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Power Flow Analysis

Mohammed Albadi

Abstract

Power flow, or load flow, is widely used in power system operation and
planning. The power flow model of a power system is built using the relevant
network, load, and generation data. Outputs of the power flow model include
voltages at different buses, line flows in the network, and system losses. These
outputs are obtained by solving nodal power balance equations. Since these
equations are nonlinear, iterative techniques such as the Newton-Raphson, the
Gauss-Seidel, and the fast-decoupled methods are commonly used to solve this
problem. The problem is simplified as a linear problem in the DC power flow
technique. This chapter will provide an overview of different techniques used to
solve the power flow problem.

Keywords: power flow, load flow, iterative techniques, Newton-Raphson,
Gauss-Seidel, fast-decoupled, DC power flow

1. Problem formulation

Power flow analysis is a fundamental study discussed in any power system
analysis textbook such as [1-6]. The objective of a power flow study is to calculate
the voltages (magnitude and angle) for a given load, generation, and network
condition. Once voltages are known for all buses, line flows and losses can be
calculated. The starting point of solving power flow problems is to identify the
known and unknown variables in the system. Based on these variables, buses are
classified into three types: slack, generation, and load buses as shown in Table 1.

The slack bus is required to provide the mismatch between scheduled generation
the total system load including losses and total generation. The slack bus is com-
monly considered as the reference bus because both voltage magnitude and angles
are specified; therefore, it is called the swing bus. The rest of generator buses are
called regulated or PV buses because the net real power is specified and voltage
magnitude is regulated. Most of the buses in practical power systems are load buses.
Load buses are called PQ buses because both net real and reactive power loads are
specified.

For PQ buses, both voltage magnitudes and angles are unknown, whereas for PV
buses, only the voltage angle is unknown. As both voltage magnitudes and angles
are specified for the Slack bus, there are no variables that must be solved for. In a
system with z buses and g generators, there are 2(n-1)-(g-1) unknowns. To solve
these unknowns, real and reactive power balance equations are used. To write
these equations, the transmission network is modeled using the admittance matrix
(Y-bus).
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Bus type  Voltage (|V;| £6;) Real power Reactive power

Magnitude Angle Generation Load Net (P;) Generation Load Net (Q ;)

Slack/ Specified ~ Specified Unknown  Specified Unknown Unknown  Specified Unknown
Swing

Generator/ Specified ~ Unknown Specified Specified Specified Unknown  Specified Unknown
Regulated/
PV

Load/PQ Unknown  Unknown Specified Specified Specified Specified Specified Specified

Table 1.
Type of buses in the power flow problem.

2. Admittance matrix and power flow equation

The admittance matrix of a power system is an abstract mathematical model of
the system. It consists of admittance values of both lines and buses. The Y-bus is a
square matrix with dimensions equal to the number of buses. This matrix is sym-
metrical along the diagonal.

Yu - Yy
Y=+t -~ (1)
Ynl Ynn
The values of diagonal elements (Y};) are equal to the sum of the admittances
connected to bus i. The off-diagonal elements (Y;;) are equal to the negative of the

admittance connecting the two buses i and j. It is worth noting that with large
systems, Y-bus is a sparse matrix.

n

Yii= Zyij (2)
j=0
j#i

Yj=Yi= i (3)

The net injected power at any bus can be calculated using the bus voltage (V;),
neighboring bus voltages (V;), and admittances between the bus and its
neighboring buses (y;) as shown in Figure 1.

I = Viyo + (Vi= Vi + (Vi = Valy + oo+ (Vi = Vj))’ij

Rearranging the elements as a function of voltages, the current equation
becomes as follows:

Ii=V; (J’io TVt + - "‘J’,-j) =V — Vo — . — Vi,
Li=Vi ¥ y;— Xy;Vi=ViVi+ X Y,V
j=0 j=1 j=1
j#i j#i jAi

The power equation at any bus can be written as follows:

Si =P +jQ; = ViI;*
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Figure 1.
Net injected power.
Or

Si* =P —jQ; =Vl

Substituting the expression on the current in S;* equation results in the following
formula:

Si* = Vi* Vl' Z yij_ Zyy‘/] = Vi* VZ'Y,'Z‘—F Z Yl]‘/]
j=0 j=1 j=1
j#i j#i j#i

Real and reactive power can be calculated from the following equations:

P;=Re{ V;*| V; Zyl]— Zyl]‘/] =Red V;*| V;Y; + Z Y,]V]
=0 j=1 j=1
j#i j#i j#i
Qi:flm V,'* V; Zyyf Eyz]VJ = —Im Vi* ViYi+ z Y,]V]
j=0 j=1 j=1
j#i j#i j#i
Or
n
Po= BV, or 0y -5+ g
j=1
n
Q; = — X |Vil|Vj[[Y|sin (05 — 6; + &) (5)
j=1

And the current (I;) can be written as a function of the power as follows:

P —jQ,
TJ*Q’:Vz' Xy~ XyVi=Vi¥u+ X Y4V (6)
i j=0 j=1 j=1
i A j#i
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Generator 1 Generator 2
z=jl pu z=j0.8 pu
Line 12
z=j0.25 pu
Bus 1 Bus 2
Line 13 Line 24
z=j0.4 pu z=j0.4 pu
z=70.5 pu
Figure 2.
Impedance diagram.
Generator 1 Generator 2
Yie=J1 pu Vor=71.25 p
Line 2
vI2=-j4 pu
Bus 1 Bus 2
Line 13 Line 24
y13=-j2.5pu y24:_j2-5pu
Bus 3 [ 1 Bus 4
Line 34
Y34=42 pu

Figure 3.
Admittance diagram.

Example 1: Admittance matrix formation.

For the below 4-bus system in Figure 2, the admittance matrix is constructed by
converting all impedances in the system into admittances as shown in Figure 3.
Then, diagonal and off-diagonal elements are calculated using Egs. (2) and (3).

—7.5  j4 j2.5 0 752 —90° 4,90° 25290 0
v — j4 =775 0 25| 4,90 7752 —-90° 0 25290
j2.5 0 —j45 j2 25290 0 45, -90" 2290
0 25 j2 —j45 0 25290 2,90 452 -90°

3. Gauss-Seidel technique

The Gauss-Seidel (GS) method, also known as the method of successive dis-
placement, is the simplest iterative technique used to solve power flow problems. In
general, GS method follows the following iterative steps to reach the solution for the
function f(x) = 0:

* Rearrange the function into the form x = g(x) to calculate the unknown
variable.
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¢ Calculate the value g(x!%) based on initial estimates x/%.
* Calculate the improved value x = g(x[%).

* Continue solving for improved values until the solution is within acceptable
limits|x* 1 — x| < e.

The rate of convergence can be improved using acceleration factors by modify-
ing the step size a.

et = a[g(x[kﬂ]) _ x[k]] ?)

In the context of a power flow problem, the unknown variables are voltages at
all buses, but the slack. Both voltage magnitudes and angles are unknown for
load buses, whereas voltage angles are unknown for regulated/generation buses.

The voltage V; at bus i can be calculated using either equations:

1 Pisch _ ]Q sch

V= e+ 29,V (8)

2]' — 175 < Vi 7Y

j#i
1 Pisch _ ]Q sch

Vi= | —777 — Y;iV; 9

Yii Vi’ j§1 7

j#i

where Vi is the admittance between buses i and j, Y; is the Y-bus element, Py

the net scheduled injected real power, Q /" is the net scheduled injected reactive

power, and V;* is the conjugate of V;. The net injected quantities are the sum of the
generation minus load. Typically, the initial estimates of V; =120’
The iterative voltage equation is as follows:

1 P,Jch o Q sch
Jet1] & ¢ Ji _ 7.1k or k+1]
Vit = Y; < v 2 4iYiVj ) (10)
Or
1 P‘SCh o Q sch
vl — i ]* iy Z;v-'V'[k or k+1] (11)
l Zj-0J; Vi jz

Both real and reactive powers are scheduled for the load buses, and Eq. 6 is used
to determine both voltage magnitudes and angles (|V;| 2 5) for every iteration
(V; [k+1]).

For regulated buses, only real power is scheduled. Therefore, net injected

[k+1

reactive power is calculated based on the iterative voltages (V; ) using either

equations:

«[k z z
QM = —mm{ v | v DITED) y Vit ok (12)
j= j=

j#i
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Q= = B VIV sin (0 -6+ 44)  a3)

j=1

where |V;| and |V;}| are the magnitudes of the voltage at buses i and j, respec-
tively. 6; and &; are the associated angles. y;; is the admittance between buses i and ;.

|Y;| is the magnitude of the Y-bus element between the two buses; and 0; is the
corresponding angle.

Since the voltage magnitude (|V;]) is specified at regulated/PV buses, Eqgs. (8) or
(9) will be used to determine the voltage angles only. To achieve this, two options
can be used:

1. When using the polar form (|V;| £6;), discard the iterative voltage magnitude
and keep the iterative angle.

2. When using the rectangular form (Re; +j Im;), discard the real part (Re;) and
keep the imaginary part (Im;) of the iterative voltage. The new real part
(Re;”") can be calculated from the specified magnitude (|V;|) and the iterative

imaginary part.
Re/™ = \/|Vi|* — Im;? (14)

The iterative process stops when the voltage improvement reaches acceptable
limits: |V1- k1] _ vy, [k]| <e.

Example 2: Gauss-Seidel power flow solution.

Figure 4 below shows a 3-bus system. Perform 2 iterations to obtain the voltage
magnitude and angles at buses 2 and 3. Impedances are given on 100 MVA base.

Solution:

The admittance values of the transmission network and the injected power in
per unit at buses 2 and 3 are calculated as shown in Figure 5. Note that net injected
power at the load bus is negative while that of the PV bus is positive. Per units
values are obtained by diving actual values (MW and MVAR) by the base (100
MVA).

Iteration #1: assume Vz[o] =1.0020" and V3[0] =1.03£0".

1 stch o jstch 0
VZ[I] = ¥ + Vi + Vg[ ]
Y tIn Vv, & 723
1 ~24j0.5 ‘ . , .
= : - =+ (5—715)1.0220 + (15-;50)1.00£0
(5—415) + (15 — 50) (1.0040 (5=j15) (15 -550) )

Vol =1.0120 - j0.0260 = 1.0123 £ — 1.4717

As Qs is not given, it is calculated based on the latest available information using
Egs. (12) or (13).

4 n

QY = —Im /AR AU .203’31‘ _ ,213’31‘/f[k or k-+1]
j= j=
j#i

Q" = —Im{V3*[O] (V3[0] (31 +y3) — {3’31‘/1 +J’32V2[1]D}



Power Flow Analysis
DOI: http://dx.doi.org/10.5772 /intechopen.83374

Slack bus PV Bus
1.021.0° |V3|=1.03
P;=150M
Line 13
/ 13=0.0059 + j0.0235 pu ‘l'
3

Line 12 Line 23
z;=0.02 + 2,:7=0.0055

Jj0.06 pu 2 +j0.0183 pu

| |
Load bus

200MW + 50MVAR

Figure 4.
3-Bus power system.

Slack bus PV Bus

1.021_0° |Vs5|=1.03

P;=1.5pu
] v;3=10—740 pu \lr
3

y1=5-j15 pu Yo35=15 —j50 pu
2
| |
Load bus
8§,="-2-j0.5 pu

Figure 5.
Power flow input data.

Q" = ~Im{1.032£0°(1.03 £0°(10 —j40 + 15— j50 ) — [(10 —j40)1.0220"
+(15 — j50)(1.0120 — j0.0260)])}
= —Im{1.7201 —j0.9373} = 0.9373 pu

Now that Q; 1 is calculated, the voltage V3 " can be calculated:

1 Psxch _]Q3[1]
Vsl = =y Vi + 5 Vol
Yo +9m AU I3 V32

1 15 -j0.9373 _ : . .
= 75 4 (10 - j40)1.02.20° + (15 — j50)(1.0120 — j0.0260
1ij40+157j50< Lo3zor (1074010240 (15 =550)( g )>

=1.0294 —;0.0022 pu

Since the magnitude of V7 is specified, we retain the imaginary part of V3 and
calculate the real part using Eq. (14).

Re"™” = /1.03%* — 0.0022> = 1.03 pu
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Therefore,
Vsl = V3 = 1.03 - j0.0022 = 1.03 2 — 0.1226 pu

Iteration #2: considering V5! = 1.0120 —0.0260 and V3! = 1.03 —0.0022.

v a2 1 stch _ jstch
Y tIn v,

B 1 ~2+j05
~ (5—/15) + (15—550) \1.0120 — j0.0260

=1.0115 - 0.0270 = 1.0119 « — 1.5273’

+91 V1 Jr3’23‘/3[1]>

+ (5 —415)1.02 20" + (15 — j50)(1.03 —j0.0022)> v,

Q5? calculation is given below:

Q7 = —Im{me <V3m (V31 +93) — LV31V1 +)’32V2[2]D}

Q5% = —Im{(1.03 —j0.0022)((1.03 — j0.0022)(10 — j40 + 15 — 550 )
—[(10 —j40)1.02£0° + (15 —450)(1.0115 —j 0.0270)]) }
=1.0000 pu

The voltage V3 is calculated as follows:

V5l

1 ( P3St‘h _ ]Q?, 2]

2
:y31 T V3[1]* +y3 V1 +)’32V2[ ])

1 151 , . , :
= -+ (10 — j40)1.02 20" + (15 —j50)(1.0115 —j 0.0270

10 —j40 + 15550 <1.0340 +(10-740) +(15-5730)(1.0115 = 0.027 ))
= 1.0298 —j0.0030 pu

Only imaginary value of the calculated V3 is retained and the real part is
calculated based on the retained imaginary values and the scheduled |V3].

Re;" = v/1.03* — 0.0030? = 1.03 pu
Therefore,

V32 =1.03 -;0.003 = 1.03 2 — 0.1644" pu

The iterative solution is presented in Table 2.

Itervation v, v,

1 1.0123 £ — 1.4717° 1.032 —0.1226°
2 1.0119 « — 1.5273° 1.03 2 — 0.1644
3 1.0119 £ — 1.5598" 1.032 —0.1846°
4 1.0119 « — 1.5750° 1.032 — 0.1941
5 1.0118 £ — 1.5823" 1.032 —0.1986
6 1.0118 « — 1.5857 1.032 — 0.2008°

Table 2.

Gauss-Seidel iterative solution.
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4. Newton-Raphson technique
The Newton-Raphson (N-R) technique, also known as the method of successive

approximation, is based on Taylor’s expansion approximation. The unknown x in
the function f (x) = ¢ can be determined using Taylor’s expansion approximation.

Starting with an initial estimate x99 the deviation from the correct solution is Ax[0l,
Applying Taylor’s expansion, the function can be written as follows:

f(x[o] + Ax[°]> —c (15)
f(x[o] + Ax[o]) =f<x[o]> +f (x[0]>Ax[0] + %f” <x[0]>Ax[0]2 +%fm (x[o]>Ax[0]3 +..=c (16)

Assuming Ax/% is small, the higher order terms (1f (x[o])Ax[o]z—l—

%fm (x[o])Ax[O]3 + ...) are neglected and the function can be approximated by the
first two terms.

f(xm n Axm) zf(x[m) +f (xm)Ax[OJ 0 (17)

Based on x[9, the deviation from the correct solution can be iteratively
calculated.

Axl0) — ¢ _f(x[o]) _ Af(x[ol)

F o) 7 .
The improved solution can be calculated iteratively.
< — 0 | Axl0] (19)

The iterative process is stopped when the mismatch between scheduled and
calculated value (Af*) = ¢ — £ (x¥))) is within acceptable limits‘Af [k]‘ <e.

In the context of power flow problems, unknown variables x are both voltage
magnitude and angles (|V;| £ §;) at load buses, as well as voltage angles (§;) at
regulated buses. The scheduled (specified) quantities (¢) are both net real (P

and reactive power (jQ /") values at load buses and real power at generation buses
as shown in Table 1. The iterative values of reactive power are calculated using

Egs. (12) or (13). Similarly, the iterative values of real power are calculated using
Egs. (20) or (21):

Pi[kJrl] — Re Vl*[k] Vl[k] Zoyl] o Zlyl]‘/][k or k+1] (20)
J= j=
j#i
i k or k
P = 3 (il v v cos (05— 5%+ 61 (1)
j=1

The Newton-Raphson power flow formulation can be written as follows:

k] P sch
’ , and Z sch |
Q;

Vil

P'ﬁh

i

Q sch
i

AP;¥
AQ;"

4[k]
o = .
Q"

» €=

s =
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When more variables are used, the derivative f” is replaced by partial derivatives
with respect to different variables. The partial derivative matrix is called the Jaco-
bian matrix.

oP;  dP;

Fo 06, 0|V _ Jes  Jpv 22)
0Q; dQ; Jas Jav
95, |V

Therefore, the Newton-Raphson power flow formulation can be solved using the
below equation:

B op, K]

Pisch lpl[k] ‘| - lAPl[k] B |:g—§l 0(|)€i| Aéz[k] 23)
sch | o K| K| T e aq, K |kl

Qi Q; AQ; 25 T | AV

To solve for the deviation, the inverse of the Jacobian matrix is required for
every iteration.

-1

Ak ] []p,s[k] Tep ¥ APl-[k]] o)
ol =
AV U Jou ] [aQH
Then, new values are calculated:
51 ;1] A5 ¥
vil | Lv ] [ )

The iterative process stops when the mismatch between calculated and sched-

AP;¥

k]
1

uled quantities is within

Example 3: Newton-Raphson power flow solution.

Solve the power flow problem shown in Figure 3 using the Newton-Raphson
technique. Perform two iterations.

Solution:

The first step in Newton-Raphson Power Flow technique is building Y-bus using
Egs. (2) and (3).

15455  —5+j15 —10+;j40
Y=| -5+j15 20-j65 —15+;50

| —10 +740 —15+j50 25—;90
[57.012 —74.74° 15.81,108.43°  41.23 2104.04°

= | 15.812108.43° 68.012 —7290° 52.20,106.70°

| 41.232104.04° 52.20.2106.70° 93.412 —74.48

Since the unknown variables are &,, 83, and |V,|; the scheduled quantities are
Py, Ps*" and Q,*", the following problem formulation can be written.

10
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ap, k1 op Ikl op, [K]
P, P, 06, 055 o[V,] AS, ¥
sch k| | opslkl opskl  apy [k &
P — IR =R As;"
Q"] QM .k ok ag, ¥ | LAV,
95, 053 9|V

To calculate the Jacobian matrix elements, P,, P3, and Q, equations are obtained
using (4) and (5).

n
Py = ¥ |Val|Vj|[ Y] cos (0 — 62 + &)
=)

= |Va||V1|[Yau| cos (621 — 82 + 81) + [Val*|Y 2 cos (022) + [V |V3]| V3] cos (623 — 8, + 63)
oP . j
?52 = [Va[Vi[[Yau|sin (021 — 62 + 61) + |V2|[ V3| Vo3| sin (023 — 62 + 63)
2

oP,

= —|V2||V3|[Ya3|sin (623 — 62 + 33)
355

oP
()‘—Vz| = |V1||Y21‘COS (921 — 52 + 51) + 2|V2HY22|COS (922) + |V3||Y23|COS (923 — 52 + 53)
2

P3 = zl‘v?’”‘/]HY}]}COS (93] — 53 +5J)
j=

= ‘V3||V1||Y31| cos (631 — 53 + 51) + |V3||V2HY32| cos (932 — 53 + 52) + ‘V3|2|Y33|COS (033)

oP .
0—532—‘V2||V3||Y32‘SZ71(932—53+52)
0P3 . .
o — V3| V|| ¥31]5tm (031 — 03 1 3|1 V2l ¥32|5tn (032 — 03 2
%, [V3|[Vil|[Y3i]sin (031 — 03 + 61) + |V3||V2|[Y 32| sim (032 — 65 + 62)
oP
a|_V32| = |V3||Y32|COS (632 — 03 +52)

Qs = = EIVal|V ] sin 05— 2+ )

= *|Vz||V1||Y21‘Si7L (021 - 52 + 51) — |V2|2|Y22|:in (922) — |V2||V3|‘Y23|Sl7l (923 — 52 + 53)

d
s — [VallVil [Varlcos (6 — 32 + 80) + [V [Vl Vas] s (625 — 62 + 33
2
0
& — —‘V2||V3||Y23‘ cos (923 - 52 + 53)
965
d . ; /
6|33| = —[Val[Yar|sin (62 — 62 + 61) — 2|Va[Yaa| sin (622) — [V3][Y 23] sim (623 — 62 + 63)
2

Iteration #1: assume V5% =1.00 20" and V5% = 1.03 20°".

[ P, —0.5500
The calculated quantities: | P;! | = | 0.5665
| Q, —1.8000.
" prch S
The scheduled quantities: | P | = | 1.5
Q" -05

11
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AP,IU -2 —0.5500 —1.4500
The mismatch power matrix: | AP;Y | = | 1.5 | — | 0.5665 | = | 0.9335
AQ," -0.5 —1.8000 1.3000
The Jacobian matrix (J) elements for iteration # 1 are as follows:
668 —51.5 19.45
J=| -515 9352 -15.45
~2055 1545 632
Newton-Raphson formulation is as follows:
~1.4500 668 —51.5 19.45 A&
09335 | = | —51.5 9352 —1545|| As
13000 —20.55 1545 632 | | AV,
AS,1 66.8 —51.5 19.45 ] '[—1.4500 —0.0279 rad
A5 | = | —51.5 9352 —15.45 0.9335 | = | —0.0033 rad
AV, —20.55 1545 632 1.3000 0.0123 pu
51 5,0 A5,
53 1| = 53 o | + ASs 1
|V2\[1] |V2|[0] A|V2\[l]
5,11 0 —0.0279 rad —0.0279 rad ~1.5986"
&M | =1 0 | +|-0.0033rad | = | —0.0033rad | = | —0.1891
[V, 1.00 0.0123 pu 1.0123 pu 1.0123 pu

Iteration #2: Consider V' = 1.0123 ~ — 1.5986 and V5! =1.03 2 — 0.1891".

p,? —2.0109
The calculated quantities: | P52 | = | 1.5202
Q,? —0.4621 |
AP, -2 —2.0109
The mismatch power matrix: | AP;? | = | 1.5 | — | 15202 | =
AQ,” —0.5 | —0.4621

The Jacobian matrix elements are calculated as follows:

67.07 —51.74 18.26
J=1-5250 94.49 —-14.18

—22.51 1691 65.34
-1

As,” 67.07 —51.74 18.26 0.0109
AS | = | -5250 94.49 1418 —0.0202
A|V,|? ~2251 1691 6534 —0.0379
As,2 0.1272 x 1072 rad
A5;2 | = | —0.2154 x 1073 rad

ak ~0.4810 x 103 pu

12

0.0109
—0.0202
—0.0379
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5,7 5" A5,
52 =1 &5 | +] a5
|V2|[2] |V2|[1] A|V2|[2]
5,2 —0.0279 rad 0.1272 x 1073 rad
8 | = | —-0.00337ad | + | —0.2154 x 10> rad
V|2 1.0123 pu —0.4810 x 1072 pu
5, —0.0277 rad ~1.5871°
88 | ==|-0.00357ad | = | —0.2005°
1V, |2 1.0118pu 1.0118 pu

It is worth noting that the mismatch between calculated and scheduled quanti-
ties diminishes very quickly.

AP, U —1.4500 AP, 0.0109
AP | =1 09335 |and| AP;@ | = | —0.0202
AQ,Y 1.3000 AQ,"” —0.0379

The iterative solution is presented in Table 3.

Iteration v, V5

1 1.0123 « — 1.5986° 1.032 — 0.1891°

2 1.0118 2 — 1.5871° 1.032 — 0.2005

3 1.0118 2 —1.5871° 1.03 2 — 0.2005
Table 3.

Newton-Raphson iterative solution.

5. Fast-decoupled technique

In high voltage transmission systems, the voltage angles between adjacent buses
are relatively small. In addition, X /R ratio is high. These two properties result in a
strong coupling between real power and voltage angle and between reactive power
and voltage magnitude. In contrary, the coupling between real power and voltage
magnitude, as well as reactive power and voltage angle, is weak. Considering adja-
cent buses, real power flows from the bus with a higher voltage angle to the bus
with a lower voltage angle. Similarly, reactive power flows from the bus with a
higher voltage magnitude to the bus with a lower voltage magnitude.

Fast-decoupled power flow technique includes two steps: (1) decoupling real
and reactive power calculations; (2) obtaining of the Jacobian matrix elements

directly from the Y-bus.
{ AP } _|Jes O
AQl | 0 gy

[AP] = [Jp5][A0] (27)

AS %
{Awd (26)

or

13
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18Q] = o141V (28)
Next step is to obtain Jp; and J|y| from the Y-bus as flowing:
_1|AP
As) = —[B]! [—} 29
20 = —B) ' 29)
]
A[v]) = - |B] [W] (30)

Where the [B'] and [B”} are relevant imaginary part of the Y-bus matrix elements.

[B'] is related to the buses at which real power is scheduled (§ is unknown) and [B”] is
related to the buses at which reactive power is scheduled (|V] is unknown).

Bj = |Yy|sin (65) (31)

The fast-decoupled technique requires more iterations to converge compared to
the Newton-Raphson power flow formulation, especially if X/R ratio is not high.
Another advantage of this method is that the Jacobian matrix has constant term
elements which are obtained and inverted once at the beginning of the iterative
process.

Example 4: Fast-decoupled power flow solution.

Solve the power flow problem shown in Figure 3 using fast-decoupled power
flow technique. Perform two iterations.

Solution:

The first step in fast-decoupled power flow technique is obtaining [B'] and [B']
from the Y-bus.

15-755  —5+j15 —10 +;40
Y=| -5+j15 20-j65 —15+;50
—10 +j40 —15+750 25 —;90

Since the unknown voltage angles are &, and &3, elements for [B'] are obtained
from the Y-bus (intersection of columns numbers 2 & 3 and rows numbers 2 & 3)
as follows:

B - {—65 50 }

50 -90

Since the unknown voltage magnitude is | V| at bus 2, [B”} contains one element
only (intersection of the column and the row number 2):

[B'] = [-65]

The fast-decoupled power flow formulation becomes as follows:

AP,
A62 B W o
[A53] = —[B’] 1 AP, and[A|V,]] = —[B ] [%}
V3]
Or
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Apzlk]
As," ot | [V Ik] =11 aQ,"
[Aég[k] =B apy and AVl ] =~ 8][4
v+

Iteration #1: assume V5% =1.00 20" and V3[°] =1.03£0".
The calculated quantities:

Pl —0.5500
p | = | 0.5665
Q,M —1.8000

The mismatch power matrix:

AP, ) —0.5500 —1.4500
AP | = | 15 | — | 05665 | = | 0.9335
AQ,M -0.5 ~1.8000 1.3000

Calculation of 5, and 63:

1
&2[01 [ ~14500
A5 :7[B’]71 |V2|H o —65 50 1.00
A53[11 Ap3[1] 50 —90 0.9335
|V3|[°} 1.03
—0.0254 rad —1.4569°
| —0.00417ad | | —0.2324°
S| |8 A8, _[0]+ ~1.4569" | | —1.4569°
55 PAY A3 0 —0.2324 —0.2324

Calculation of |V,|:

1
[A|V2\[lq = —[-65" [ﬁ] = 0.0200

{A|V2|[ﬂ = V2] + A[V,)™ = 1.00 + 0.0200 = 1.020 pu

Iteration #2: considering V5! = 1.020 2 — 1.4569" and V5% = 1.03 « — 0.2324".
The calculated quantities:

p,? ~1.6671
PP =1 12133
Q,? —0.0239
The mismatch power matrix:
AP, -2 ~-1.6671 —-0.3329
AP | =] 15 | — | 12133 | = | 0.2867

AQ,” -0.5 —0.0239 —0.4761

15
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Calculation of 6, and 63:

2
AP, —0.3329
AP | B Vo™ [-65 50 17 T102
As2 | AP2 |~ [ 50 —90 0.2867
s {—0.0046Vﬂd:| | —0.0300°
As;2 | | 0.00057ad | | 0.0286°
S &M AP | —1.4569" N —0.0300" | | —1.7213°
552 531 A5 —0.2324 0.0286 —0.2021
Calculation of |V,|:
_1[—0.4761
2] _ __g5? ] I
{A|V2| } [~65] [ L2 ] 0.0072

{|V2|[2q = V3| 4+ AV, = 1.02 - 0.0072 = 1.0128 pu

The remaining five iterations are shown in Table 4. It shows that this method
converges slower than Newton-Raphson method.

Iteration Vv, v,

1 1.0200 £ — 1.4569" 1.032 — 02324

2 1.0128 £« — 1.7213° 1.032 —0.2021°

3 1.0111 2 — 1.6019’ 1.03 2 — 0.2029°

4 1.0118 « — 1.5759" 1.03 2 — 0.2026

5 1.0119 £« — 1.5877° 1.032 — 0.2027°
Table 4.

Fast-decoupled itevative solution.

6. DC power flow technique

DC power is an extension to the Fast-decoupled power flow formulation. In DC
power flow method, the voltage is assumed constant at all buses; therefore,
the(A|V], AQ) equation is neglected. The (A8, AP) equation can be further simpli-
fied to a linear problem that does not require iterative solution:

—[Bl[o] = [P] (32)
Or
(6] = —[B]'[P] (33)

Example 5: DC power flow.
Solve the power flow problem shown in Figure 3 using the DC power flow
technique.
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Solution:
The first step in DC power flow technique is obtaining [B] from the Y-bus.

15-755  —5+j15 —10 +;40
Y=| -5+j15 20-j65 —15+;50
~10 +j40 —15+750 25 -;90

For this problem, Since the unknown voltage angles are 5, and &3, elements for
[B] are obtained from the Y-bus as follows:

o= 50 5]

& 65 50 ] '[P, 65 50 1 '[-2
[53] N _[ 50 —90 [Pj :_[ 50 —901 [1.5]
—0.0313 rad —~1.7958"
- l—0.0007md] - l—o.o428°]

7. Slack bus power and losses calculations

The main objective of power flow calculations is to determine the voltages
(magnitude and angle) for a given load and generation conditions. Once voltages
are known for all buses, slack bus power, as well as line flows and losses, can be
calculated. The slack bus real and reactive power are calculated using Eqs. (4) and
(5), respectively. Overall system losses are the difference between generation and
load.

SL = SGen - SLoad (34)

Specific branch losses are calculated using branch power flow. For example, the
losses in the line i - j are the algebraic sum of the power flow.

St i = Sij + Sji (35)

Sij and Sj; are defined as follows:

Sij = Vi I* (36)

Sji =V, I;* (37)

The current between buses Ij; is a function of the voltages and the admittance
between V; and V;. It is worth noting that [;; = —I;;

Iy = (Vi— )y, (38)

Example 6: Slack bus power and losses.

For the 3-bus system shown in Figure 3, the voltages at buses 2 and 3 were
iteratively calculated: V; =1.02 2 0, V,=1.0118 « — 1.5871" and
V3=1.032 —0.2005

17
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a. Calculate the slack bus power.
b.Calculate the total system losses.
c. Calculate individual branch losses.

Solution:
The polar form of the Y-bus is used.

57.012 —74.74" 15.81.,108.43°  41.23 2104.04
Y= 1581,108.43 68.012 —72.90° 52.20.,106.70°
4123 2,104.04° 52.202106.70° 93.41., — 74.48

a. The slack bus power

The slack bus power can be calculated using real and reactive power equations:
P = X|Val[V[| Yy cos (6 — 61 + 5)
j=1

= |V1|2‘Y11‘COS (911) + |V1||V2HY12|COS (912 — 01 +52) + |V1HV3||Y13|L’05 (013 — 01+ 53)
= 0.5195 pu

n
Q = ~EIVil[v¥ssin (05— 3+ 5)

—|V1|2‘Y11|Si1’l (011) — ‘V1HV2||Y12‘ cos (912 — 51 + 52) - |V1HV3HY13|Si1’l ((913 - 51 + 53)
= —0.4572 pu

b.The total system losses

The total real power losses can be calculated using the total net injected real a

power at all buses:

Py =P1+P,+P3
Py, = P; + P, + P3 = 0.5195 -2 + 1.5 = 0.0195 pu
Similarly, the reactive power losses can be calculated.
Q=Q+Q+Qs

However, Q is unknown and can be calculated based on the given bus voltages:

n
Q= _‘§|V3||W}|Y3j|5in (65 — 83 +9)
Fs

18

—\V3|\V1\|Y31|sin (931 — 03+ 51) — ‘V3|‘V2||Y32‘Si7l (932 — 03+ 52) — ‘V3‘2|Y33‘Sl'7l (933)
=1.0220 pu

Once Q, is calculated, the total reactive power losses are calculated:

Q. =Q;+Q,+Q3=-0.4572 - 0.5+ 1.0220 = 0.0648 pu
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Slack Bus
Vi=1.02L0° PV Bus
S;=0.5195-0.4572 pu — N V3=1.031_-0.2005°
T §15=0.0467 5 0.4449 pu D Si541022p
3
S;,=0.4728 - S3,=1.5456 +
J0.0123 pu J0.5722 pu
2
Load bus
V,=1.01181_-1.5871°
Sy=-2-0.5 pu

Figure 6.
Power flow results.

c. Branch losses

To calculate the losses in line 1-2, Sy, 1, is calculated by summing S3, and Sy.
These flows are calculated as follows: S1, = V1 I1x* and Sy = V, I1*

Ip = (Vi — Va)y, = (1.0220° — 1.0118 2 — 1.5871°) (5 +15) = 0.4635 +j0.0121 pu
Iy = (Vo — Vh)y,, = —I1a = —0.4635 —j0.0121 pu
Sp=ViIp* =1.022£0° x (0.4635—;0.0121) = 0.4728 —j 0.0123 pu
Sy = Vo In* = 1.0118 2 — 1.5871° x (—0.4635 +j0.0121) = —0.4685 + j0.0252 pu
St 12 = Sip + Sz = (0.4728 —j 0.0123 ) + (—0.4685 +;0.0252) = 0.0043 +;0.0129pu

Similarly, power flow and losses in other branches are calculated.
Line 1-3:

S31 = —0.0456 + j0.4494
S13 = 0.0467 —j 0.4449
S.13 = 0.0011 4 0.0045

Line 2-3:

Sy3 = —1.5315 — j0.5252
Sz, = 1.5456 +;0.5722
S 23 = 0.0141 + 0.0470

Total losses:
St =Sr 13+ 8123+ S 12 =0.0195 +j0.0648pu

The generation and load at different buses is shown in Figure 6.

8. Conclusions
Power flow analysis, or load flow analysis, has a wide range of applications in

power systems operation and planning. This chapter presents an overview of the
power flow problem, its formulation as well as different solution methods. The
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power flow model of a power system can be built using the relevant network, load,
and generation data. Outputs of the power flow model include voltages (magnitude
and angles) at different buses. Once nodal voltages are calculated, real and reactive
power flows in different network branches can be calculated. The calculation of
branch power flows enables technical loss calculation in different network
branches, as well as the total system technical losses.

Power flow analysis is performed by solving nodal power balance equations.
Since these equations are nonlinear, iterative techniques such as the Gauss-Seidel,
the Newton-Raphson, and the fast-decoupled power flow methods are commonly
used to solve this problem. In general, the Gauss-Seidel method is simple but
converges slower than the Newton-Raphson method. However, the latter method
required the Jacobian matrix formation of at every iteration. The fast-decoupled
power flow method is a simplified version of the Newton-Raphson method. This
simplification is achieved in two steps: 1) decoupling real and reactive power cal-
culations; 2) obtaining of the Jacobian matrix elements directly from the Y-bus
matrix. The DC power method is an extension to the fast-decoupled power flow
formulation. In DC power flow method, the voltage is assumed constant at all buses
and the problem becomes linear.
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