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Abstract

Power flow, or load flow, is widely used in power system operation and
planning. The power flow model of a power system is built using the relevant
network, load, and generation data. Outputs of the power flow model include
voltages at different buses, line flows in the network, and system losses. These
outputs are obtained by solving nodal power balance equations. Since these
equations are nonlinear, iterative techniques such as the Newton-Raphson, the
Gauss-Seidel, and the fast-decoupled methods are commonly used to solve this
problem. The problem is simplified as a linear problem in the DC power flow
technique. This chapter will provide an overview of different techniques used to
solve the power flow problem.

Keywords: power flow, load flow, iterative techniques, Newton-Raphson,
Gauss-Seidel, fast-decoupled, DC power flow

1. Problem formulation

Power flow analysis is a fundamental study discussed in any power system
analysis textbook such as [1–6]. The objective of a power flow study is to calculate
the voltages (magnitude and angle) for a given load, generation, and network
condition. Once voltages are known for all buses, line flows and losses can be
calculated. The starting point of solving power flow problems is to identify the
known and unknown variables in the system. Based on these variables, buses are
classified into three types: slack, generation, and load buses as shown in Table 1.

The slack bus is required to provide the mismatch between scheduled generation
the total system load including losses and total generation. The slack bus is com-
monly considered as the reference bus because both voltage magnitude and angles
are specified; therefore, it is called the swing bus. The rest of generator buses are
called regulated or PV buses because the net real power is specified and voltage
magnitude is regulated. Most of the buses in practical power systems are load buses.
Load buses are called PQ buses because both net real and reactive power loads are
specified.

For PQ buses, both voltage magnitudes and angles are unknown, whereas for PV
buses, only the voltage angle is unknown. As both voltage magnitudes and angles
are specified for the Slack bus, there are no variables that must be solved for. In a
system with n buses and g generators, there are 2(n-1)-(g-1) unknowns. To solve
these unknowns, real and reactive power balance equations are used. To write
these equations, the transmission network is modeled using the admittance matrix
(Y-bus).
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2. Admittance matrix and power flow equation

The admittance matrix of a power system is an abstract mathematical model of
the system. It consists of admittance values of both lines and buses. The Y-bus is a
square matrix with dimensions equal to the number of buses. This matrix is sym-
metrical along the diagonal.

Y ¼
Y11 ⋯ Y1n

⋮ ⋱ ⋮
Yn1 ⋯ Ynn

2
64

3
75 (1)

The values of diagonal elements (Yii) are equal to the sum of the admittances
connected to bus i. The off-diagonal elements (Yij) are equal to the negative of the
admittance connecting the two buses i and j. It is worth noting that with large
systems, Y-bus is a sparse matrix.

Yii ¼ ∑
n

j ¼ 0
j 6¼ i

yij (2)

Yij ¼ Yji ¼ �yij (3)

The net injected power at any bus can be calculated using the bus voltage (Vi),
neighboring bus voltages (Vj), and admittances between the bus and its
neighboring buses (yij) as shown in Figure 1.

Ii ¼ Viyi0 þ Vi � V1ð Þyi1 þ Vi � V2ð Þyi2 þ…þ Vi � Vj
� �

yij

Rearranging the elements as a function of voltages, the current equation
becomes as follows:

Ii ¼ Vi yi0 þ yi1 þ yi2 þ ::þ yij
� �

� V1yi1 � V2yi2 �…� Vjyij

Ii ¼ Vi ∑
j ¼ 0
j 6¼ i

yij � ∑
j ¼ 1
j 6¼ i

yijVj ¼ ViYii þ ∑
j ¼ 1
j 6¼ i

YijVj

The power equation at any bus can be written as follows:

Si ¼ Pi þ jQ  i ¼ ViIi∗

Bus type Voltage (jVi j∠ δi) Real power Reactive power

Magnitude Angle Generation Load Net (Pi) Generation Load Net (Q  i)

Slack/
Swing

Specified Specified Unknown Specified Unknown Unknown Specified Unknown

Generator/
Regulated/
PV

Specified Unknown Specified Specified Specified Unknown Specified Unknown

Load/PQ Unknown Unknown Specified Specified Specified Specified Specified Specified

Table 1.
Type of buses in the power flow problem.
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Or

Si∗ ¼ Pi � jQ  i ¼ Vi
∗Ii

Substituting the expression on the current in Si∗ equation results in the following
formula:

Si∗ ¼ Vi
∗ Vi ∑

j ¼ 0

j 6¼ i

yij � ∑
j ¼ 1

j 6¼ i

yijVj

0
BB@

1
CCA ¼ Vi

∗ ViYii þ ∑
j ¼ 1

j 6¼ i

YijVj

0
BB@

1
CCA

Real and reactive power can be calculated from the following equations:

Pi ¼ Re Vi
∗ Vi ∑

j ¼ 0

j 6¼ i

yij � ∑
j ¼ 1

j 6¼ i

yijVj

0
BB@

1
CCA

8>><
>>:

9>>=
>>; ¼ Re Vi

∗ ViYii þ ∑
j ¼ 1

j 6¼ i

YijVj

0
BB@

1
CCA

8>><
>>:

9>>=
>>;

Q  i ¼ �Im Vi
∗ Vi ∑

j ¼ 0
j 6¼ i

yij � ∑
j ¼ 1
j 6¼ i

yijVj

0
BB@

1
CCA

8>><
>>:

9>>=
>>; ¼ �Im Vi

∗ ViYii þ ∑
j ¼ 1
j 6¼ i

YijVj

0
BB@

1
CCA

8>><
>>:

9>>=
>>;

Or

Pi ¼ ∑
n

j¼1
Vij j Vj
�� �� Yij

�� �� cos θij � δi þ δj
� �

(4)

Q  i ¼ �∑
n

j¼1
Vij j Vj
�� �� Yij

�� �� sin θij � δi þ δj
� �

(5)

And the current (Ii) can be written as a function of the power as follows:

Pi � jQ  i

Vi
∗ ¼ Vi ∑

j ¼ 0

j 6¼ i

yij � ∑
j ¼ 1

j 6¼ i

yijVj ¼ ViYii þ ∑
j ¼ 1

j 6¼ i

YijVj (6)

Figure 1.
Net injected power.
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Example 1: Admittance matrix formation.
For the below 4-bus system in Figure 2, the admittance matrix is constructed by

converting all impedances in the system into admittances as shown in Figure 3.
Then, diagonal and off-diagonal elements are calculated using Eqs. (2) and (3).

Y ¼
�j7:5 j4 j2:5 0

j4 �j7:75 0 j2:5
j2:5 0 �j4:5 j2
0 j2:5 j2 �j4:5

2
6664

3
7775 ¼

7:5∠ � 90° 4∠ 90° 2:5∠ 90° 0

4∠ 90° 7:75∠ � 90° 0 2:5∠ 90°

2:5∠ 90° 0 4:5∠ � 90° 2∠ 90°

0 2:5∠ 90° 2∠ 90° 4:5∠ � 90°

2
6664

3
7775

3. Gauss-Seidel technique

The Gauss-Seidel (GS) method, also known as the method of successive dis-
placement, is the simplest iterative technique used to solve power flow problems. In
general, GS method follows the following iterative steps to reach the solution for the
function f xð Þ ¼ 0:

• Rearrange the function into the form x ¼ g xð Þ to calculate the unknown
variable.

Figure 2.
Impedance diagram.

Figure 3.
Admittance diagram.
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• Calculate the value g x 0½ �� �
based on initial estimates x 0½ �.

• Calculate the improved value x 1½ � ¼ g x 0½ �� �
.

• Continue solving for improved values until the solution is within acceptable
limits x kþ1½ � � x k½ ��� ��≤ ϵ.

The rate of convergence can be improved using acceleration factors by modify-
ing the step size α.

x kþ1½ � ¼ x k½ � þ α g x kþ1½ �
� �

� x k½ �
h i

(7)

In the context of a power flow problem, the unknown variables are voltages at
all buses, but the slack. Both voltage magnitudes and angles are unknown for
load buses, whereas voltage angles are unknown for regulated/generation buses.

The voltage Vi at bus i can be calculated using either equations:

Vi ¼ 1
∑ j ¼ 1

j 6¼ i

yij

Pi
sch � jQ  i

sch

Vi
∗ þ∑

j
yijVj

 !
(8)

Vi ¼ 1
Yii

Pi
sch � jQ  i

sch

Vi
∗ � ∑

j ¼ 1
j 6¼ i

YijVj

0
BB@

1
CCA (9)

where yij is the admittance between buses i and j, Yij is the Y-bus element, Pi
sch

the net scheduled injected real power, Q  i
sch is the net scheduled injected reactive

power, and Vi
∗ is the conjugate of Vi. The net injected quantities are the sum of the

generation minus load. Typically, the initial estimates of Vi ¼ 1∠0°.
The iterative voltage equation is as follows:

Vi
kþ1½ � ¼ 1

Yii

Pi
sch � jQ  i

sch

Vi
∗ k½ � �∑j 6¼ iYijVj

k or kþ1½ �
 !

(10)

Or

Vi
kþ1½ � ¼ 1

∑j¼0 yij

Pi
sch � jQ  i

sch

Vi
∗ þ ∑

j 6¼ i
yijVj

k or kþ1½ �
 !

(11)

Both real and reactive powers are scheduled for the load buses, and Eq. 6 is used
to determine both voltage magnitudes and angles ( Vij j∠ δ) for every iteration
(Vi

kþ1½ �).
For regulated buses, only real power is scheduled. Therefore, net injected

reactive power is calculated based on the iterative voltages (Vi
kþ1½ �) using either

equations:

Q  i
kþ1½ � ¼ �Im Vi

∗ k½ � Vi
k½ � ∑

n

j¼0
yij � ∑

n

j ¼ 1
j 6¼ i

yijVj
k or kþ1½ �

0
BB@

1
CCA

8>><
>>:

9>>=
>>; (12)
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Q  i
kþ1½ � ¼ � ∑

n

j¼ 1
Vij j k½ � Vj

�� �� k or kþ1½ � Yij
�� �� sin θij � δi

k½ � þ δj
k½ �

� �
(13)

where Vij j and Vj
�� �� are the magnitudes of the voltage at buses i and j, respec-

tively. δi and δj are the associated angles. yij is the admittance between buses i and j.

Yij
�� �� is the magnitude of the Y-bus element between the two buses; and θij is the
corresponding angle.

Since the voltage magnitude ( Vij j) is specified at regulated/PV buses, Eqs. (8) or
(9) will be used to determine the voltage angles only. To achieve this, two options
can be used:

1.When using the polar form ( Vij j∠ δi), discard the iterative voltage magnitude
and keep the iterative angle.

2.When using the rectangular form (Rei þ j Imi), discard the real part (Rei) and
keep the imaginary part (Imi) of the iterative voltage. The new real part
(Reinew) can be calculated from the specified magnitude ( Vij j) and the iterative
imaginary part.

Reinew ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vij j2 � Imi

2
q

(14)

The iterative process stops when the voltage improvement reaches acceptable
limits: Vi

kþ1½ � � Vi
k½ ��� ��≤ ϵ.

Example 2: Gauss-Seidel power flow solution.
Figure 4 below shows a 3-bus system. Perform 2 iterations to obtain the voltage

magnitude and angles at buses 2 and 3. Impedances are given on 100 MVA base.
Solution:
The admittance values of the transmission network and the injected power in

per unit at buses 2 and 3 are calculated as shown in Figure 5. Note that net injected
power at the load bus is negative while that of the PV bus is positive. Per units
values are obtained by diving actual values (MW and MVAR) by the base (100
MVA).

Iteration #1: assume V2
0½ � ¼ 1:00∠0° and V3

0½ � ¼ 1:03∠0°.

V2
1½ � ¼ 1

y21 þ y23

P2
sch � jQ2

sch

V2
0½ �∗ þ y21V1 þ y23V3

0½ �
 !

¼ 1
5� j15ð Þ þ 15� j50ð Þ

�2þ j0:5
1:00∠0° þ 5� j15ð Þ1:02∠0° þ 15� j50ð Þ1:00∠0°

� 	

V2
1½ � ¼ 1:0120� j0:0260 ¼ 1:0123∠ � 1:4717°

As Q3 is not given, it is calculated based on the latest available information using
Eqs. (12) or (13).

Q3
1½ � ¼ �Im V3

∗ 0½ � V3
0½ � ∑

n

j¼0
y3j � ∑

n

j ¼ 1

j 6¼ i

y3jVj
k or kþ1½ �

0
BB@

1
CCA

8>><
>>:

9>>=
>>;

Q3
1½ � ¼ �Im V3

∗ 0½ � V3
0½ � y31 þ y32
� �� y31V1 þ y32V2

1½ �
h i� �n o
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Q3
1½ � ¼ �Im 1:03∠0° 1:03∠0° 10� j40þ 15� j50ð Þ � 10� j40ð Þ1:02∠0°
��

þ 15� j50ð Þ 1:0120� j0:0260ð Þ�Þg
¼ �Im 1:7201� j0:9373f g ¼ 0:9373 pu

Now that Q3
1½ � is calculated, the voltage V3

1½ � can be calculated:

V3
1½ � ¼ 1

y31 þ y32

P3
sch � jQ3

1½ �

V3
0½ �∗ þ y31V1 þ y32V2

1½ �
 !

¼ 1
10� j40þ 15� j50

1:5� j0:9373
1:03∠0° þ 10� j40ð Þ1:02∠0° þ 15� j50ð Þ 1:0120� j0:0260ð Þ

� 	

¼ 1:0294� j0:0022 pu

Since the magnitude of V3 is specified, we retain the imaginary part of V3
1½ � and

calculate the real part using Eq. (14).

Reinew ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:032 � 0:00222

p
¼ 1:03 pu

Figure 4.
3-Bus power system.

Figure 5.
Power flow input data.
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Therefore,

 V3
1½ � ¼ V3

1½ � ¼ 1:03� j0:0022 ¼ 1:03∠ � 0:1226° pu

Iteration #2: considering V2
1½ � ¼ 1:0120� j0:0260 and V3

1½ � ¼ 1:03� j0:0022.

V2
2½ � ¼ 1

y21 þ y23

P2
sch � jQ2

sch

V2
1½ �∗ þ y21V1 þ y23V3

1½ �
 !

¼ 1
5� j15ð Þ þ 15� j50ð Þ

�2þ j0:5
1:0120� j0:0260

þ 5� j15ð Þ1:02∠0° þ 15� j50ð Þ 1:03� j0:0022ð Þ
� 	

V2
2½ �

¼ 1:0115� j 0:0270 ¼ 1:0119∠ � 1:5273°

Q3
2½ � calculation is given below:

Q3
2½ � ¼ �Im V3

∗ 1½ � V3
1½ � y31 þ y32
� �� y31V1 þ y32V2

2½ �
h i� �n o

Q3
2½ � ¼ �Im 1:03� j0:0022ð Þ 1:03� j0:0022ð Þ 10� j40þ 15� j50ð Þðf

� 10� j40ð Þ1:02∠0° þ 15� j50ð Þ 1:0115� j 0:0270ð Þ
 ��
¼ 1:0000 pu

The voltage V3
2½ � is calculated as follows:

V3
2½ � ¼ 1

y31 þ y32

P3
sch � jQ3

2½ �

V3
1½ �∗ þ y31V1 þ y32V2

2½ �
 !

¼ 1
10� j40þ 15� j50

1:5� j1
1:03∠0° þ 10� j40ð Þ1:02∠0° þ 15� j50ð Þ 1:0115� j 0:0270ð Þ
� 	

¼ 1:0298� j0:0030 pu

Only imaginary value of the calculated V3
2½ � is retained and the real part is

calculated based on the retained imaginary values and the scheduled V3j j:

Reinew ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:032 � 0:00302

p
¼ 1:03 pu

Therefore,

V3
2½ � ¼ 1:03� j0:003 ¼ 1:03∠ � 0:1644° pu

The iterative solution is presented in Table 2.

Iteration V2
k½ � V3

k½ �

1 1:0123∠ � 1:4717° 1:03∠ � 0:1226°

2 1:0119∠ � 1:5273° 1:03∠ � 0:1644°

3 1:0119∠ � 1:5598° 1:03∠ � 0:1846°

4 1:0119∠ � 1:5750° 1:03∠ � 0:1941°

5 1:0118∠ � 1:5823° 1:03∠ � 0:1986°

6 1:0118∠ � 1:5857° 1:03∠ � 0:2008°

Table 2.
Gauss-Seidel iterative solution.
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4. Newton-Raphson technique

The Newton-Raphson (N-R) technique, also known as the method of successive
approximation, is based on Taylor’s expansion approximation. The unknown x in
the function f xð Þ ¼ c can be determined using Taylor’s expansion approximation.
Starting with an initial estimate x 0½ �, the deviation from the correct solution is Δx 0½ �.
Applying Taylor’s expansion, the function can be written as follows:

f x 0½ � þ Δx 0½ �
� �

¼ c (15)

f x 0½ � þ Δx 0½ �
� �

¼ f x 0½ �
� �

þ f 0 x 0½ �
� �

Δx 0½ � þ 1
2!
f
0 0

x 0½ �
� �

Δx 0½ �2 þ 1
3!
f
0 0 0

x 0½ �
� �

Δx 0½ �3 þ… ¼ c (16)

Assuming Δx 0½ � is small, the higher order terms (12! f
0 0
x 0½ �� �

Δx 0½ �2þ
1
3! f

0 0 0
x 0½ �� �

Δx 0½ �3 þ…) are neglected and the function can be approximated by the
first two terms.

f x 0½ � þ Δx 0½ �
� �

≈ f x 0½ �
� �

þ f 0 x 0½ �
� �

Δx 0½ � ¼ c (17)

Based on x 0½ �, the deviation from the correct solution can be iteratively
calculated.

Δx 0½ � ¼ c� f x 0½ �� �
f 0 x 0½ �ð Þ ¼ Δf x 0½ �� �

f 0 x 0½ �ð Þ (18)

The improved solution can be calculated iteratively.

x 1½ � ¼ x 0½ � þ Δx 0½ � (19)

The iterative process is stopped when the mismatch between scheduled and

calculated value (Δf k½ � ¼ c� f x k½ �� �
) is within acceptable limits Δf k½ �

��� ���≤ ϵ.

In the context of power flow problems, unknown variables x are both voltage
magnitude and angles ( Vij j∠ δi) at load buses, as well as voltage angles (δi) at
regulated buses. The scheduled (specified) quantities (c) are both net real (Pi

sch)
and reactive power (jQ  i

sch) values at load buses and real power at generation buses
as shown in Table 1. The iterative values of reactive power are calculated using
Eqs. (12) or (13). Similarly, the iterative values of real power are calculated using
Eqs. (20) or (21):

Pi
kþ1½ � ¼ Re Vi

∗ k½ � Vi
k½ � ∑

n

j¼0
yij � ∑

n

j ¼ 1
j 6¼ i

yijVj
k or kþ1½ �

0
BB@

1
CCA

8>><
>>:

9>>=
>>; (20)

Pi
kþ1½ � ¼ ∑

n

j¼1
Vij j k½ � Vj

�� �� k or kþ1½ � Yij
�� �� cos θij � δi

k½ � þ δj
k½ �

� �
(21)

The Newton-Raphson power flow formulation can be written as follows:

x k½ � ¼ δi
k½ �

Vij j k½ �

" #
, c ¼ Pi

sch

Q  i
sch

" #
, f ¼ Pi

k½ �

Q  i
k½ �

" #
, and

Pi
sch

Q  i
sch

" #
� Pi

k½ �

Q  i
k½ �

" #
¼ ΔPi

k½ �

ΔQi
k½ �

" #
.
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When more variables are used, the derivative f 0 is replaced by partial derivatives
with respect to different variables. The partial derivative matrix is called the Jaco-
bian matrix.

f 0 ¼
∂Pi

∂δi

∂Pi

∂ Vij j
∂Q  i

∂δi

∂Q  i

∂ Vij j

2
664

3
775 ¼ JPδ JP Vj j

JQδ JQ Vj j

" #
(22)

Therefore, the Newton-Raphson power flow formulation can be solved using the
below equation:

Pi
sch

Q  i
sch

" #
� Pi

k½ �

Q  i
k½ �

" #
¼ ΔPi

k½ �

ΔQi
k½ �

" #
¼

∂Pi
∂δi

k½ � ∂Pi
∂ Vij j

k½ �

∂Q  i
∂δi

k½ � ∂Q  i
∂ Vij j

k½ �

2
4

3
5 Δδi k½ �

Δ Vij j k½ �

" #
(23)

To solve for the deviation, the inverse of the Jacobian matrix is required for
every iteration.

Δδ k½ �

Δ Vij j k½ �

" #
¼ JPδ

k½ � JP Vj j
k½ �

JQδ
k½ � JQ Vj j

k½ �

" #�1
ΔPi

k½ �

ΔQi
k½ �

" #
(24)

Then, new values are calculated:

δi
k½ �

Vij j k½ �

" #
¼ δi

k�1½ �

Vij j k�1½ �

" #
þ Δδi k½ �

Δ Vij j k½ �

" #
(25)

The iterative process stops when the mismatch between calculated and sched-

uled quantities is within
ΔPi

k½ �

ΔQi
k½ �

" #
≤ ϵ.

Example 3: Newton-Raphson power flow solution.
Solve the power flow problem shown in Figure 3 using the Newton-Raphson

technique. Perform two iterations.
Solution:
The first step in Newton-Raphson Power Flow technique is building Y-bus using

Eqs. (2) and (3).

Y ¼

15� j55 �5þ j15 �10þ j40

�5þ j15 20� j65 �15þ j50

�10þ j40 �15þ j50 25� j90

2
6664

3
7775

¼

57:01∠ � 74:74° 15:81∠ 108:43° 41:23∠ 104:04°

15:81∠ 108:43° 68:01∠ � 72:90° 52:20∠ 106:70°

41:23∠ 104:04° 52:20∠ 106:70° 93:41∠ � 74:48°

2
6664

3
7775

Since the unknown variables are δ2, δ3, and V2j j; the scheduled quantities are
P2

sch, P3
sch, and Q2

sch, the following problem formulation can be written.

10

Computational Models in Engineering



P2
sch

P3
sch

Q2
sch

2
64

3
75�

P2
k½ �

P3
k½ �

Q2
k½ �

2
64

3
75 ¼

∂P2
∂δ2

k½ � ∂P2
∂δ3

k½ � ∂P2
∂ V2j j

k½ �

∂P3
∂δ2

k½ � ∂P3
∂δ3

k½ � ∂P3
∂ V2j j

k½ �

∂Q2
∂δ2

k½ � ∂Q2
∂δ3

k½ � ∂Q2
∂ V2j j

k½ �

2
66664

3
77775

Δδ2 k½ �

Δδ3 k½ �

Δ V2j j k½ �

2
64

3
75

To calculate the Jacobian matrix elements, P2, P3, and Q2 equations are obtained
using (4) and (5).

P2 ¼ ∑
n

j¼1
V2j j Vj
�� �� Y2j

�� �� cos θ2j � δ2 þ δj
� �

¼ V2j j V1j j Y21j j cos θ21 � δ2 þ δ1ð Þ þ V2j j2 Y22j j cos θ22ð Þ þ V2j j V3j j Y23j j cos θ23 � δ2 þ δ3ð Þ
∂P2

∂δ2
¼ V2j j V1j j Y21j j sin θ21 � δ2 þ δ1ð Þ þ V2j j V3j j Y23j j sin θ23 � δ2 þ δ3ð Þ

∂P2

∂δ3
¼ � V2j j V3j j Y23j j sin θ23 � δ2 þ δ3ð Þ

∂P2

∂ V2j j ¼ V1j j Y21j j cos θ21 � δ2 þ δ1ð Þ þ 2 V2j j Y22j j cos θ22ð Þ þ V3j j Y23j j cos θ23 � δ2 þ δ3ð Þ

P3 ¼ ∑
n

j¼1
V3j j Vj
�� �� Y3j

�� �� cos θ3j � δ3 þ δj
� �

¼ V3j j V1j j Y31j j cos θ31 � δ3 þ δ1ð Þ þ V3j j V2j j Y32j j cos θ32 � δ3 þ δ2ð Þ þ V3j j2 Y33j j cos θ33ð Þ
∂P3

∂δ2
¼ � V2j j V3j j Y32j j sin θ32 � δ3 þ δ2ð Þ

∂P3

∂δ3
¼ V3j j V1j j Y31j j sin θ31 � δ3 þ δ1ð Þ þ V3j j V2j j Y32j j sin θ32 � δ3 þ δ2ð Þ

∂P3

∂ V2j j ¼ V3j j Y32j j cos θ32 � δ3 þ δ2ð Þ

Q2 ¼ �∑
n

j¼1
V2j j Vj
�� �� Y2j

�� �� sin θ2j � δ2 þ δj
� �

¼ � V2j j V1j j Y21j j sin θ21 � δ2 þ δ1ð Þ � V2j j2 Y22j j sin θ22ð Þ � V2j j V3j j Y23j j sin θ23 � δ2 þ δ3ð Þ
∂Q3

∂δ2
¼ V2j j V1j j Y21j j cos θ21 � δ2 þ δ1ð Þ þ V2j j V3j j Y23j j cos θ23 � δ2 þ δ3ð Þ

∂Q3

∂δ3
¼ � V2j j V3j j Y23j j cos θ23 � δ2 þ δ3ð Þ

∂Q3

∂ V2j j ¼ � V1j j Y21j j sin θ21 � δ2 þ δ1ð Þ � 2 V2j j Y22j j sin θ22ð Þ � V3j j Y23j j sin θ23 � δ2 þ δ3ð Þ

Iteration #1: assume V2
0½ � ¼ 1:00∠0° and V3

0½ � ¼ 1:03∠0°.

The calculated quantities:
P2

1½ �

P3
1½ �

Q2
1½ �

2
64

3
75 ¼

�0:5500

0:5665

�1:8000:

2
64

3
75

The scheduled quantities:
P2

sch

P3
sch

Q2
sch

2
64

3
75 ¼

�2

1:5

�0:5

2
64

3
75
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The mismatch power matrix:
ΔP2

1½ �

ΔP3
1½ �

ΔQ2
1½ �

2
64

3
75 ¼

�2

1:5

�0:5

2
64

3
75�

�0:5500

0:5665

�1:8000

2
64

3
75 ¼

�1:4500

0:9335

1:3000

2
64

3
75

The Jacobian matrix (J) elements for iteration # 1 are as follows:

J ¼
66:8 �51:5 19:45

�51:5 93:52 �15:45

�20:55 15:45 63:2

2
64

3
75

Newton-Raphson formulation is as follows:

�1:4500

0:9335

1:3000

2
64

3
75 ¼

66:8 �51:5 19:45

�51:5 93:52 �15:45

�20:55 15:45 63:2

2
64

3
75 Δδ2 1½ �

Δδ3 1½ �

Δ V2j j 1½ �

2
64

3
75

Δδ2 1½ �

Δδ3 1½ �

Δ V2j j 1½ �

2
64

3
75 ¼

66:8 �51:5 19:45

�51:5 93:52 �15:45

�20:55 15:45 63:2

2
64

3
75
�1 �1:4500

0:9335

1:3000

2
64

3
75 ¼

�0:0279 rad
�0:0033 rad
0:0123 pu

2
64

3
75

δ2
1½ �

δ3
1½ �

V2j j 1½ �

2
64

3
75 ¼

δ2
0½ �

δ3
0½ �

V2j j 0½ �

2
64

3
75þ

Δδ2 1½ �

Δδ3 1½ �

Δ V2j j 1½ �

2
64

3
75

δ2
1½ �

δ3
1½ �

V2j j 1½ �

2
64

3
75 ¼

0

0

1:00

2
64

3
75þ

�0:0279 rad
�0:0033 rad
0:0123 pu

2
64

3
75 ¼

�0:0279 rad
�0:0033 rad
1:0123 pu

2
64

3
75 ¼

�1:5986°

�0:1891°

1:0123 pu

2
64

3
75

Iteration #2: Consider V2
1½ � ¼ 1:0123∠ � 1:5986° and V3

1½ � ¼ 1:03∠ � 0:1891°.

The calculated quantities:
P2

2½ �

P3
2½ �

Q2
2½ �

2
64

3
75 ¼

�2:0109

1:5202

�0:4621

2
64

3
75

The mismatch power matrix:
ΔP2

2½ �

ΔP3
2½ �

ΔQ2
2½ �

2
64

3
75 ¼

�2

1:5

�0:5

2
64

3
75�

�2:0109

1:5202

�0:4621

2
64

3
75 ¼

0:0109

�0:0202

�0:0379

2
64

3
75

The Jacobian matrix elements are calculated as follows:

J ¼
67:07 �51:74 18:26

�52:50 94:49 �14:18

�22:51 16:91 65:34

2
64

3
75

Δδ2 2½ �

Δδ3 2½ �

Δ V2j j 2½ �

2
64

3
75 ¼

67:07 �51:74 18:26

�52:50 94:49 �14:18

�22:51 16:91 65:34

2
64

3
75
�1 0:0109

�0:0202

�0:0379

2
64

3
75

Δδ2 2½ �

Δδ3 2½ �

Δ V2j j 2½ �

2
64

3
75 ¼

0:1272� 10�3 rad
�0:2154� 10�3 rad
�0:4810� 10�3 pu

2
64

3
75

12

Computational Models in Engineering



δ2
2½ �

δ3
2½ �

V2j j 2½ �

2
64

3
75 ¼

δ2
1½ �

δ3
1½ �

V2j j 1½ �

2
64

3
75þ

Δδ2 2½ �

Δδ3 2½ �

Δ V2j j 2½ �

2
64

3
75

δ2
2½ �

δ3
2½ �

V2j j 2½ �

2
64

3
75 ¼

�0:0279 rad
�0:0033 rad
1:0123 pu

2
64

3
75þ

0:1272� 10�3 rad
�0:2154� 10�3 rad
�0:4810� 10�3 pu

2
64

3
75

δ2
2½ �

δ3
2½ �

V2j j 2½ �

2
64

3
75 ¼¼

�0:0277 rad
�0:0035 rad
1:0118pu

2
64

3
75 ¼

�1:5871°

�0:2005°

1:0118 pu

2
64

3
75

It is worth noting that the mismatch between calculated and scheduled quanti-
ties diminishes very quickly.

ΔP2
1½ �

ΔP3
1½ �

ΔQ2
1½ �

2
64

3
75 ¼

�1:4500

0:9335

1:3000

2
64

3
75and ΔP2

2½ �

ΔP3
2½ �

ΔQ2
2½ �

2
64

3
75 ¼

0:0109

�0:0202

�0:0379

2
64

3
75

The iterative solution is presented in Table 3.

5. Fast-decoupled technique

In high voltage transmission systems, the voltage angles between adjacent buses
are relatively small. In addition, X=R ratio is high. These two properties result in a
strong coupling between real power and voltage angle and between reactive power
and voltage magnitude. In contrary, the coupling between real power and voltage
magnitude, as well as reactive power and voltage angle, is weak. Considering adja-
cent buses, real power flows from the bus with a higher voltage angle to the bus
with a lower voltage angle. Similarly, reactive power flows from the bus with a
higher voltage magnitude to the bus with a lower voltage magnitude.

Fast-decoupled power flow technique includes two steps: (1) decoupling real
and reactive power calculations; (2) obtaining of the Jacobian matrix elements
directly from the Y-bus.

ΔP
ΔQ

� �
¼ JPδ 0

0 JQ Vj j

" #
Δδ
Δ Vj j

� �
(26)

or

ΔP½ � ¼ JPδ½ � Δδ½ � (27)

Iteration V2
k½ � V3

k½ �

1 1:0123∠ � 1:5986° 1:03∠ � 0:1891°

2 1:0118∠ � 1:5871° 1:03∠ � 0:2005°

3 1:0118∠ � 1:5871° 1:03∠ � 0:2005°

Table 3.
Newton-Raphson iterative solution.
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ΔQ½ � ¼ JQ Vj j
h i

Δ Vj j½ � (28)

Next step is to obtain JPδ and JQ Vj j from the Y-bus as flowing:

Δδ½ � ¼ � B0½ ��1 ΔP
Vj j

� �
(29)

Δ Vj j½ � ¼ � B
0 0

h i�1 ΔQ
Vj j

� �
(30)

Where the B0½ � and B
0 0
 �

are relevant imaginary part of the Y-bus matrix elements.
B0½ � is related to the buses at which real power is scheduled (δ is unknown) and B

0 0
 �
is

related to the buses at which reactive power is scheduled ( Vj j is unknown).

Bij ¼ Yij
�� �� sin θij

� �
(31)

The fast-decoupled technique requires more iterations to converge compared to
the Newton-Raphson power flow formulation, especially if X=R ratio is not high.
Another advantage of this method is that the Jacobian matrix has constant term
elements which are obtained and inverted once at the beginning of the iterative
process.

Example 4: Fast-decoupled power flow solution.
Solve the power flow problem shown in Figure 3 using fast-decoupled power

flow technique. Perform two iterations.
Solution:
The first step in fast-decoupled power flow technique is obtaining B0½ � and B

0 0
 �
from the Y-bus.

Y ¼
15� j55 �5þ j15 �10þ j40

�5þ j15 20� j65 �15þ j50

�10þ j40 �15þ j50 25� j90

2
664

3
775

Since the unknown voltage angles are δ2 and δ3, elements for B0½ � are obtained
from the Y-bus (intersection of columns numbers 2 & 3 and rows numbers 2 & 3)
as follows:

B0½ � ¼ �65 50

50 �90

� �

Since the unknown voltage magnitude is V2j j at bus 2, B
0 0
 �

contains one element
only (intersection of the column and the row number 2):

B0½ � ¼ �65½ �
The fast-decoupled power flow formulation becomes as follows:

Δδ2
Δδ3

� �
¼ � B0½ ��1

ΔP2

V2j j
ΔP3

V3j j

2
664

3
775 and Δ V2j j½ � ¼ � B

0 0
 ��1 ΔQ2
V2j j
h i

Or
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Δδ2 k½ �

Δδ3 k½ �

" #
¼ � B0½ ��1

ΔP2
k½ �

V2j j k�1½ �

ΔP3
k½ �

V3j j k�1½ �

2
66664

3
77775 and Δ V2j j k½ �

h i
¼ � B

0 0
 ��1 ΔQ2
k½ �

V2j j k�1½ �

h i

Iteration #1: assume V2
0½ � ¼ 1:00∠0° and V3

0½ � ¼ 1:03∠0°.
The calculated quantities:

P2
1½ �

P3
1½ �

Q2
1½ �

2
64

3
75 ¼

�0:5500

0:5665

�1:8000

2
64

3
75

The mismatch power matrix:

ΔP2
1½ �

ΔP3
1½ �

ΔQ2
1½ �

2
64

3
75 ¼

�2

1:5

�0:5

2
64

3
75�

�0:5500

0:5665

�1:8000

2
64

3
75 ¼

�1:4500

0:9335

1:3000

2
64

3
75

Calculation of δ2 and δ3:

Δδ2 1½ �

Δδ3 1½ �

" #
¼ � B0½ ��1

ΔP2
1½ �

V2j j 0½ �

ΔP3
1½ �

V3j j 0½ �

2
66664

3
77775 ¼ �

�65 50

50 �90

" #�1
�1:4500
1:00
0:9335
1:03

2
664

3
775

¼
�0:0254 rad

�0:0041 rad

" #
¼ �1:4569°

�0:2324°

" #

δ2
1½ �

δ3
1½ �

" #
¼ δ2

0½ �

δ3
0½ �

" #
þ Δδ2 1½ �

Δδ3 1½ �

" #
¼ 0

0

� �
þ �1:4569°

�0:2324°

" #
¼ �1:4569°

�0:2324°

" #

Calculation of V2j j:

Δ V2j j 1½ �
h i

¼ � �65½ ��1 1:3
1:00

� �
¼ 0:0200

Δ V2j j 1½ �
h i

¼ V2j j 0½ � þ Δ V2j j 1½ � ¼ 1:00þ 0:0200 ¼ 1:020 pu

Iteration #2: considering V2
1½ � ¼ 1:020∠ � 1:4569° and V3

0½ � ¼ 1:03∠ � 0:2324°.
The calculated quantities:

P2
2½ �

P3
2½ �

Q2
2½ �

2
64

3
75 ¼

�1:6671

1:2133

�0:0239

2
64

3
75

The mismatch power matrix:

ΔP2
2½ �

ΔP3
2½ �

ΔQ2
2½ �

2
64

3
75 ¼

�2

1:5

�0:5

2
64

3
75�

�1:6671

1:2133

�0:0239

2
64

3
75 ¼

�0:3329

0:2867

�0:4761

2
64

3
75
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Calculation of δ2 and δ3:

Δδ2 2½ �

Δδ3 2½ �

" #
¼ � B0½ ��1

ΔP2
2½ �

V2j j 1½ �
ΔP3

2½ �

V3j j 1½ �

2
66664

3
77775 ¼ � �65 50

50 �90

� ��1
�0:3329
1:02

0:2867
1:03

2
664

3
775

Δδ2 2½ �

Δδ3 2½ �

" #
¼ �0:0046 rad

0:0005 rad

� �
¼ �0:0300°

0:0286°

" #

δ2
2½ �

δ3
2½ �

" #
¼ δ2

1½ �

δ3
1½ �

" #
þ Δδ2 2½ �

Δδ3 2½ �

" #
¼ �1:4569°

�0:2324°

" #
þ �0:0300°

0:0286°

" #
¼ �1:7213°

�0:2021°

" #

Calculation of V2j j:

Δ V2j j 2½ �
h i

¼ � �65½ ��1 �0:4761
1:02

� �
¼ �0:0072

V2j j 2½ �
h i

¼ V2j j 1½ � þ Δ V2j j 2½ � ¼ 1:02� 0:0072 ¼ 1:0128 pu

The remaining five iterations are shown in Table 4. It shows that this method
converges slower than Newton-Raphson method.

6. DC power flow technique

DC power is an extension to the Fast-decoupled power flow formulation. In DC
power flow method, the voltage is assumed constant at all buses; therefore,
the Δ Vj j,ΔQð ) equation is neglected. The (Δδ,ΔP) equation can be further simpli-
fied to a linear problem that does not require iterative solution:

� B½ � δ½ � ¼ P½ � (32)

Or

δ½ � ¼ � B½ ��1 P½ � (33)

Example 5: DC power flow.
Solve the power flow problem shown in Figure 3 using the DC power flow

technique.

Iteration V2
k½ � V3

k½ �

1 1:0200∠ � 1:4569° 1:03∠ � 0:2324°

2 1:0128∠ � 1:7213° 1:03∠ � 0:2021°

3 1:0111∠ � 1:6019° 1:03∠ � 0:2029°

4 1:0118∠ � 1:5759° 1:03∠ � 0:2026°

5 1:0119∠ � 1:5877° 1:03∠ � 0:2027°

Table 4.
Fast-decoupled iterative solution.
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Solution:
The first step in DC power flow technique is obtaining B½ � from the Y-bus.

Y ¼
15� j55 �5þ j15 �10þ j40
�5þ j15 20� j65 �15þ j50
�10þ j40 �15þ j50 25� j90

2
64

3
75

For this problem, Since the unknown voltage angles are δ2 and δ3, elements for
B½ � are obtained from the Y-bus as follows:

B½ � ¼ �65 50

50 �90

� �

δ2

δ3

" #
¼ �

�65 50

50 �90

" #�1 P2

P3

" #
¼ �

�65 50

50 �90

" #�1 �2

1:5

" #

¼
�0:0313 rad

�0:0007 rad

" #
¼ �1:7958°

�0:0428°

" #

7. Slack bus power and losses calculations

The main objective of power flow calculations is to determine the voltages
(magnitude and angle) for a given load and generation conditions. Once voltages
are known for all buses, slack bus power, as well as line flows and losses, can be
calculated. The slack bus real and reactive power are calculated using Eqs. (4) and
(5), respectively. Overall system losses are the difference between generation and
load.

SL ¼ SGen � SLoad (34)

Specific branch losses are calculated using branch power flow. For example, the
losses in the line i – j are the algebraic sum of the power flow.

SL ij ¼ Sij þ Sji (35)

Sij and Sji are defined as follows:

Sij ¼ Vi Iij∗ (36)

Sji ¼ Vj Iji∗ (37)

The current between buses Iij is a function of the voltages and the admittance
between Vi and Vj. It is worth noting that Iji ¼ �Iij

Iij ¼ Vi � Vj
� �

yij (38)

Example 6: Slack bus power and losses.
For the 3-bus system shown in Figure 3, the voltages at buses 2 and 3 were

iteratively calculated: V1 ¼ 1:02∠0°, V2 ¼ 1:0118∠ � 1:5871° and
V3 ¼ 1:03∠ � 0:2005°
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a. Calculate the slack bus power.

b.Calculate the total system losses.

c. Calculate individual branch losses.

Solution:
The polar form of the Y-bus is used.

Y ¼
57:01∠ � 74:74° 15:81∠ 108:43° 41:23∠ 104:04°

15:81∠ 108:43° 68:01∠ � 72:90° 52:20∠ 106:70°

41:23∠ 104:04° 52:20∠ 106:70° 93:41∠ � 74:48°

2
64

3
75

a. The slack bus power

The slack bus power can be calculated using real and reactive power equations:

P1 ¼ ∑
n

j¼1
V1j j Vj
�� �� Y1j

�� �� cos θ1j � δ1 þ δj
� �

¼ V1j j2 Y11j j cos θ11ð Þ þ V1j j V2j j Y12j j cos θ12 � δ1 þ δ2ð Þ þ V1j j V3j j Y13j j cos θ13 � δ1 þ δ3ð Þ
¼ 0:5195 pu

Q1 ¼ �∑
n

j¼1
V1j j Vj
�� �� Y1j

�� �� sin θ1j � δ1 þ δj
� �

¼ � V1j j2 Y11j j sin θ11ð Þ � V1j j V2j j Y12j j cos θ12 � δ1 þ δ2ð Þ � V1j j V3j j Y13j j sin θ13 � δ1 þ δ3ð Þ
¼ �0:4572 pu

b.The total system losses

The total real power losses can be calculated using the total net injected real a
power at all buses:

PL ¼ P1 þ P2 þ P3

PL ¼ P1 þ P2 þ P3 ¼ 0:5195� 2þ 1:5 ¼ 0:0195 pu

Similarly, the reactive power losses can be calculated.

QL ¼ Q1 þ Q2 þ Q3

However, Q3 is unknown and can be calculated based on the given bus voltages:

Q3 ¼ �∑
n

j¼1
V3j j Vj
�� �� Y3j

�� �� sin θ3j � δ3 þ δj
� �

¼ � V3j j V1j j Y31j j sin θ31 � δ3 þ δ1ð Þ � V3j j V2j j Y32j j sin θ32 � δ3 þ δ2ð Þ � V3j j2 Y33j j sin θ33ð Þ
¼ 1:0220 pu

Once Q2 is calculated, the total reactive power losses are calculated:

QL ¼ Q1 þQ2 þQ3 ¼ �0:4572� 0:5þ 1:0220 ¼ 0:0648 pu
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c. Branch losses

To calculate the losses in line 1–2, SL 12 is calculated by summing S12 and S21.
These flows are calculated as follows: S12 ¼ V1 I12∗ and S21 ¼ V2 I21∗

I12 ¼ V1 � V2ð Þy12 ¼ 1:02∠0° � 1:0118∠ � 1:5871°
� � �5þ j15ð Þ ¼ 0:4635þ j0:0121 pu

I21 ¼ V2 � V1ð Þy21 ¼ �I12 ¼ �0:4635� j0:0121 pu

S12 ¼ V1 I12∗ ¼ 1:02∠0° � 0:4635� j0:0121ð Þ ¼ 0:4728� j 0:0123 pu

S21 ¼ V2 I21∗ ¼ 1:0118∠ � 1:5871° � �0:4635þ j0:0121ð Þ ¼ �0:4685þ j0:0252 pu

SL 12 ¼ S12 þ S12 ¼ 0:4728� j 0:0123ð Þ þ �0:4685þ j0:0252ð Þ ¼ 0:0043þ j0:0129pu

Similarly, power flow and losses in other branches are calculated.
Line 1–3:

S31 ¼ �0:0456þ j0:4494

S13 ¼ 0:0467 � j 0:4449

SL 13 ¼ 0:0011þ j 0:0045

Line 2–3:

S23 ¼ �1:5315� j0:5252

S32 ¼ 1:5456þ j0:5722

SL 23 ¼ 0:0141þ j 0:0470

Total losses:

SL ¼ SL 13 þ SL 23 þ SL 12 ¼ 0:0195þ j0:0648 pu

The generation and load at different buses is shown in Figure 6.

8. Conclusions

Power flow analysis, or load flow analysis, has a wide range of applications in
power systems operation and planning. This chapter presents an overview of the
power flow problem, its formulation as well as different solution methods. The

Figure 6.
Power flow results.
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power flow model of a power system can be built using the relevant network, load,
and generation data. Outputs of the power flow model include voltages (magnitude
and angles) at different buses. Once nodal voltages are calculated, real and reactive
power flows in different network branches can be calculated. The calculation of
branch power flows enables technical loss calculation in different network
branches, as well as the total system technical losses.

Power flow analysis is performed by solving nodal power balance equations.
Since these equations are nonlinear, iterative techniques such as the Gauss-Seidel,
the Newton-Raphson, and the fast-decoupled power flow methods are commonly
used to solve this problem. In general, the Gauss-Seidel method is simple but
converges slower than the Newton-Raphson method. However, the latter method
required the Jacobian matrix formation of at every iteration. The fast-decoupled
power flow method is a simplified version of the Newton-Raphson method. This
simplification is achieved in two steps: 1) decoupling real and reactive power cal-
culations; 2) obtaining of the Jacobian matrix elements directly from the Y-bus
matrix. The DC power method is an extension to the fast-decoupled power flow
formulation. In DC power flow method, the voltage is assumed constant at all buses
and the problem becomes linear.
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