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1. Introduction 
 

The combination of physical systems and networks has brought to light a new generation of 
engineered systems: Cyber-Physical Systems (CPS) (CPS, 2008). CPS is defined in (Chen, 
2008) in the following way: ``Computational thinking and integration of computation around the 
physical dynamic systems form Cyber-Physical Systems (CPS) where sensing, decision, actuation, 
computation, networking and physical processes are mixed". CPS is foreseen to become a highly 
researched area in the years to come with its own conferences (NSF, 2006; WCPS, 2008) and 
journals, e.g. (Gill et al, 2008). 
``Applications of CPS arguably have the potential to dwarf the 20-th century IT revolution" (Lee, 
2007). CPS applications can be found in medical devices and systems, patient monitoring 
devices, automotive and air traffic control, advanced automotive systems, process control, 
environmental monitoring, avionics, instrumentation, oil refineries, water usage control, 
cooperative robotics, manufacturing control, buildings, etc. 
The first step when considering a CPS is to determine the dynamics of its ``physical" part, 
i.e. the environment in which the sensors and actuators are going to operate. First by 
defining a matching mathematical model, and then by retrieving the values of the 
parameters of this model. In this paper, the parameter estimation process constitutes a CPS 
in itself as we are using a mobile actuator-sensor network for that purpose. 
The ``modeling-analysis-design (MAD)'' process in dynamic systems control is fundamental 
in control engineering practice. In both physical and mathematical modelling, the parameter 
estimation is essential in successful control designs.  
A precise parameter estimation depends not only on ``relevant'' measurements and 
observations, but also on ``rich'' excitation of the system. These are all known concepts in 
system identification for finite dimensional systems (Ljung, 2008). 
In control engineering practice, it is very common to estimate the parameters of a system 
given a mathematical model. Using observations or measurements, one can parameterize 
the model using different techniques. Sometimes, when the system to be modelled is 
spatially and temporally dynamic (i.e. the states depend on both time and space), common 
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lumped parameter input-output relationships cannot characterize the system dynamics and 
instead, we must use partial differential equations (PDEs) for modelling. 
However, making observations or measurements of the states of a distributed parameter 
system is not an easy and straightforward task. One needs to consider the location of the 
sensors so that the gathered information best helps model parameter identification. This 
problem of sensor location is not new but most of the work achieved so far is limited to 
stationary sensors in the context of wireless sensor networks (Kubrusly & Malebranche, 
1985 ; Uciński,  2005). 
Mobile sensors that are now available both via mobile robots or unmanned 
air/surface/underwater vehicles, offer a much more interesting alternative to stationary 
sensors for distributed parameter systems characterization. Indeed, when looking for 
optimal location of a stationary sensor, one only seeks the optimal average over time and 
space. However, the optimal location to gather sensible data about a given distributed 
parameter system is not necessarily static but in most cases, dynamic. It is therefore logical 
to expect a better estimation of the PDE-based system if mobile sensors are used than only 
considering stationary sensors. 
Areas of application of such mobile sensing techniques include air pollutants monitoring 
using cars equipped with sensors on the ground and aircrafts in the air. In addition, low cost 
platforms for mobile sensors with wireless communications are now available and 
becoming cheaper and cheaper. As said, a set of such autonomous vehicles equipped with 
sensors can potentially improve the efficiency of the measurements. As technology evolves, 
it is necessary and practically meaningful to consider using mobile sensors for optimal 
measurement of distributed parameter systems with an objective of unknown parameters 
estimation. 
In this chapter, we consider this type of research problem first introduced in (Walter & 
Pronzato, 1997), where the optimal observations of a DPS based on diffusion equations were 
made by two-wheeled differentially driven mobile robots equipped with sensors. 
In the field of mobile sensor trajectory planning in a distributed parameter system setting, 
few approaches have been developed. So far, the available solutions are not quite practically 
appealing. For example, Rafajówicz (Rafajówicz, 1986) investigated the problem using the 
determinant of the Fisher Information Matrix (FIM) associated with the parameters to be 
estimated. The determinant of the FIM is used as a metric evaluating the accuracy of the 
parameters estimation. However, the results are more of an optimal time-dependent 
measure than a trajectory. In (Uciński, 2000) and (Uciński, 2005), Uciński reformulated the 
problem of time-optimal path planning into a state-constrained optimal control one which 
allows the addition of different constraints on the dynamics of the moving sensor. In 
(Uciński & Chen, 2005), Uciński and Chen tried to properly formulate and solve the time-
optimal problem for moving sensors observing the state of a DPS for optimal parameter 
estimation. 
In (Uciński & Chen, 2006), the Turing’s Measure of Conditioning is used to obtain optimal 
sensor trajectories. The problem is solved for heterogeneous sensors (i.e. with different 
measurement accuracies) in (Tricaud et al., 2008). Limited power resource is considered in 
(Patan et al., 2008). In (Song et al., 2005), realistic constraints to the dynamics of the mobile 
sensor are considered when a differential-drive mobile robot in the framework of the MAS-
net (mobile actuator and sensor networks) Project (Chen et al., 2004).  
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The framework was further extended in (Tricaud & Chen, 2008a) where the problem of 
optimal actuation or excitation to increase the relevance of the observations and 
measurements of the states of a distributed parameter system was introduced. Using similar 
methodology, an optimal mobile actuation policy was found for a class of distributed 
parameter systems. 
It is pinpointed in (Song et al., 2005) that one of the fundamental problems in DPS-
parameter estimation using mobile sensors is that the optimal paths for the DPS-parameter 
estimation are conditional on the very parameters’ values that yet have to be estimated and 
which are in fact unknown. Given parameters, how to optimally plan the motion trajectories 
of the mobile sensors has been known in the literature (Uciński, 2005 ; Patan, 2004), where 
the purpose of mobile sensing is to best estimate the parameters. Clearly, there is a “chick-
and-egg” problem regarding the optimal mobile sensor motion planning and parameter 
estimation for distributed parameter systems. 
Tricaud and Chen (Tricaud & Chen, 2008b), for the first time, solved this problem by 
proposing optimal interlaced mobile sensor motion planning and parameter estimation. The 
problem formulation is given in detail with a numerical solution for generating and refining 
the mobile sensor motion trajectories for parameter estimation of the distributed parameter 
system. The basic idea is to use the finite horizon control (HFC) type of scheme.  
First, the optimal trajectories are computed in a finite time horizon based on the assumed 
initial parameter values. For the following time horizon, the parameters of the distributed 
parameter system are estimated using the measured data in the previous time horizon, and 
the optimal trajectories are updated accordingly based on these estimated parameters 
obtained. Simulation results are offered to illustrate the advantages of the proposed 
interlaced method over the non-interlaced techniques. We call the proposed interlaced 
scheme “on-line” or “real-time” which offers practical solutions to optimal measurement 
and estimation of a distributed parameter system when mobile sensors are used. It should 
be mentioned that this “on-line” problem has been recognized in the last chapter of (Patan, 
2004) as an “extremely important" research effort. 
In what follows, we first present the problem formulation for optimal sensor location for 
parameter estimation in distributed parameter systems as in (Uciński, 2005). In Section 3, we 
introduce our approach for solving optimal actuation problems. In Section 4, we describe 
the method used to reformulate the optimal location problems into optimal control ones. In 
Section 5, we describe our developed scheme solving the “chicken-and-egg” problem 
described earlier. Finally, in Section 6, we illustrate our methods by applying them to a 
distributed parameter system governed by a diffusive partial differential equation. 

 
2. Optimal Measurement Problem 
 

2.1 Problem Definition 

Consider a distributed parameter system (DPS), a class of CPS, described by the partial 
differential equation:  

     F , , , in ,
y

t y T
t

x θ  (1) 

with initial and boundary conditions:  

    B , , , 0 on ,t y Tx θ  (2) 
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    0 in 0 ,y y t  (3) 

where  ,y tx  stands for the scalar state at a spatial point   nx  and time instant t T . 

  n is a bounded spatial domain with sufficiently smooth boundary  , and   0, fT t is 

a bounded time interval. F  is assumed to be a known well-posed, possibly nonlinear, 
differential operator which includes first- and second-order spatial derivatives and includes 
terms for forcing inputs. B  is an known operator acting on the boundary   and  0 0y y x  

is a given function. 
We assume that the state y  depends on the parameter vector  m of unknown 

parameters to be determined from measurements made by N  static or moving pointwise 

sensors over the observation horizon T . We call :j
s adTx  the position/trajectory of the 

j-th sensor, where   ad  is a compact set representing the domain where 

measurements are possible. The observations from the j-th sensor are assumed to be of the 
form:  

        , , , , 1, , ,j j j
s sz t y t t t t t T j N   x x   (4) 

where   represents the measurement noise which is assumed to be white, zero-mean, 
Gaussian and spatial uncorrelated with the following statistics:  

         2, ' , ' ' ,j i
s s jiE t t t t t t     x x  (5) 

where  2  stands for the standard deviation of the measurement noise,  ji   and   .  are the 

Kronecker and Dirac delta functions, respectively. 
With the above settings, similar to (Uciński, 2005), the optimal parameter estimation 

problem is formulated as follows: Given the model (1)–(3) and the measurements jz  from 

the sensors j
sx ,  1, ,j N , determine an estimate ˆ

adθ  (ad  being the set of admissible 

parameters) of the parameter vector which minimizes the generalized output least-squares 
fit-to-data functional (Banks & Kunisch, 1989 ; Omatu  & Seinfeld, 1989) given by:  

      2

1

ˆ arg min , ;
ad

N
j j

sT
j

z t y t t dt  
   θ x  (6) 

where y  is the solution of (1)–(3) with θ  replaced by  . 

By observing (6), it is possible to foresee that the parameter estimate θ̂  depends on the 

number of sensors N  and the mobile sensor trajectories j
sx . This fact triggered the research 

on the topic and explains why the literature so far focused on optimizing both the number of 
sensors and their trajectories. The intent was to select these design variables so as to produce 
best estimates of the system parameters after performing the actual experiment. 
In order to achieve optimal sensor location, some quality measure of sensor configurations 
based on the accuracy of the parameter estimates obtained from the observations is 
required. Such a measure is usually related to the concept of the Fisher Information Matrix 
(FIM) (Sun, 1994), which is frequently referred to in the theory of optimal experimental 
design for lumped parameter systems (Fedorov & Hackl, 1997). Its inverse constitutes an 
approximation of the covariance matrix for the estimate of θ .  
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Let us write:  

       1 , , , ,n
s s st t t t T  s x x  (7) 

and let   dim sn t s . Given the assumed statistics of the measurement noise, the FIM has 

the following representation (Quereshi et al., 1980):  
 

        
1

, , ,
N

j jT
s s sT

j

t t t t dt


M s g x g x  (8) 

where  

       
0

, , ;t y t
θ

g x x  (9) 

denotes the vector of the so-called sensitivity coefficients, 0θ being a prior estimate to the 
unknown parameter vector θ  (Uciński, 2000). 
However, the FIM can hardly be used in an optimization as is. Therefore, it is necessary to 
maximize some scalar function   of the information matrix to obtain the optimal 
experiment setup. The introduction of the scalar criterion allows us to pose the sensor 
location problem as an optimization problem. Several choices for such a function can be 
found in the literature (Atkinson  & Donev, 1992 ; Fedorov & Hackl, 1997 ; Walter & 
Pronzato,  1997) and the most popular one is the D-optimality criterion defined: 
       logdetM M . (10) 

Its use yields the minimal volume of the uncertainty ellipsoid for the estimates of the 
parameters. In this chapter, only the D-optimality criterion is considered. 

 
2.2 Sensor Model 
We assume that the sensors are mounted on vehicles whose dynamics are described by the 
following equation:  

          0, a.e. on , 0s s s s st f t t T s s u s s  (11) 

where the function   : n r nf R  is continuously differentiable; 0
n

s s   represents the 

initial position of the sensors, and : r
su T    is a measurable control function satisfying the 

following inequality: 
   a.e. onsl s sut T u u u  (12) 

for some constant vectors slu  and suu . We assume that all the vehicles have to stay within 

an admissible region ad  (a given compact set) where measurements are possible. ad  can 

be conveniently defined: 

   : 0, 1, ,ad sib i I    x x   (13) 

where the sib  are known continuously differentiable functions. That is, the following 

constraints have to be satisfied:  

       0, ,j
sij s si sh t b t t T   s x  (14) 

where  1 i I  and  1 j N .  

For simpler notation, we reformulate the conditions described in (14) in the following way:  

   
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  
y  


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           


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    0, ,sl t t T   s  (15) 

where sl ,  1, ,l  tally with (14),   I N . 

It is possible to consider additional constraints on the path of each vehicle such as specific 
dynamics, collision avoidance and any other constrains. For example, we can restrict the 
minimum distance between the vehicles. Such constraint can be achieved by forcing the 
following condition:  

        22 ji
sij s s st R t t   s x x  (16) 

where   1 i j N  and R  is the minimum distance ensuring that the measurements taken 

by the sensors can be considered as uncorrelated, or ensuring that the vehicles will not 
collide each other during the experiment. 

 
2.3 Problem Formulation 

The optimal measurement problem consists in obtaining the steering of each mobile sensor, 
by minimizing the design criterion  .  function of the FIMs of the form (8), which depend 

on the very trajectories of the sensors. Constraints (12) on the maximum admissible steering 
and state constraints (15) have to be satisfied. Initial sensors location 0ss  will also be taken 

into account as a variable to be optimized in addition to the control function su . The given 

problem can be reformulated as the following optimization: Find the pair  0 ,s ss u  which 

minimizes the criterion: 

    0 ,s s sJ     s u M s , (17) 

for all pairs of possible measurement: 

     0 0, : is measureable, a.e. on ,r M
s s s sl s su a adP T t T    s u u u u u s  (18) 

subject to constraints (15). 
A methodology to solve this problem will be given in Section 4. 

 
3. Optimal Actuation Problem 
 

Note that, besides the explicit design variables there exists an implicit one that is the forcing 
input in (1). Therefore, for given sensor trajectories, our interest in this chapter focuses on 
designing the optimal forcing input so as to get the most accurate parameter estimates. 
The optimal actuation problem is very close to the optimal measurement problem in the 
sense that both use the sensitivity coefficients as a measure of the quality of the parameter 
estimation. However, both problems differ in the following ways:  

 The optimal measurement problem assumes that the forcing input in (1) is known 
whereas the optimal actuation problem attempts to optimize trajectories of mobile 
actuators constituting part of the entirety of the forcing input.  

 In the optimal actuation problem, the sensors positions/trajectories are known 
beforehand and are not optimized, although it could be done jointly which is left as 
our future research effort.  

We believe that when both sensors and actuators are movable, our framework presented in 
this chapter can solve the “smart sniffing and spraying” problem as outlined in (Chen et al., 
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2004) in a model-based style, that is, we now have a solid basis on addressing the hard 
research question on “where to sniffing and where to spraying”. 

 
3.1 Actuator Model 

Let us introduce:  

          1 2, , , ,M
a a a at t t ts x x x  (19) 

where :k
a adTx  is the trajectory of the k-th actuator. We assume that the actuators are 

mounted on vehicles whose dynamics are described by the following equation  

          0, a.e. on , 0 ,a a a a at f t t T s s u s s  (20) 

Where the function    : M r Mf  is continuously differentiable, 0
M

a s   represents 

the initial position of the actuators, and : r
a T u   is the control function satisfying the 

following inequality  
   a.e. on ,al a aut T u u u  (21) 

for some constant known vectors alu  and auu .  

We assume that all the vehicles are confined within an admissible region ad  (a given 

compact set) where the actuation is possible. ad  can be conveniently defined:  

   : 0, 1, , ,ad aix b i I    x   (22) 

where the aib  functions are known continuously differentiable functions. That is to say that 

the following constraints have to be satisfied:  

       0, ,k
aik a ai ah t b t t T   s x  (23) 

where  1 i I  and  1 k M . For simpler notation, we reformulate the conditions 
described in (23) in the following way:  

    0,al a t t T   s , (24) 

where al ,  1, ,l  tally with (23),   I M . It would be possible to consider additional 

constraints on the path of the vehicles such as specific dynamics, collision avoidance and 
any other constraints. 
The actuation function for the k-th mobile actuator is assumed to have the following form:  

    F G, , , .k
k k at tx x x  (25) 

3.2 Problem Definition 

To define the considered problem, we reformulate (1):  

    


    F F
1

, , , , ,
M

k
k

y
t y t in T

t
x θ x  (26) 

with initial and boundary conditions remain unchanged. F  may still include forcing input 
terms. 
For the framework of optimal actuation, the FIM is given by the following new 
representation:  

     
     

         
  

 

 
       

        




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     



1

, ,
M

k
aT

k

t t dtM s h x  (27) 

where for the k-th actuator:  

             



1

, , , , , ,
N

j jk k T k
a a s a s

j

t t t t t t t th x g x x g x x  (28) 

and  

          
   


  0

, , , ; .k
a T

t t t y d
θ

g x x x  (29) 

In (29), y  is the solution of (26) for          F G, , ,k
k k a tx x x  for all  1, ,k M . 

The purpose of the optimal actuation problem is to determine the forces (controls) applied 
to each vehicle conveying an actuator, which minimize the design criterion   .  defined on 

the FIMs of the form of (8), which are determined unequivocally by the corresponding 
trajectories, subject to constraints on the magnitude of the controls and induced state 
constraints. To increase the degree of optimality, our approach also considers 0as  as a 

control parameter vector to be optimized in addition to the control function au . 

Given the above formulation we can cast the optimal actuation policy problem as the 
following optimization problem: Find the pair  0 ,a as u  which minimizes  

    0 ,a a aJ     s u M s  (30) 

over the set of feasible pairs  

     0 0, : is measureable, a.e. on ,r M
a a a al a au a adP T t T    s u u u u u s  (31) 

subject to the constraints . 
The solution to this problem can hardly have an analytical solution. It is therefore necessary 
to rely on numerical techniques to solve the problem. A wide variety of techniques are 
available (Polak, 1997). However, the problem can be reformulated as a classical Mayer 
problem where the performance index is defined only via terminal values of state variables. 
 
4. Optimal Control Problem Reformulation 
 

In this section, both problems from Sections 2 and 3 are converted into canonical optimal 
control ones making possible the use of existing optimal control problems solvers. 

To simplify our presentation, we define the function    1 /2svec : m mm , where m  
denotes the subspace of all symmetric matrices in m m  that takes the lower triangular part 
(the elements only on the main diagonal and below) of a symmetric matrix A  and stacks 
them into a vector a :  
        11 21 1 22 32 2svec col , , , , , , , , , .m m mma A A A A A A A A  (32) 

Reciprocally, let   SmatA s  be the symmetric matrix such that    svec Smat a a  for any 

  1 /2m m
a . 
Consider the matrix-valued function:  
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         
1

, , , ,
N

j jT
s s s s

j

s t t t t t t


 g x g x  (33) 

for the optimal sensor trajectory problem, and the function: 

      
1

, , ,
M

k
a a a

k

t t h t t


 s x  (34) 

for the optimal actuator trajectory problem. 

Setting  1 /2: m m

xr T
   , x being s  or a , as the solution of the differential equations:  

        svec , , 0 0,x x x xt t t  r s r  (35) 

we can obtain:  

     Smat ,x x ftM s r  (36) 

Minimization of  s
   M s  thus reduces to minimization of a function of the terminal value 

of the solution to (35). Introducing an augmented state vector:  

      ,x

x

x

t
t

t

     
s

q
r

 (37) 

we obtain:  

   0
0 0 .x

x x

     
s

q q
0

 (38) 

Then the equivalent canonical optimal control problem consists in finding a pair  0 ,q u P  

which minimizes the performance index:  

     0 ,x x x fJ tq u q  (39) 

subject to:  

 

          0

, ,

0

0

x x x

x x

xl x

t t t t

t





   

q q u

q q

q



 (40) 

where:  

     0 0, : is measurable, a.e. on ,r M
x x x xl x xu x adP T t T    q u u u u u s  (41) 

and  

       
   ,

, , ,
svec ,

x x

x x

x x

f t t
t

t t
       

s u
q u

s
 (42) 

      .xl x xl xt t q s  (43) 

The above problem in canonical form can be solved using one of the existing packages for 
numerically solving dynamic optimization problems, such as RIOTS_95 (Schwartz et al. 
1997), DIRCOL (Stryk, 1999) or MISER (Jennings et al., 2002). We choose RIOTS_95, which is 
designed as a MATLAB toolbox written mostly in C and runs under Windows 98/2000/XP 
and Linux. The theory behind RIOTS_95 can be found in (Schwartz, 1996). 

    



            




         
   


 

θ

y            

 

 
       

        

   


       

     
 
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ń

      
        

      
   

 

      

    
 

   
   






                                  
     

  

5. Real-Time Interlaced-Scheme 
 

5.1 Measurements and Parameters Estimation 
Once the optimal trajectories have been computed, the measurements are done as described 
in Section 1. However, the observations are completed until the end of the finite horizon for 
which the trajectory was computed. Instead, after a fraction of the horizon, the data 
gathered so far are used to refine the estimation of the parameters values. 
In order to determine refined values of the parameters, we use the Matlab command 
“lsqnonlin", a routine for solving non-linear least squares problems and especially for our 
case, the least squares fitting problems. “lsqnonlin" allows the user to incorporate his/her 
own function to compute. In our problem, the input of the function is a set of parameters as 
well as the measurements and the output is the error between the measurement and the 
simulated value of the measurement for the set of parameters.  

  


  2

1

1
min

2

N

i
i

f
θ

θ  (44) 

with  

          0 0 0
ˆ, , , , , , ; .i i

i k s k kf z t t y t t t tθ x θ  (45) 

Prior to the experiment, we determine the value of the state  ˆ , ;y tx θ  for a set of parameter 

value adθ  in an offline manner. We assume that the state variations between two values 

of a parameter are linear enough to allow interpolation. Using this database obtained 
“offline" allows faster computation of the function to be called by the optimization 
algorithm. 

 
5.2 The Interlaced Scheme 
Let us summarize the interlaced strategy step by step:  

1. Given a set of parameters θ


 for the DPS (its initial value being given prior to the 
first iteration), we design an optimal experiment, i.e., optimal trajectories for 
the mobile sensors to follow.  

2. The sensors takes measurements along their individually assigned trajectories. 
Measurements are simulated taking the real value of the state along the 
trajectory and adding zero-mean white noise.  

3. Measurement data are used to refine the estimate of the parameters using an 
optimization routine such as “lsqnonlin". The optimization routine 
computes the parameters such that the difference between the measurements 
and the simulated values of the state along the trajectory is minimized. Go 
back to Step-1.  

The above algorithm is illustrated in Figure 1.  
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Fig. 1. The interlaced scheme illustrated 

 
6. An Illustrative Example 
 

6.1 Optimal Sensor Trajectories (Offline Results) 
The model used for a specific diffusion process is the same as in (Uciński, 2005) except that 
the parameter values are different. The considered system is governed by the following 
diffusive partial differential equation: 

        F,
y

y
t

 (46) 

for       2

1 2, 0,1
T

x xx  and   0,1t , subject to homogeneous zero initial and Dirichlet 

boundary conditions. The spatial distribution of the diffusion coefficient is assumed to have 
the form:  
       1 2 1 2 1 3 2, .x x x x  (47) 

In our example, we select the initial estimates of the parameter values as  0
1 0.1 ,  0

2 0.6  

and  0
3 0.8 , which are assumed to be nominal and known prior to the experiment. The 

forcing input F is defined as: 

       F
2

1, 20exp 50t x tx  (48) 

The sensitivity function is obtained “offline" or beforehand using the Matlab PDE Toolbox, 
prior to the function call of RIOTS by Matlab. The computation of the sensitivity function 
requires solutions of the followings equations:  

 

    
 

   
   






                                  

2

1

1
1

2
1 2

3
2 3

20exp 50
y

y x t
t

g
y g

t
g

x y g
t

g
x y g

t

 (49) 

where      1 2x x . Note that there are three sensitivity equations since there are 3 

parameters 1 , 2 , 3 . 

The dynamics of the mobile sensors follow the simple model: 

 


 θ
θ

         θ θ

 θ
θ

θ

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      

    
 



→
→

○


 

       
0, 0j j j j

s s st tx u x x  (50) 

with additional constraints: 

     0.7,t t Tu . (51) 

The optimal trajectories obtained are given in Figures 2 and 3. In Figure 2, all three sensors 
have fixed initial positions (    1 0 0.1,0.1sx  ,    2 0 0.1,0.5sx   and    3 0 0.1,0.9sx  ). In 

Figure 3, sensors initial positions are left to be optimized too.
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(a)              (b) 
Fig. 2. (a): Optimal sensor trajectories with fixed initial positions, (b): Optimal sensor 
trajectories with optimal initial positions
 
It is important to mention that for Figure 2.(b), two sensors have the same trajectory. This 
result can be explained by the assumption that the noise is uncorrelated.  

 
6.2 Optimal Actuator Trajectories 

In this part, we use a similar example to illustrate our method. We consider the two-
dimensional diffusion equation:  

  


      F ,
1

M

i
i

y
y

t
 (52) 

for       2

1 2, 0,1
T

x xx  and   0,1t , subject to homogeneous zero initial and Dirichlet 

boundary conditions. The spatial distribution of the diffusion coefficient is also assumed to 
have the form:  
       1 2 1 2 1 3 2, .x x x x  (53) 

In our example, we select the initial estimates of the parameter values as  0
1 0.1 , 

  0
2 0.05  and  0

3 0.2 , which are assumed to be nominal and known prior to the 

experiment. The actuation function is defined: 

                F
2 2

1 1 2 2, , 1000exp 50 ,i i i
i a a at x t x x t xx x  (54) 

where    1 2,
T

i i i
a a ax xx . The dynamics of the mobile actuators follow the simple model:  
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       
0, 0j j j j

a a at tx u x x  (55) 

and additional constraints:  

     0.7,t t Tu . (56) 

Our goal is to design their trajectories so as to obtain possibly the best estimates of 1 , 2  

and 3 . 

The determination of the FIM follows the same way used in Section 4.1. 
Five different given sensor configurations or setups are considered, and for each setup 
optimal actuation trajectories of different number of actuators (1, 2 and 3) are compared:  

1. One static sensor located in the centre of the domain (0.5, 0.5), 
2. One static sensor located near one of the corners of the domain (0.2, 0.8), 
3. Three static sensors located throughout the domain ((0.1, 0.7), (0.5, 0.2), (0.6, 0.4)), 
4. One moving sensor with a linear motion (0.1, 0.2) → (0.6, 0.7), 
5. Two moving sensors. One moving sensor with a linear motion (0.1, 0.2) → (0.6, 0.7) 

and the other one moving along an arc. 
Results for the different cases are summarized in Table 1, and the resulting trajectories can 
be observed in Figures 4-8. In the figures, static sensors locations are represented by a red x, 
mobile sensors trajectories are in red and actuator trajectories are in blue (○ locates the 
starting point and  the ending point). 
 

 Case 1 Case 2 Case 3 Case 4 Case 5 
1 actuator 15.991 18.051 10.904 14.465 12.547 
2 actuators 12.582 14.273 7.36 11.095 7.4806 
3 actuators 11.28 13.022 5.8136 9.8976 6.4512 

Table 1. Values of the D-optimality criterion   M  for the different test cases 
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Fig. 4. D-Optimum trajectories of mobile actuators for one stationary sensor
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Fig. 5. D-Optimum trajectories of mobile actuators for one stationary sensor
 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

 
Fig. 6. D-Optimum trajectories of mobile actuators for three stationary sensors
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Fig. 7. D-Optimum trajectories of mobile actuators for one moving sensor
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Fig. 8. D-Optimum trajectories of mobile actuators for two moving sensors
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As expected, for all cases, the performance criterion value decreases as the number of 
actuator increases. We can also notice that both the mobility, population and location of the 
sensors have a direct impact on the performance of the strategy. Therefore, we can suppose 
the existence of an optimal combination of sensor and actuator trajectories. 

 
6.3 Optimal Sensor Trajectories (Online Results) 
In this section, we focus our attention on the performance of the online methodology 
described in Section 5. The experiment is run for different noise statistics and for each case 
results are given in the form of sensor trajectories and parameter estimates. For case 1, 

0.0001  , for case 2, 0.001  , and for case 3, 0.01  . In all cases, we consider 3 mobile 
sensors. The control of the mobile sensors u  is limited between 0.7  and 0.7 . All three 
sensors have fixed initial positions (    1 0 0.1,0.1sx  ,    2 0 0.1,0.5sx   and 

   3 0 0.1,0.9sx  ). The results for the previously defined case are respectively given in  

Figure 9. for Case 1, in Figure 10 for Case 2 and in Figure 11 for Case 3. For each figure, 
subfigure (a) gives the sensor trajectories, the evolution of the estimates is shown in (b) and 
the measurements are given in (c). 
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Fig. 9. Closed-loop D-Optimum experiment for 0.0001  . From left to right (sensor 
trajectories, parameter estimates and sensor measurements) 
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Fig. 10. Closed-loop D-Optimum experiment for 0.001  . From left to right (sensor 
trajectories, parameter estimates and sensor measurements) 
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Fig. 11. Closed-loop D-Optimum experiment for 0.01  . From left to right (sensor 
trajectories, parameter estimates and sensor measurements) 
 

From these figures, we have the following observations:  
• In all the cases, the sensors have similar trajectories as they try to follow the 

excitation wave along the 1x  axis   2

120exp 50 x t  .  

• For low noise amplitude (cases 1 and 2), the experiment is long enough to obtain 
good estimates of the parameters. In case 3, the experiment is not long enough to 
obtain convergence.  

• In all cases, we can clearly observe that the trajectories of the mobile sensors change 
as the estimated values of the parameters are getting closer to the real values. 

 
7. Conclusions 
 

In this chapter, we described a numerical procedure for optimal sensor-motion scheduling 
of diffusion systems for parameter estimation. The state of the art problem formulation was 
presented so as to understand our contribution to the field. The problem was formulated as 
an optimization problem using the concept of the Fisher information matrix. 
We then introduced the optimal actuation framework for parameter identification in 
distributed parameter systems. The problem was reformulated into an optimal control one.  
Later, using our developed “online” scheme, mobile sensors find an initial trajectory to 
follow and refine the trajectory as their measurements allow finding a better estimate of the 
system’s parameters. Using the Matlab PDE toolbox for the PDE system simulations, 
RIOTS_95 Matlab toolbox for solving the optimal path-planning problem and Matlab 
Optimization toolbox for the estimation of the system’s parameters, we were able to solve 
this parameter identification problem in an interlaced manner successfully.  
With the help of the Matlab PDE toolbox for the system simulations and RIOTS_95 Matlab 
toolbox for solving the optimal control problem, we successfully obtained the optimal 
solutions of all the introduced methods for illustrative examples. We believe, this chapter 
has for the first time laid the rigorous foundation for real-time estimation for a class of 
cyber-physical systems (CPS). 

 
 

www.intechopen.com



Optimal Real-Time Estimation Strategies for a Class of Cyber-Physical Systems Using

Networked Mobile Sensors and Actuators 219

8. Future Work 
 

Our future efforts will go towards combining all of the techniques described here into a 
single framework. Obtaining optimal trajectories for both moving actuators and moving 
sensors is a challenging but very exciting research topic. 
It should be emphasized that the “online” estimation methodology sets the basis for exciting 
future research. Indeed, we can now investigate problems related to communication 
between mobile nodes such as time-varying information sharing topology, communication 
range, information loss and other well-known problems in the scope of task-oriented mobile 
multi-agent systems.  
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