membrane potential reaches a certain threshold value. In other 

words, spiking neuron soma acts as a threshold detection system and consequently it can be 

designed on the base of relay control systems concept (Tsypkin, 1984). In (Bodyanskiy et al., 

2009), mechanisms of threshold detection behaviour and firing process were described. Here 

we extend this approach to capture refractoriness of spiking neuron.  
Threshold detection behaviour of a neuron soma can be modelled by an element relay with 
dead zone θs.n. that is defined by the nonlinear function 

 ( ) ( )
2

1)(sign
),(

s.n.
s.n.relay

+θ−=θΦ tu
tu

j
j , (27) 

where sign (�)is the signum function.  Soma firing can be described by a derivative unit that 
is connected with the element relay in series and produces a spike each time the relay 
switches. In order to avoid a negative spike that appears as a response to the relay resetting, 
a conventional diode is added next to the derivative unit. The diode is defined by the 
following function: 

 ( )( ) ( ) ( )( )]1[
relay

]1[
relay

]1[
relaydiode ttHtttt −δ−δ=−δΦ , (28) 

where ]1[
relayt  is a spike produced by the derivative unit upon the relay switching.  

Now we can define the Laplace transform of an outgoing spike  ))((]1[ kxt j , namely,   

 ( ){ } ( ){ }( ){ }s.n.relaydiode
))((]1[ ),())((

]1[ θΦΦ==−δ −
tusLLekxttL j

skxt

j
j . (29) 

As it was mentioned above, the leaky integrate-and-fire model disregards the neuron 

refractoriness. Anyway, the refractory period is implemented in the layer of spiking neurons 

indirectly. The point is that a spiking neuron cannot produce another spike after firing and 

until the end of the simulation interval since the input pattern is provided only once within 

the interval. In the analog-digital architecture of spiking neuron, the refractoriness can be 

modelled by a feedback circuit.  As shown on Fig. 7, it is a group of a time delay, a second-

order critically damped response unit, and a gain that are connected in series. The time 

delay defines duration of a spike generation period spiked  (usually, 0spike →d ). The second-

order critically damped response unit defines a spike after-potential. Generally, spike after-

potential can be represented by a second-order damped response unit, but for the sake of 

simplicity, we use critically damped response unit as it can be defined by one parameter 

only, namely, SAPτ  ( SAP  means here ‘spike after-potential’). This parameter controls 

duration of the refractory period. Finally, the gain unit sets amplitude of the spike after-

potential SAPw . Obviously, SAPw  should be much greater than any synaptic weight.  
Thus, transfer function of the feedback circuit is 

 ( )2SAP

SAP
F.B.

1
)(

spike

+τ= −
s

ew
sG

sd

, (30) 

where F.B. means ‘feedback circuit’, and transfer function of the soma is 

 
F.B.F.F.

F.F.
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1
)(
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G
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where GF.F. is defined by (29) (F.F. means ‘feed-forward circuit’). 
It is easily seen that the functioning of spiking neuron analog-digital architecture introduced 
above is similar to the spike-response model.  

6. Self-learning hybrid systems based on spiking neural network 

6.1 Fuzzy receptive neurons 
A common peculiarity of artificial neural networks is that they store dependence of system 
model outputs on its inputs in the form of ‘black box’. Instead, data processing methods 
based on fuzzy logic allow of system model designing and storing in analytical form that 
can be substantially interpreted in a relatively simple way. This fact arises interest in 
designing of hybrid systems that can combine spiking neural networks computational 
capabilities with capability of fuzzy logic methods to conveniently describe input-output 
relationships of the system being modelled. The present section shows how receptive 
neuron layers, a part of spiking neural network, can be ‘fuzzified’. 

One can readily see that the layer of receptive neuron pools is identical to a fuzzification 

layer of neuro-fuzzy systems like Takagi-Sugeno-Kang networks, ANFIS, etc. (Jang et al., 

1997). Considering activation function ( ))(kxiliψ  as a membership function, the receptive 

neurons layer can be treated as the one that transforms input data set to a fuzzy set that is 

defined by values of activation-membership function ( ))(kxiliψ  and is expressed over time 

domain in form of firing times ( ))(]0[ kxt ili  (Bodyanskiy et al., 2008a). In fact, each pool of 

receptive neurons performs zero order Takagi-Sugeno fuzzy inference (Jang et al., 1997) 

 IF )(kxi  IS liX  THEN OUTPUT IS ]0[
lit , (32) 

where liX  is the fuzzy set with membership function ( ))(kxiliψ . Thus, one can interpret a 

receptive neurons pool as a certain linguistic variable and each receptive neuron (more 

precisely, fuzzy receptive neuron) within the pool – as a linguistic term with membership 

function ( ))(kxiliψ  (Fig. 9). This way, having any a priori knowledge of data structure, it is 

possible beforehand to adjust activation functions of the first layer neurons to fit them and 

thus, to get better clustering results.  

6.2 Fuzzy clustering 
Conventional approach of data clustering implies that each pattern x(k) can belong to one 
cluster only. It is more natural to consider that a pattern can belong to a several clusters with 
different membership levels. This case is the subject matter of fuzzy cluster analysis that is 
heading in several directions. Among them, algorithms based on objective function are the 
most mathematically rigorous (Bezdek, 1981). Such algorithms solve data processing tasks 
by optimizing a certain preset cluster quality criterion.  
One of the commonly used cluster quality criteria can be stated as follows: 

 ( ) ( )∑∑= =
ζ −μ=μ N

k

m

j
A

jjjj vkxkxvkxE
1 1

2
)()(),)(( , (33) 

where ( ) [ ]1,0)( ∈μ kxj  is the membership level of the input pattern )(kx  to the j -th cluster, 

jv  is the center of the j -th cluster, 0≥ζ  is the fuzzifier that determines boundary between 
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ix)(kxi

iX ,1 iX ,2 iX ,3 ihX ,1− hiX

r.n.θ

))((,2 kxiiψ

))((,3 kxiiψ
)( ixψ

 

Fig. 9. Terms of linguistic variable for the i-th input. Membership functions are adjusted to 
represent a priori knowledge of input data structure. Incoming signal xi(k) fires fuzzy 
receptive neurons FRN2,i and FRN3,i  

clusters and controls the amount of fuzziness in the final partition, 
A

jvkx −)(  is the 

distance between )(kx  and jv  in a certain metric, A  is a norm matrix that defines distance 

metric. By applying the method of indefinite Lagrange multipliers under restrictions 

 ( ) Nkkx
m

j
j ,1,1)(

1

==μ∑= , (34) 
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minimization of (33) leads us to the following solution: 
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that originates the methods of so-called fuzzy probabilistic clustering (Bezdek et al., 2005). 
In the case when norm matrix A is the identity matrix and 1=ζ , equations (36), (37) present 

hard c-means algorithm, and for 2=ζ , they are conventional fuzzy c-means algorithm. 
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Efficiency of fuzzy probabilistic clustering decreases in the presence of noise. Algorithm 
(36), (37) produces unnaturally high degree of membership for outliers that are equidistant 
from clusters centers. This drawback is avoided by applying fuzzy possibilistic approach 
that is based on the following objective function: 

 ( ) ( ) ( )( )∑ ∑∑∑ = =
ζ

= =
ζ μ−λ+−μ=μ m

j

N

k
jj

N

k

m

j
A

jjjj kxvkxkxvkxE
1 11 1

2
)(1)()(),)(( , (38) 

where 0>λ j is the scalar parameter that defines the distance at which membership level 

takes the value 0.5, i.e. if j
A

jvkx λ=− 2
)( , then ( ) 5.0)( =μ kxj . Minimization of (38) with 

respect to ( ))(kxjμ , jv , and jλ  yields the following solution: 
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that gives conventional possibilistic c-means algorithm if 2=ζ and A  is the identity matrix 

(Bezdek et al., 2005). 

After spiking neural network learning has been done, center ]1[
jc  of a spiking neuron jSN  

represents center jv  of a certain data cluster, and its firing time ))((]1[ kxt j   reflects distance 

A
jvkx −)(  in temporal sense (Natschlaeger & Ruf, 1998; Bohte et al., 2002). This notion 

allows us of using self-learning spiking neural network output in fuzzy clustering 

algorithms described above. In order to implement fuzzy clustering on the base of the 

spiking neural network, its architecture is modified in the following way: lateral connections 

in the second hidden layer are disabled, and output fuzzy clustering layer is added next to 

spiking neuron layer. Such modification is applied to the spiking neural network on data 

clustering stage only. Output fuzzy clustering layer receives information on the distances of 

input patter to centers of all spiking neurons and produces fuzzy partition using either 

probabilistic approach (36), (37) as follows (Bodyanskiy & Dolotov, 2008a-b): 
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or possibilistic approach (39)-(41) as follows (Bodyanskiy et al., 2008b): 
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Obviously, the learning algorithm (11) is more natural here then (7) since response of each 
spiking neuron within the second hidden layer matters for producing fuzzy partition by the 
output layer. 
The advantage of fuzzy clustering based on self-learning spiking neural network is that it is 
not required to calculate centers of data clusters according to (37) or (40) as the network 
finds them itself during learning. 

7. Simulation experiment 

The proposed self-learning fuzzy spiking neural network was tested on the coloured Lenna 
image shown on Fig. 10a (USC-SIPI Image Database). The image is a standard benchmark 
that is widely used in image processing. The image has 3 layers (RGB) with spatial 

dimensions 512×512 so the set to process is formed of 262144 three-dimensional data points 
(n=3). The purpose was to separate classes by colour of pixels avoiding their spatial location. 
Obviously, some classes overlap one another as three RGB-components define a plenty of 
colours, and the boundary between colours is indistinct. There were considered 8 classes to 
be separated on the image (m=8). A certain grade of grey was assigned to each of the eight 
classes to visualize the obtained results. 30% of the image pixels were randomly selected to 
generate a training set (Fig. 10b).  
Self-leaning fuzzy spiking neural network settings were set as follows (the most settings 
were taken from (Berredo, 2005)): time step is 0.1 sec, h=6, receptive neuron type – crisp, 

1.0r.n. =θ , 20]0[
max =t  sec, 3=τPSP  sec, 16=q , 01 =d , 1516 =d , minimum value of a synaptic 

weight is 0, maximum value is 1, simulation interval length is 30 sec, 35.0=ηw , 2.3α = −  

sec, 2.0=β , 5=ν  sec, 9)0(s.n. =θ , 
max

s.n.
s.n.s.n.

)(3.0
)()1(

K

K
KK

θ⋅+θ=+θ , 3max =K , 

neighbourhood function –  Gaussian, 6)0( =ρ , 5.0=γ , calculating )(Kρ  – expression (15), 

fuzzy clustering – probabilistic, 2=ζ , defuzzification method – the largest value. Results of 

image processing produced by the spiking neural network on the 1st and the 3rd epochs are 
shown on Fig. 10c and Fig. 10d, respectively.  
Fuzzy c-means algorithm was also trained over the same testing set ( 2=ζ , defuzzification 

method – the largest value).  Results of image processing produced by the algorithm on the 
3rd and the 30th epochs are shown on Fig. 10e and Fig. 10f, respectively.  
Thus, self-learning fuzzy spiking neural network requires a number of epochs that is in an 
order less then conventional fuzzy c-means algorithm requires. 
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a)            b) 

         

c)            d) 

         
e)            f) 

Fig. 10. The Lenna image processing:  a) Original image; b) Training set (30% of the original 
image); c) The 1st epoch of self-learning fuzzy spiking neural network learning; d) The 3rd  
epoch of self-learning fuzzy spiking neural network learning; e) The 3rd  epoch of fuzzy c-
means learning; f) The 30th  epoch  of fuzzy c-means learning 
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8. Conclusion 

Spiking neural networks are more realistic models of real neuronal systems than artificial 
neural networks of the previous generations. Nevertheless, they can be described, as it was 
shown in earlier sections, in a strict technically plausible way based on the Laplace 
transform. Spiking neural network designed in terms of transfer functions is an analog-
digital nonlinear dynamic system that conveys and processes information both in pulse-
position and continuous-time forms. Such precise formal description of spiking neural 
network architecture and functioning provides researchers and engineers with a framework 
to construct hardware implementations of various spiking neural networks for image 
processing of different levels of complexity.   
Networks of spiking neurons introduced new, biologically more plausible essence of 
information processing and gave rise to a new, computationally more powerful generation 
of computational intelligence hybrid systems. In the present chapter, self-learning fuzzy 
spiking neural network that combined spiking neural network and fuzzy probabilistic and 
fuzzy possibilistic clustering algorithms was described as an example of such hybrid 
systems. It was shown that using of hybrid systems constructed on a spiking neural network 
basis made it possible to reduce number of learning epochs as compared to conventional 
fuzzy clustering algorithms. In addition, the way to ‘fuzzify’ spiking neural network 
architecture was demonstrated with consideration of a pool of receptive neurons to be a 
linguistic variable.  
Although the temporal Hebian learning algorithm of spiking neural network is biologically 
plausible, even more realistic learning algorithm based on ‘Winner-Takes-More’ rule was 
proposed as its improvement.    
Both theoretical innovations and simulation experiment presented in this chapter confirmed 
that self-learning spiking neural network and hybrid systems developed on its basis are 
powerful and efficient advanced tool of computational intelligence for data clustering and, 
particularly, for image processing.   
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