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1. Introduction  

Recent advances in neuro-imaging and stereotactic and computer technology gave birth to 
minimally invasive keyhole surgery to the extent that the scale of neurosurgical procedures, 
demanded by patients, will soon be so small that it will not be within the capability of the 
most gifted and skilled neurosurgeons of today. Neurosurgical robotics is the natural 
progression in this field. Furthermore, the economic advantages, increased precision and 
improved quality in industrial applications of robotics have stimulated robotic applications 
in neurosurgery. These neurosurgical robots have significant manipulative advantages over 
neurosurgeons; neuro-robots are reliable to perform the same procedure over and over, 
again and again without tiresomeness, variation or boredom. They possess near absolute 
geometric accuracy and are impervious to biohazards and hostile environments and can 
work through very narrow and long surgical corridors most suited for surgery on the brain, 
which is an organ uniquely suited for robotic applications; it is symmetrically confined 
within a rigid container, the skull, and the brain can be easily damaged by even the smallest 
excursions of surgical instruments. Robots can also see around corners that are beyond the 
line of sight of the neurosurgeons during operations and in a way, robots extend the visual 
and manual dexterity of neurosurgeons beyond their limits.   
Several ergometric studies during surgery were reported (Berguer, 1999) that have 
demonstrated substantial muscle fatigue occurring during procedures related to procedure 
duration and the angle of surgical instruments. Over the last two decades several systems 
were developed for use in neurosurgery; some of these neuro-robots have been used in 
clinical practice while others have not been near a patient because of safety and ethical 
concerns. Among those robots which were used included the PUMA 200 (Kwoh et al., 1985 
and Drake et al., 1991),  the Minerva robot from the University of Lausanne in Swtizerland 
(Burckhart et al., 1995),  the NeuroMate from Integrated Surgical Systems (Benabid et al., 
1987 & 1998), the MRI compatible robot developed in Japan (Masamune et al., 1995), the 
Evolution 1 (Universal Robotics Systems, Schwerin, Germany), the CyberKnife (Accuracy 
Inc, Sunnyvale, CA), the RoboSim neurosurgery simulator (Radstzky & Radolph,  2001), the 
neuroArm (Louw et al., 2004), the PathFinder (Eljamel, 2006) and lastly the SpineAssist 
(Shoham et al., 2007). Robots were also integrated within current neurosurgical tools such as 
the microscope, the SurgiScope stereotactic system (Elkta AB, Stockholm, Sweeden) and the 
MKM microscope system (Carl Zeiss Inc, Oberkochen, Germany). O
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2. History of Robotics in Neurosurgery 

Neurosurgical robotics had a long gestation period spanning over two decades. The main 
reason for this long period of development is the stringent regulation of health and safety. In 
contrast, industrial robots leaped into production very quickly because they can be isolated 
from human contact in a cage or a highly secure environment; neurosurgical robots on the 
other hand are designed to interact with surgeons and perform or assist the surgeon to 
perform complex surgical procedures on alive but anaesthetised patients. Hence, the 
evolution of neurosurgical robotics was slow as follows. 

• The Unimation PUMA 200 (Advances Research & Robotics, Oxford, CT): 
A standard industrial robot (PUMA 200) was used to hold a stereotactic biopsy needle in a 
52-year-old man on a CT scanner table, the target was identified on the CT images and the 
robot was used to orient a guide tube through which a needle was inserted (Kwoh et al., 
1985). Localization of the target was achieved by using the Brown-Roberts-Wells (BRW) 
stereotactic frame localization plates and the head was secured to the CT scanner table using 
the stereotactic frame reference ring. It is a programmable, computer-controlled, versatile 
robot that was designed to perform highly accurate, delicate work, yet it was rigid enough 
to provide stable trajectory. It was a safe robot, designed to work with humans and its joints 
were equipped with spring-applied, solenoid-released brakes that automatically clamped 
should any mechanical or electrical defect occur. It has 6 degrees of freedom; movements are 
executed by DC servomotors; tracking is achieved by optical encoders and it can be used in 
passive or active programmable modes. It has an accuracy of 2mm and repeatability of 
0.05mm. It uses the Brown-Roberts-Wells stereotactic frame for registration and CT scan for 
imaging. The use of the cumbersome stereotactic frame is a constraint and as such its 
accuracy and performance are similar to the frame, it has an advantage over the frame in 
those tedious calculations and manual adjustments were automatically executed by the 
robot. It was used as a retractor during resection of thalamic astrocytomas (Drake et al., 
1991) (Figure 1). 
 

 

Figure 1. The PUMA Robot (Courtesy Helge Ritter, Bielefeld University, Germany) 
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• The Minerva System (University of Lausanne, Switzerland): 
The Minerva system was designed to perform within 5 degrees of freedom. It had two linear 
axes (vertical and lateral), two rotary axes (moving in a horizontal and vertical planes), and 
a linear axis (to move the tool to and from the patient’s head). The robot is mounted on a 
horizontal carrier which moves on rails. A stereotactic frame, the Brown-Roberts-Wells 
(BRW) reference frame, is attached to the robot gantry and coupled to the motorized CT 
table by two ball-and-socket joints arranged in series. The system was used for two 
operations on patients in September 1993 at the CHUV Hospital in Switzerland, but the 
project has since been discontinued. The problems with this project were the limited degrees 
of freedom, the robot was unwieldy and located within the CT scanner making the 
environment not ideal for performing neurosurgical procedures and diagnostic imaging. It 
did not get rid of the cumbersome stereotactic frame and as such it did not offer 
performance advantage compared to the frame. It was fixed to the scanner making the 
procedure longer and was not cost-effective as the CT scan suite was unusable for other 
diagnostic scans during the procedure. 

• Evolution 1 (Universal Robotics Systems, Schwerin, Germany): 
This robot was designed for both brain and spinal applications and has 6 degrees of 
freedom. It is a hexapod robot based on parallel actuator configuration to provide a high 
degree of accuracy and high payload capacity for drilling applications such, as drilling in 
the spinal pedicles, and more laterally was used to steer a neuroendoscope (Zimmermann et 
al., 2002). 

• An  MRI compatible robot (Masamune  et al., 1995, Chenzie & Miller, 2001,  DiMaio et 
al., 2006): 

This robotic system was devolped by Harvard Medical School in collaboration with 
Mechanical Engineering Laboratory, AIST, MITI (Tsukuba, Japan). It has 5 degrees of 
freedom and is MRI compatible. It works with intraoperative MRI system (Signa SP/1, 
General Electric, Milwaukee, WI) and it has non-magnetic ultrasonic motors based on 
parallel configuration. It consists of a three-degree-of-freedom Cartesian positioning stage 
and a two-degree-of-freedom orienting mechanism, and is mounted above the surgeon's 
head in the open MRI magnet. Two long rigid arms reach into the surgical space and form a 
parallel linkage for manipulating an acrylic needle holder or guide. The five motion stages 
are driven by ultrasonic motors (Shinsei USR-60N) attached to lead screws, and motion is 
measured by optical encoders with 10μm resolution (Encoder Technology, Cottonwood, 
AZ). A flashpoint sensor is attached to the needle holder to provide independent redundant 
encoding. This robot has been integrated with a software planning interface (built into the 
3D Slicer), and a tracking and control system for percutaneous interventions in the prostate 
under MR-guidance. The surgeon interacts with the planning interface in order to specify a 
set of desired needle trajectories, based on anatomical structures and lesions observed in the 
patient's MR images. All image-space coordinates are computed and used to automatically 
position the needle guide, thus avoiding the limitations of the traditional fixed template 
guide. Once the needle holder is in position, the robot remains stationary while the surgeon 
manually inserts the needle through the guide and into the tissue, with real-time imaging 
for monitoring progress. The disadvantage of this device is its dependence on intraoperative 
MRI scan and MRI compatible instruments. Whilst it is beyond the reach of most centres 
worldwide today, it may become part of MRI technology in the future as more and more 
surgery is performed at the time of diagnosis. 
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• The NeuroMate Robot (Integrated Surgical Systems, Davis, California, USA): 
It is commercially available and FDA approved and evolved from the work of Benabid’s 
group in Gernoble University, France. It has 6 degrees of freedom, incorporates CT, MRI 
and angiographic neuroimages. It was used in conjunction with a stereotactic frame to 
position a cannula or probe for biopsy or targeting deep brain structures. It is a six-axis 
robot for neurosurgical applications. The original system was subsequently redesigned to 
fulfil specific stereotactic requirements and particular attention was paid to safety issues. To 
carry out a procedure by the NeuroMate, the robot must know where it is located relative to 
the patient’s anatomy. This is typically done using a calibration cage, which is placed on the 
end-effecter of the robot around the patient’s head. This cage looks like an open cubic box 
and the four sides are each implanted with nine X-ray opaque beads, the positions of which 
have been precisely measured. Two X-rays are taken which show the position of these beads 
along with the fiducial markers of the patient’s frame. In the newer versions of this robot, an 
ultrasonic-based registration is performed using the reference markers shown in Figure 2. 
This information is used to determine the transformation matrix between the robot and the 
patient. The defined trajectory is used to command the robot to position a mechanical guide, 
which is aligned with this trajectory. The robot is then fixed in this position and the 
physician uses this guide to introduce the surgical tool such as a drill, probe or electrode 
(Figure 2). 

 

Figure 2. The NeuroMate robot during registration (courtesy TRK Varma, Liverpool) 
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• The CyberKnife (Accuracy Inc, Sunnyvale, CA): 
It was designed for frameless stereotactic radiosurgery and its accuracy compares well to 
localization errors in contemporary frame-based systems. The unique targeting capability of 
the CyberKnife’s multi-jointed robotic arm uses a guidance system to track the location of 
tumours in real-time and automatically adjusts its focus to a patient’s respirations to deliver 
high-level radiation with pinpoint accuracy. This enables access to previously unreachable 
tumours with faster, safer, and more comfortable treatments. The CyberKnife is an example 
of a robotic system delivering treatment that the surgeon cannot do (Figure 3). 
 
 

 

 

Figure 3. The CyberKnife 

 

www.intechopen.com



Medical Robotics 46 

The CyberKnife radiosurgical system is being used as a minimally invasive alternative to 
traditional surgery in a variety of clinical areas in neurosurgery as well as other disciplines. 
It offers an effective treatment option for patients who cannot undergo traditional open 
surgery or whose lesions are inaccessible with traditional surgical approaches. Residual 
tumours left after partial resection may also be treated. It has also been used as a boost to 
standard radiation therapy and to treat failed surgery or radiotherapy. For intracranial 
conditions, the CyberKnife system has been used to radiosurgically treat a variety of 
tumours such as residual small skull base menigiomas, small acoustic schwanomas 
(Sakamoto et al., 2005), small pituitary adenomas, and small metastases (Young et al., 2005) 
as well as other abnormalities such as small arteriovenous malformations (AVMs) and 
intractable pain such as in Trigeminal Neuralgia (Massaudi et al., 2005). With the 
Synchrony™ motion tracking system, tumours in organs moving with respiration such as 
the lung (Brown et al., 2005), the pancreas (Goodman & Koong, 2005), the liver and the 
kidney can be successfully targeted. Other tumours based in more rigid body anatomy, 
where minimal motion is expected, may be tracked via rigidly implanted markers including 
those in the spine and the prostate (Medbery et al., 2005). The CyberKnife system’s range of 
applications is limited only by the imagination of clinicians who currently have, or will 
eventually have access to this technology. To date, more than 10,000 patients have benefited 
from the revolutionary concept of marrying robotics to image-guided radiosurgery. 
Scientific presentations and publications on the clinical applications of the CyberKnife are 
numerous – including intracranial (Young et al., 2005), spine (Gerszten et al., 2005), 
paediatric (Giller et al., 2005), prostate (Medbery et al., 2005), pancreas (Goodman & Koong, 
2005), kidney and lung (Brown et al., 2005).  
• The RoboSim Neurosurgery Simulator (Radstzky A & Radolph M, 2001):  
This robotic neurosurgical simulator consists of a workstation and a robotic arm 
(NeuRobot). The MRI image data-set is transferred into the system and the surgical target, 
its coordinates and planning trajectories are programmed. It was developed as part of the 
Roboscope project for minimally invasive neurosurgical procedures. Minimally invasive 
neurosurgery is mainly of importance for treatment of diseases in the central area of the 
brain, which is accessible to the surgeon only by transgression of healthy normal brain 
tissue, such as hydrocephalus due to cystic brain tumors and ventricular tumours.  
As we enter the 21st century, real-time simulation of surgical procedures is becoming the 
norm in neurosurgical practice. The RoboSim is a robotic platform for surgical simulation 
and planning minimally invasive and complex neurosurgical procedures. Another 
important aspect of neurosurgery is the training of junior surgeons on how to anatomically 
orient them while operating within the miniaturised operating field of minimally invasive 
procedures. Image-guided simulation of the procedure will then allow the control of 
accessibility of the diseased area along the pre-planned trajectory. 

• The neuroArm (Louw et al., 2004): 
The neuroArm is an MRI-compatible, ambidextrous robot. Its dextrous components are two 
image-guided manipulators with end-effectors that mimic human hands and are capable of 
interfacing with new microsurgical tools. It has tremor filters that eliminate unwanted hand 
tremors seen under the microscope. It consists of a surgeon-machine interface and multiple 
surgical displays. The interface consists of two hand controllers which hold tools. It has 8 
degrees of freedom for each arm, payload of 0.5 Kg, a force of 10 N, tip-speed of 0.5-
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5mm/sec and submillimetric positional accuracy. It has optical and force sensors and can 
work continuously for more than 10 hours.  

• The PathFinder (Prosurgics, UK): 
The PathFinder is a neurorobotic system that is portable with a very stable base which can 
be wheeled in and out of the operating room. The robotic arm can rotate in a horizontal 
plane 90 degrees to the left or right. The base fixes to the surgical space by an attachment to 
the Mayfield head clamp. The proximal arm articulates with the next arm that moves in a 
vertical plane that articulates with the third arm which again moves in a vertical plane. The 
most distal arm holds the end-effecter, which can rotate 360 degrees and flexes/extends by 
180 degrees. The combined movements at all these joints give the PathFinder 6 degrees of 
freedom. The PathFinder differs from other neurosurgical robots in that it does not require 
X-rays, ultrasound or mechanical means to locate the surgical field; instead it depends on 
identifying reflectors attached to the patient’s head using a camera system integrated in its 
head (Figure 4). 

 

Figure 4. The PathFinder neurosurgical robotic system 

The robot is driven by Windows® based task program and planning software. The planning 
software and PathFinder robot detect the fiducial markers automatically with a maximum 
accepted registration error of 1.25 mm. The tool holder is attached to the PathFinder’s end-
effecter. The predefined path is used to command the PathFinder to align its instrument 
holder to the planned trajectory. Once the instrument holder is aligned to the trajectory, the 
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robot locks in position and instruments can then be passed to the predetermined depth such 
as probes, electrodes or catheters (Figure 5). 

 

Figure 5. The instrument holder of the PathFinder 

• SmartAssist® (Mazor Surgical Technologies, Caesarea, Israel): 
This miniature robotic system was designed to overcome the need to rigidly immobilise the 
surgical field during robotic application. This robot achieved this by fixing the robot directly 
to the bony element of the surgical field. This concept was clinically used in spinal pedicle 
screw fixation using the SpineAssist robotic system (Shoham et al., 2007). The system 
consists of the miniature robot that aligns the end effectors with 6 degrees of freedom and a 
workstation that runs graphic user interface software and performs image manipulation, 
planning, registration, kinematic calculations and real-time robot control. Once the system 
was assembled and intraoperative registration using intraoperative fluoroscopy was 
performed, the plan for each pedicle screw is executed by the robot and the surgeon 
manually drills the pilot drill-hole and passes K-wire in the desired position. The 
SpineAssist is an automated pointing robot that gives the surgeon full control. 

3. Pre-clinical Work  

Our plan was to develop the PathFinder (Prosurgics, UK) (Figure 4) to achieve stereotactic 
accuracy better than the stereotactic frame with the flexibility and user-friendly features of 
frameless image guidance systems.  Therefore we assembled two of the best available 
stereotactic frames around, the Cosman-Roberts-Wells (CRW) stereotactic frame (Radionics, 
MA, USA) (Figure 6), the Zamorano-Dujovny (ZD) stereotactic frame (Fischer-Leibinger, 
Freiberg, Germany) (Figure 7), and one of the best frameless stereotactic image guidance 
systems, Stealth Station image guidance system (Medtronic, Sofarmor Danek, Memphis, TN, 
USA) (Figure 8).   The CRW frame localisation technique involved fixing the frame base ring 
to the skull, the CT localiser with its 9 rods was fixed to the frame ring and CT was obtained 
in an axial plane at zero angle and calculation of the target co-ordinates was obtained using 
frame specific software. On the other hand, the ZD frame ring was also attached to the skull 
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and the ZD localiser, U-version, was used and CT scan was obtained at zero angle and the 
coordinates were calculated using ZD frame specific software. The Stealth Station is an 
image guidance system using optical tracking technology to track the surgical field position, 
the surgical tools and the surgical microscope. 

 

Figure 6. A photograph of the human head phantom and the CRW frame in position and the 
robotic system pointing to the same target from different trajectories 

 
 

 

Figure 7. A photograph of the human head phantom with ZD frame in position and the 
robot pointing to the same target 
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Figure 8. A photograph of the Stealth Station and PathFinder during experiment 

• Methods: 
We performed several experiments using a replica of the human head (phantom). The 
surface markings of the phantom were an exact match to the human skull and the inside 
was fitted with easily recognisable targets at different depths from the skull vault mimicking 
the basal ganglia locations. The phantom was fitted with 10 surface and 9 internal targets 
(Figure 9 a & b).  
 
 

 

Figure 9 a. A photograph of the human head phantom with surface targets (buttons) and 
robotic fiducials (reflective balls) 
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Figure 9 b. A photograph of the human head phantom with depth targets 

In addition, 8 robot specific surface fiducials were fitted for robotic registration (Fig 9a). The 
skull was scanned using helical CT scanner at zero angle and 1 mm slice thickness twice; 
once with the ZD frame localiser attached and once with the CRW localiser attached. The 
images were transferred into Frame Link software to calculate the X, Y and Z co-ordinates of 
each of the 19 targets for each of the two stereotactic frames. The targets were then 
approached by each frame whenever possible. The same images were imported into robot 
specific software and the same targets were chosen in a robotic plan. The robotic planning 
software identified the registration markers automatically. The robot was connected to the 
skull through its attachment to the Mayfield head fixator. The robot performed its automatic 
registration by a camera embedded in its head by taking three sets of two images at different 
angles of the reflective robotic specific surface fiducials. We set the maximum acceptable 
registration error at 1.25 mm. Targeting was automated by using a foot pedal and once the 
instrument holder was aligned a probe was passed to manually to reach the target (Figure 6, 
7, 9b). The same experiment was repeated using the Stealth Station image guidance system.  

• Steps of the procedure: 

• Fiducials and markers:  
Before neuro-imaging, PathFinder specific fiducials are fixed to the surface of the surgical 
field. These fiducials are impregnated with radio-opaque material so that they can be easily 
seen on CT and picked up by the planning software. They are also coated with reflective 
material so that the robotic camera can easily pick them up (Figure 9a). It is important that 
these fiducials are placed at a reasonable distance from each other (5 cm) and placed in a 
non-symmetrical fashion to make it easy for the registration process. They should also be 
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spread around the surgical volume. These fiducials can be fixed to the skin using double 
sided adhesive tape or alternatively a registration plate can be rigidly attached to the skull 
(Figure 10). 

• Image acquisition: 
The registration process is heavily dependant on CT images; these should be acquired at 
zero angle in an axial plane at 1-3 mm slice thickness. MRI scan should also be obtained in 
an axial plane at zero angle with no spacing. Although the best sequence is volumetric 
MPRage, T1 or T2 axial sequences could also be used. 

• Preoperative planning: 
The surgeon imports the image data-sets into the planning software. The software 
automatically builds sagittal, coronal and 3D reconstructions of the primary axial images. 
The CT data-set is used to recognise the fiducials and either the CT or MRI images could be 
used to plan the target and entry points of the trajectory. The CT and MRI data-sets are 
merged to provide the final plan. The surgeon can then rehearse the plan and get a visual 
feedback before the surgery and can change the planned trajectories to avoid any critical 
structures (Figures 12 & 13). 

• Robot set up: 
The PathFinder robot is positioned either at right angle (opposite to the surgical side) or at 
an acute angle parallel to the patient. This position provides the maximum degrees of 
freedom for the robot and the surgeon and keeps the robot out of the way when it is not in 
use. The robot is attached to the head via a rigid fixing arm attaching to the Mayfield head 
clamp. The robot is connected to the computer and switched on. Once it is ready to receive 
commands from the workstation, the robot task controller software is executed.  

• Quality assurance: 
The first quality check in the PathFinder is the robot self-test to establish that the 
workstation and the robot communicate to each other.  The system then asks the surgeon to 
load the surgical plan. The second quality check is confirmation that the surgical plan 
loaded is in fact that the one was intended by the surgeon. The final quality check deals with 
the accuracy of the system starting with the registration accuracy and then the application 
accuracy on the surface.  

• Registration: 
The robot performs registration on command from the workstation and a foot-pedal press. 
The registration is achieved by taking and analysing three sets of photographic images of 
the fiducials. The maximum registration error is 1.25 mm. The system displays a registration 
error at the end of the registration process. The most common reasons of registration failure 
are: bright light in the room, some of the fiducials were invisible, fiducial images were 
superimposed on each other or fiducials were covered by hair.  The system displays an 
image of the fiducials during each registration steps and paying attention to these images 
often make it easier to resolve any failed registration. If the registration process fails, it can 
be repeated after paying attention to the cause of failure. 

• Plan execution: 
Once the registration process is complete, executable surgical trajectories are displayed and 
can be tested by the surgeon. The tool length can be changed and the entry point can also be 
fine tuned from within the task controller. The surgeon then prepares the surgical field and 
drapes the robot and the patient. The surgeon manually performs the entry burr hole or 
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craniotomy, then aligns the robot for the planned trajectories and manually advances the surgical 
tool to the target.    

• Results: 
When the robotic system was compared to the golden standard of stereotaxy, the stereotactic 
frame, the robot was successful in approaching 17 out of 19 targets (89.5%). To reach the 
remaining two it was necessary to change the position of the robot in relation to the phantom 
axis, without the need for re-scanning or re-planning. On the other hand, both the CRW & ZD 
frames failed to reach points above certain depth due to the fact that the frame ring in both 
frames was positioned at a low level in the phantom, primarily to avoid distorting the artificial 
skull by the frame-ring fixation mechanism. Each frame however, was able to reach 4 targets out 
of 19 (21.1%). When the targets were possible, the robot, the CRW and the ZD systems were very 
accurate (0.5 mm in the Robot and 0.98 mm in the Frames) (Table 1).  

Device  Robot System CRW frame ZD Frame 

Target / result No. % No. % No. % 

Superficial  8/10 80 0/10 0 0/10 0 

Deep targets 9/9 100 4/9 44.4 4/9 44.4 

Overall result 17/19 89.5 4/19 21.1 4/17 21.1 

Accuracy in mm 0.5   0.98  0.98  

Table 1. Comparison of the PathFinder neurosurgical robotic system and the CRW and ZD 
stereotactic frames using CT scan and a Phantom human head 

The clear advantages of the robotic system over the frames in these experiments were 
avoidance of cumbersome frame ring, ability to target multiple areas in the same plan, 
avoidance of manual adjustments of the coordinates, coverage of all the surgical field with 
no limitations imposed by frame ring fixation primary position and flexibility to change the 
plan without the need for rescanning, as well as changing the position of the robot in 
relation to the phantom head without the need for rescanning or replanning.  
When the robotic system was compared to frameless stereotactic system, the Stealth Station, 
the robotic system outperformed the Stealth Station in accuracy, precision and repeatability 
(Table 2). The accuracy remained the same irrespective of the target location, while the 
frameless image guidance system accuracy was good near the surface of the phantom but 
deteriorated as the target moved backwards and deeper (Table 2). 

The system Robotic system Frameless image guidance 

Accuracy 0.44 mm 1.96 mm 

Surface accuracy 0.44 mm 1 mm 

Deep anterior 0.44 mm 1-2 mm 

Deep middle 0.44 mm 2-3 mm 

Deep posterior 0.44 mm 3-4.4 mm 

Table 2. Comparison of the PathFinder neurosurgical robotic system and the Stealth Station 
image guidance system using CT scan and a Phantom human head 
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From these experiments, we found that the robotic system provided the accuracy, precision 
and repeatability of the stereotactic frame and the flexibility of the frameless system. 
While these experiments demonstrated that the robotic system outperformed both existing 
stereotactic systems in use, there is still the possibility that the robot will not perform in the 
clinical setting because skin markers do move during and after scanning. Therefore, we 
designed a registration plate that can be fixed to the patient’s skull via three microscrews. 
The plate can then be removed and reapplied at will, allowing scanning and planning to be 
divorced from the registration and the operation in time and place. (Figure 10) 
 

 

Figure 10. A photograph of the relocatable registration plate 

We have encountered several problems during development. Bright fluorescence operating 
room lights may interfere with the registration process, therefore theatre lights are not 
switched on till after registration. Power failure during a procedure can lead to loss of 
registration, therefore a rechargeable battery was fitted which can keep the Robot and 
workstation going, and finally the axis of the patient in relation to the robot is important as 
the best position was to place the robot at an angle of 20-30 degrees. 

4. Clinical Applications 

The human brain is uniquely suited for robotics applications because it is contained in a 
rigid structure, the skull, and the slightest intrusion of surgical tools can produce 
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devastating, irreversible and potentially fatal complications. The robotic system is useful in 
the following ways: 

• Planning:  
The robotic systems of today come with robust image processing and planning software, 
which can segment CT and MRI images, merge these imaging modalities and display the 
output in axial, coronal, sagittal, 3D and probe eye views. The surgeon can gain significant 
insight in the pathology under consideration, enhancing his/her understanding of the 
anatomical relationships of the lesion to the surrounding brain and external landmarks 
allowing planning trajectories that avoid critical structures taking the shortest and safest 
route. Furthermore, the planning software allows surgeons to rehearse their surgical 
trajectories modifying them if felt necessary before embarking on the procedure. It provides 
an excellent teaching tool for trainees and residents (Figure 11). 
 

 

Figure 11. A robotic platform for planning, planning and rehearsing trajectory is very simple 

• Assist in performing stereotactic procedures: 
The advantages of using a robotic system to assist in performing almost all stereotactic 
procedures are automation of target coordinates, transformation to the tip of the robotic 
instrument in a moment without the tedious calculations of the X, Y & Z coordinates, 
transforming and adjusting these coordinates to the aiming arc of the stereotactic frame and 
the flexibility to perform multiple targeting, multiple trajectories and multiple plans without 
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the tedious and time-consuming steps of fixing the frame reference ring to the patient’s 
head, rescanning, recalculating and readjusting the aiming frame-arc. It was clear that 
robotic systems would be faster, more automated, more flexible, more reliable, and more 
accurate. The neurosurgical robots can be used in the following applications. 

• Intracranial tumours: 
Intracranial tumours are suitable applications for robotics in neurosurgery because they 
often require stereotactic biopsy which can be performed elegantly by the robotic system. 
The advantage for using the robot in this area is the ability to perform accurately multiple 
biopsies to obtain the exact pathological classification of the tumour rather than getting a 
piece of necrotic centre. The robotic system could be used to plan and insert interstitial 
radiotherapy, victor therapy or photodynamic therapy. Furthermore, the robotic system 
would be an ideal tool to plan and execute the plan to excise a tumour by placing a fence 
around the tumour margins before opening the skull (Figure 12). 

 

 

Figure 12. A fencing robotic plan for Glioblastoma multiforme 

• Intracranial abscess: 
The management of intracranial abscess is drainage, which can be performed using 
freehand needle aspiration or more appropriately using a stereotactic aspiration. The 
tendency in common practice is to use freehand aspiration because to put a stereotactic 
frame is often thought to be cumbersome. However, a flexible robotic system would be an 
ideal precise way to aspirate such abscess to obtain the micro-organism and drain the pus as 
the main therapeutic procedure.   
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• Deep brain stimulation: 
Deep brain stimulation is widely used in practice to treat advanced Parkinson’s disease, 
Benign Essential tremor, rubral tremor of Multiple Sclerosis, dystonia, obsessive compulsive 
disorders and treatment refractory depression. These procedures require the accuracy of the 
stereotactic frame and neurophysiological monitoring using micro-electrode recordings or 
macrostimulation and measurement of impedance. The robotic system would be an ideal 
planning and execution system for performing these procedures precisely. It would be used 
for the anatomical planning to target the subthalamic nucleus in Parkinson’s disease, the 
Globus pallidus internal in dystonia, the ventral intermediate nucleus of the thalamus for 
tremor control, the anterior capsule in obsessive compulsive disorders or the cingulum in 
treatment refractory depression (Figure 13). 

 

 

Figure 13. A robotic plan for DBS placement or lesion generation in the left subthalamic 
nucleus 

• Intracranial lesion generation: 
Intracranial lesions are less commonly used nowadays in neurosurgery as the 
neurostimulation technology provides the same clinical efficacy of lesions with a lesser risk. 
However, lesions in one side of the pallidum, thalamus, internal capsule or the cingulum 
still have a place in the management of functional disorders of the brain. Their precise 
planning and execution requires the accuracy of the stereotactic frame and the flexibility of 
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image guidance. Precise accuracy and flexibility are the characteristics of the robotic system 
and therefore it would be an ideal system to execute these lesions (Figure 12).  

• Epilepsy surgery: 
Temporal lobe surgery is a cost-effective treatment for drug resistant temporal lobe epilepsy 
(Alarcon et al., 2006 and Kelemen et al., 2006). Its success is dependant on pre and intra-
operative localisation of the epileptogenic focus and the surgery is facilitated by early 
identification of the temporal horn. To locate precisely the temporal horn and the epilepsy 
focus we explored the use of a neurosurgical robot. We found that the robotic system was 
very useful in inserting depth electrodes precisely to localise the seizure focus and was very 
helpful to identify the temporal horn early on, shortening the procedure (Figure 14) 
(Eljamel, 2006). 
 

 

Figure 14. Intraoperative corticography for epilepsy focus localisation, notice the PathFinder 
in the right bottom corner where it was used to insert depth electrodes and insert a catheter 
in the temporal horn of the lateral ventricle during medial temporal lobectomy for temporal 
lobe refractory epilepsy 

• Intracranial vascular lesions: 
Intracranial arteriovenous malformation (AVM) and intracerebral haematomas can be 
treated using the robotic system. The system could be used to localise the AVM and 
planning of the surgery, while in spontaneous haematoma the robot could be used to 
aspirate the blood clot precisely. 
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• Hydrocephalus and intracranial cysts: 
The robotics system is ideally suited for draining intracranial cysts. A colloid cyst which lies 
within the third ventricle and can cause hydrocephalus can be drained using the robot.  
Pineal body cysts and other cysts of the third ventricle can also be drained this way. 
Craniopharyngioma is another tumour that can present with large cysts and other tumour 
cysts (Figure 15) and can also be drained using the robotic system.  The robot can also be 
used to place shunt tubing into any of the aforementioned cystic lesions or hydrocephalus. 
These intracystic catheters can then be connected to a valve to shunt the fluid away to a 
suitable absorption cavity such as the peritoneum in hydrocephalus or the catheter can be 
connected to a subcutaneous reservoir for future aspirations or instillation of therapeutic 
agents in the case of tumour cysts. 
 

 

Figure 15. A robotic plan for drainage and biopsy of left frontal lobe cyst 

• Head trauma: 
In head trauma, the lateral ventricles are often very small and cannot be drained effectively 
using freehand methods, a robotic system will be an ideal tool to insert very precisely an 
external ventricular drain when required to drain cerebrospinal fluid (CSF) and control the 
raised intracranial pressure in these critical patients. 

• Pituitary lesions: 
Pituitary lesions, including simple cysts, pituitary abscess and Rathke cleft cysts, can be 
drained using the robot via the trans-nasal – transsphenoidal route (Figure 16).  Furthermore 
pituitary ablation using chemicals, such as alcohol, can be performed. 
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Figure 16. A robotic plan for reaching a pituitary lesion through the transnasal-
transsphenoidal route for either aspirating a pituitary abscess, pituitary cyst, Rathke cleft 
cyst or injecting a chemical to ablate the pituitary gland 

• Spinal surgery: 
There are potential spinal applications in spinal surgery to perform needle 
aspiration/biopsy of spinal pathology or to align trajectories for pedicle screw fixation, 
lateral mass plating or C1/2 fixation. The principles are the same as intracranial surgery 
with the exception that each vertebral level had to be registered in turn or the robotic system 
needed to be integrated with fluoroscopy, which can be easily achieved. An example of such 
robotic application is the SpineAssist® (Shoham et al., 2007). 

• Cranial and body radiotherapy: 
The CyberKinfe is an excellent example of cranial and body radiotherapy application of 
robotics, allowing a high tumour irradiation dose with minimal normal tissue exposure to 
the harmful radiation as discussed earlier in this chapter. Furthermore, the robotic system 
could be used to insert radioisotope implants or intraoperative radiosurgery machines such 
as the Photoelectrone radiosurgery system 400 (Figure 17 and 18). The advantage of robotic 
systems in this modality of therapy is the precision, the speed at which therapy can be 
delivered and the ability of the system to deliver therapy remotely in a radiation shielded 
environment without the risk of radiation to the surgeon or other staff looking after the 
patient.   
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Figure 17. Intraoperative Photoelectron radiotherapy system (PRS400) which can fit nicely in 
the Pathfinder robot. The robot could perform a stereotactic biopsy followed by 
radiosurgery 

 

Figure 19. Intraoperative radiotherapy of a malignant brain tumour using the Photoelectron 
radiotherapy system (PRS400) 
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• Futuristic therapies: 
The robotic system is an ideal tool to implant micro-catheters in deep structures of the brain 
to deliver missing or deficient neurotransmitters or growth factors such as glial derived 
neurotrophic factor (GDNF) to promote neuro-regeneration (Gill et al., 2003).  It would be 
also an ideal delivery system for neurotansplantation (Ourednik & Ourednik, 2004) and 
victor and gene therapy (Alavi & Eck, 2001). Although these modalities of therapy are still in 
their infancy at present, it is only a matter of time before they will be used on a large scale to 
treat neuro-degenerative diseases such as Parkinson’s disease and Alzheimer’s disease. 

5. The Future of Robotics in Neurosurgery 

The future of robotics in neurosurgery is bright and it is not going to be long before each 
neurosurgical operating room, each neuro CT scanner and each neuro MRI scanner will be 
integrated with a robotic system. This inevitable progression is natural as we move along 
the path from image-guided minimally invasive surgery to a technology driven nano 
surgery. The scale of neurosurgical procedures in the future is going to be so small that 
neurosurgeons will not be able to deliver them without the assistance of robotics. The 
amount of collateral damage acceptable by patients in the future is going to be none that 
current technology and human performance would not be able to guarantee without the use 
of robotics. Patients in the future will be asking a different question from what present 
patients are asking: it is not going to be “who is the surgeon?” but who is the surgeon’s 
assistant?  
Robotics in the future will incorporate new technology that will make it possible for these 
systems to analyse tissue composition by combining imaging, biochemical and biological 
markers of these tissues to deliver specific treatment and repair any abnormal tissue 
damage. One example of such futuristic application which can be integrated in robotics is 
the NASA smart probe project which utilises neural network and fuzzy logic algorithms to 
integrate data from multiple sensors in real-time for tissue identification (Andrews et al., 
2006).   
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