
Chapter

Introduction to Kalman Filter and
Its Applications
Youngjoo Kim and Hyochoong Bang

Abstract

We provide a tutorial-like description of Kalman filter and extended Kalman
filter. This chapter aims for those who need to teach Kalman filters to others, or for
those who do not have a strong background in estimation theory. Following a
problem definition of state estimation, filtering algorithms will be presented with
supporting examples to help readers easily grasp how the Kalman filters work.
Implementations on INS/GNSS navigation, target tracking, and terrain-referenced
navigation (TRN) are given. In each example, we discuss how to choose, imple-
ment, tune, and modify the algorithms for real world practices. Source codes for
implementing the examples are also provided. In conclusion, this chapter will
become a prerequisite for other contents in the book.

Keywords: Kalman filter, extended Kalman filter, INS/GNSS navigation, target
tracking, terrain-referenced navigation

1. Introduction

Kalman filtering is an algorithm that provides estimates of some unknown vari-
ables given the measurements observed over time. Kalman filters have been dem-
onstrating its usefulness in various applications. Kalman filters have relatively
simple form and require small computational power. However, it is still not easy for
people who are not familiar with estimation theory to understand and implement
the Kalman filters. Whereas there exist some excellent literatures such as [1]
addressing derivation and theory behind the Kalman filter, this chapter focuses on a
more practical perspective.

Following two chapters will devote to introduce algorithms of Kalman filter and
extended Kalman filter, respectively, including their applications. With linear
models with additive Gaussian noises, the Kalman filter provides optimal estimates.
Navigation with a global navigation satellite system (GNSS) will be provided as an
implementation example of the Kalman filter. The extended Kalman filter is utilized
for nonlinear problems like bearing-angle target tracking and terrain-referenced
navigation (TRN). How to implement the filtering algorithms for such applications
will be presented in detail.

1



2. Kalman filter

2.1 Problem definition

Kalman filters are used to estimate states based on linear dynamical systems in
state space format. The process model defines the evolution of the state from time
k� 1 to time k as:

xk ¼ Fxk�1 þ Buk�1 þwk�1 (1)

where F is the state transition matrix applied to the previous state vector xk�1, B
is the control-input matrix applied to the control vector uk�1, and wk�1 is the
process noise vector that is assumed to be zero-mean Gaussian with the covariance
Q, i.e., wk�1�N 0;Qð Þ.

The process model is paired with the measurement model that describes the
relationship between the state and the measurement at the current time step k as:

zk ¼ Hxk þ νk (2)

where zk is the measurement vector, H is the measurement matrix, and νk is the
measurement noise vector that is assumed to be zero-mean Gaussian with the
covariance R, i.e., νk�N 0;Rð Þ. Note that sometimes the term “measurement” is
called “observation” in different literature.

The role of the Kalman filter is to provide estimate of xk at time k, given the
initial estimate of x0, the series of measurement, z1, z2,…, zk, and the information of
the system described by F, B,H, Q, and R. Note that subscripts to these matrices are
omitted here by assuming that they are invariant over time as in most applications.
Although the covariance matrices are supposed to reflect the statistics of the noises,
the true statistics of the noises is not known or not Gaussian in many practical
applications. Therefore, Q and R are usually used as tuning parameters that the user
can adjust to get desired performance.

2.2 Kalman filter algorithm

Kalman filter algorithm consists of two stages: prediction and update. Note
that the terms “prediction” and “update” are often called “propagation” and
“correction,” respectively, in different literature. The Kalman filter algorithm is
summarized as follows:

Prediction:

Predicted state estimate x̂�
k ¼ Fx̂þ

k�1 þ Buk�1

Predicted error covariance P�
k ¼ FPþ

k�1F
T þQ

Update:

Measurement residual eyk ¼ zk �Hx̂�
k

Kalman gain Kk ¼ P�
k H

T RþHP�
k H

T� ��1

Updated state estimate x̂þ
k ¼ x̂�

k þ Kkey
Updated error covariance Pþ

k ¼ I � KkHð ÞP�
k

2

Introduction and Implementations of the Kalman Filter



In the above equations, the hat operator, ̂, means an estimate of a variable. That
is, x̂ is an estimate of x. The superscripts – and þ denote predicted (prior) and
updated (posterior) estimates, respectively.

The predicted state estimate is evolved from the updated previous updated state
estimate. The new term P is called state error covariance. It encrypts the error
covariance that the filter thinks the estimate error has. Note that the covariance of a

random variable x is defined as cov xð Þ ¼ E x� x̂ð Þ x� x̂ð ÞT
h iT

where E denotes the

expected (mean) value of its argument. One can observe that the error covariance
becomes larger at the prediction stage due to the summation with Q, which means
the filter is more uncertain of the state estimate after the prediction step.

In the update stage, the measurement residual eyk is computed first. The
measurement residual, also known as innovation, is the difference between the true
measurement, zk, and the estimated measurement, Hx̂�

k . The filter estimates the
current measurement by multiplying the predicted state by the measurement
matrix. The residual, eyk, is later then multiplied by the Kalman gain, Kk, to provide
the correction, Kkeyk, to the predicted estimate x̂�

k . After it obtains the updated state
estimate, the Kalman filter calculates the updated error covariance, Pþ

k , which will
be used in the next time step. Note that the updated error covariance is smaller than
the predicted error covariance, which means the filter is more certain of the state
estimate after the measurement is utilized in the update stage.

We need an initialization stage to implement the Kalman filter. As initial values,
we need the initial guess of state estimate, x̂þ

0 , and the initial guess of the error
covariance matrix, Pþ

0 . Together with Q and R, x̂þ
0 and Pþ

0 play an important role to
obtain desired performance. There is a rule of thumb called “initial ignorance,”which
means that the user should choose a large Pþ

0 for quicker convergence. Finally, one
can obtain implement a Kalman filter by implementing the prediction and update
stages for each time step, k ¼ 1, 2, 3,…, after the initialization of estimates.

Note that Kalman filters are derived based on the assumption that the process
and measurement models are linear, i.e., they can be expressed with the matrices F,
B, and H, and the process and measurement noise are additive Gaussian. Hence, a
Kalman filter provides optimal estimate only if the assumptions are satisfied.

2.3 Example

An example for implementing the Kalman filter is navigation where the
vehicle state, position, and velocity are estimated by using sensor output from
an inertial measurement unit (IMU) and a global navigation satellite system
(GNSS) receiver. In this example, we consider only position and velocity,
omitting attitude information. The three-dimensional position and velocity
comprise the state vector:

x ¼ pT; vT
� �T

(3)

where p ¼ px; py; pz
h iT

is the position vector and v ¼ vx; vy; vz
� �T is the velocity

vector whose elements are defined in x, y, z axes. The state in time k can be
predicted by the previous state in time k� 1 as:

xk ¼
pk

vk

" #
¼

pk�1 þ vk�1Δtþ 1
2
eak�1Δt2

vk�1 þ eak�1Δt

264
375 (4)

3

Introduction to Kalman Filter and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.80600



where eak�1 is the acceleration applied to the vehicle. The above equation can be
rearranged as:

xk ¼
I3�3 I3�3Δt
03�3 I3�3

� �
xk�1 þ

1
2
I3�3Δt2

I3�3Δt

24 35eak�1 (5)

where I3�3 and 03�3 denote 3� 3 identity and zero matrices, respectively. The
process noise comes from the accelerometer output, ak�1 ¼ eak�1 þ ek�1, where ek�1

denotes the noise of the accelerometer output. Suppose ek�1 � N 0; I3�3σ2e
� �

. From
the covariance relationship, Cov Axð Þ ¼ AΣAT where Cov xð Þ ¼ Σ, we get the
covariance matrix of the process noise as:

Q ¼
1
2
I3�3Δt2

I3�3Δt

24 35I3�3σ
2
e

1
2 I3�3Δt2

I3�3Δt

� �T
¼

1
4
I3�3Δt4 03�3

03�3 I3�3Δt2

24 35σ2e (6)

Now, we have the process model as:

xk ¼ Fxk�1 þ Bak�1 þwk�1 (7)

where

F ¼ I3�3 I3�3Δt
03�3 I3�3

� �
(8)

B ¼
1
2
I3�3Δt2

I3�3Δt

24 35 (9)

wk�1 � N 0;Qð Þ (10)

The GNSS receiver provides position and velocity measurements corrupted by
measurement noise νk as:

zk ¼
pk

vk

" #
þ νk (11)

It is straightforward to derive the measurement model as:

zk ¼ Hxk þ νk (12)

where

H ¼ I6�6 (13)

νk � N 0;Rð Þ (14)

In order to conduct a simulation to see how it works, let us consider N ¼ 20 time
steps (k ¼ 1, 2, 3,…, NÞ with Δt ¼ 1. It is recommended to generate a time history of
true state, or a true trajectory, first. The most convenient way is to generate the
series of true accelerations over time and integrate them to get true velocity and
position. In this example, the true acceleration is set to zero and the vehicle is
moving with a constant velocity, vk ¼ 5; 5;0½ �T for all k ¼ 1, 2, 3,…, N, from the

4

Introduction and Implementations of the Kalman Filter



initial position, p0 ¼ 0;0;0½ �. Note that one who uses the Kalman filter to estimate
the vehicle state is usually not aware whether the vehicle has a constant velocity or
not. This case is not different from nonzero acceleration case in perspective of this
Kalman filter models. If the filter designer (you) has some prior knowledge of the
vehicle maneuver, process models can be designed in different forms for best
describing various maneuvers as in [2].

We need to generate noise of acceleration output and GNSS measurements for
every time step. Suppose the acceleration output, GNSS position, and GNSS velocity
are corrupted with noise with variances of 0.32, 32, and 0.032, respectively. For each
axis, one can use MATLAB function randn or normrnd for generating the Gaussian
noise.

The process noise covariance matrix, Q, and measurement noise covariance
matrix, R, can be constructed following the real noise statistics described above to
get the best performance. However, have in mind that in real applications, we do
not know the real statistics of the noises and the noises are often not Gaussian.
Common practice is to conservatively set Q and R slightly larger than the expected
values to get robustness.

Let us start filtering with the initial guesses

x̂þ
0 ¼ 2;�2;0; 5; 5:1;0:1½ �T (15)

Pþ
0 ¼ I3�342 03�3

03�3 I3�30:42

" #
(16)

and noise covariance matrices

Q ¼
1
4
I3�3Δt4 03�3

03�3 I3�3Δt2

24 350:32 (17)

R ¼ I3�332 03�3

03�3 I3�30:032

" #
(18)

where Q and R are constant for every time step. The more uncertain your initial
guess for the state is, the larger the initial error covariance should be.

In this simulation, M ¼ 100 Monte-Carlo runs were conducted. A single run is
not sufficient for verifying the statistic characteristic of the filtering result because
each sample of a noise differs whenever the noise is sampled from a given distribu-
tion, and therefore, every simulation run results in different state estimate. The
repetitive Monte-Carlo runs enable us to test a number of different noise samples
for each time step.

The time history of estimation errors of two Monte-Carlo runs is depicted in
Figure 1. We observe that the estimation results of different simulation runs are
different even if the initial guess for the state estimate is the same. You can also run
the Monte-Carlo simulation with different initial guesses (sampled from a distribu-
tion) for the state estimate.

The standard deviation of the estimation errors and the estimated standard
deviation for x-axis position and velocity are drawn in Figure 2. The standard
deviation of the estimation error, or the root mean square error (RMSE), can be
obtained by computing standard deviation of M estimation errors for each time
step. The estimated standard deviation was obtained by taking squared root of the

5

Introduction to Kalman Filter and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.80600



corresponding diagonal term of Pþ
k . Drawing the estimated standard deviation for

each axis is possible because the state estimates are independent to each other in this
example. A care is needed if Pþ

k has nonzero off-diagonal terms. The estimated
standard deviation and the actual standard deviation of estimate errors are very
similar. In this case, the filter is called consistent. Note that the estimated error
covariance matrix is affected solely by Pþ

0 , Q, and R, judging from the Kalman filter

Figure 1.
Time history of estimation errors.

Figure 2.
Actual and estimated standard deviation for x-axis estimate errors.

6

Introduction and Implementations of the Kalman Filter



algorithm. Different settings to these matrices will result in different Pþ
k and there-

fore different state estimates.
In real applications, you will be able to acquire only the estimated covariance

because you will hardly have a chance to conduct Monte-Carlo runs. Also, getting a
good estimate of Q and R is often difficult. One practical approach to estimate the
noise covariance matirces is the autocovariance least-squares (ALS) technique [3]
or an adaptive Kalman filter where the noise covariance matrices are adjusted in real
time can be used [4].

Source code of MATLAB implementation for this example can be found in [5]. It
is recommended for the readers to change the parameters and aircraft trajectory by
yourself and see what happens.

3. Extended Kalman filter

3.1 Problem definition

Suppose you have a nonlinear dynamic system where you are not able to define
either the process model or measurement model with multiplication of vectors and
matrices as in (1) and (2). The extended Kalman filter provides us a tool for dealing
with such nonlinear models in an efficient way. Since it is computationally cheaper
than other nonlinear filtering methods such as point-mass filters and particle filters,
the extended Kalman filter has been used in various real-time applications like
navigation systems.

The extended Kalman filter can be viewed as a nonlinear version of the Kalman
filter that linearized the models about a current estimate. Suppose we have the
following models for state transition and measurement

xk ¼ f xk�1;uk�1ð Þ þwk�1 (19)

zk ¼ h xkð Þ þ νk (20)

where f is the function of the previous state, xk�1, and the control input, uk�1,
that provides the current state xk. h is the measurement function that relates the
current state, xk, to the measurement zk. wk�1 and νk are Gaussian noises for the
process model and the measurement model with covariance Q and R, respectively.

3.2. Extended Kalman filter algorithm

All you need is to obtain the Jacobian matrix, first-order partial derivative of a
vector function with respect to a vector, of each model in each time step as:

Fk�1 ¼ ∂f
∂x

����
x̂þ

k�1,uk�1

(21)

Hk ¼ ∂h
∂x

����
x̂�

k

(22)

Note the subscripts of F and H are maintained here since the matrices are often
varying with different values of the state vector for each time step. By doing this,
you linearize the models about the current estimate. The filter algorithm is very
similar to Kalman filter.

7

Introduction to Kalman Filter and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.80600



Prediction:

Predicted state estimate x̂�
k ¼ f x̂þ

k�1;uk�1
� �

Predicted error covariance P�
k ¼ Fk�1Pþ

k�1F
T
k�1 þ Q

Update:

Measurement residual eyk ¼ zk � h x̂�
k

� �
Kalman gain Kk ¼ P�

k H
T
k RþHkP�

k H
T
k

� ��1

Updated state estimate x̂þ
k ¼ x̂�

k þ Kkey
Updated error covariance Pþ

k ¼ I � KkHkð ÞP�
k

As in the Kalman filter algorithm, the hat operator, ̂, means an estimate of a
variable. That is, x̂ is an estimate of x. The superscripts – and þ denote predicted
(prior) and updated (posterior) estimates, respectively. The main difference from
the Kalman filter is that the extended Kalman filter obtains predicted state estimate
and predicted measurement by the nonlinear functions f xk�1;uk�1ð Þ and h xkð Þ,
respectively.

3.3 Example

3.3.1 Target tracking

We are going to estimate a 3-dimensional target state (position and velocity) by
using measurements provided by a range sensor and an angle sensor. For example, a
radar system can provide range and angle measurement and a combination of a
camera and a rangefinder can do the same. We define the target state as:

x ¼ pT; vT
� �T

(23)

where p and v denote position and velocity of the target, respectively. The
system model is described as a near-constant-velocity model [2] in discrete time
space by:

xk ¼
pk

vk

" #
¼ f xk�1;uk�1ð Þ ¼ pk�1 þ vk�1Δt

vk�1

� �
þwk�1 (24)

The process noise has the covariance of wk�1 � N 0;Qð Þ where

Q ¼

03�3 03�3

03�3

σ2x 0 0

0 σ2y 0

0 0 σ2z

266664
377775 (25)

and σx, σy, and σz are the standard deviations of the process noise on the velocity
in x, y, and z directions, respectively.

8

Introduction and Implementations of the Kalman Filter



The measurement vector is composed of line-of-sight angles to the target, A and
E, and the range, R, to the target. The relationship between the measurement and
the relative target state with respect to the sensor comprises the measurement
model as:

zk ¼
A

E

R

264
375 ¼ h xkð Þ ¼

atan
xt � xs
yt � ys

	 


atan
zt � zsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xt � xsð Þ2 þ yt � ys
� �2q

0B@
1CA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt � xsð Þ2 þ yt � ys

� �2 þ zt � zsð Þ2
q

266666666664

377777777775
þ νk (26)

where pk ¼ xt; yt; zt
� �T is the position vector of the target and xs; ys; zs

� �T is the
position vector of the sensor. The target position is the variable in this measurement
model. Note that the measurement has nonlinear relationship with the target state.
This cannot be expressed in a matrix form as in (2) whereas the process model can
be. If at least one model is nonlinear, we should use nonlinear filtering technique. In
order to apply extended Kalman filter to this problem, let us take first derivatives of
the process model and measurement model as:

Fk�1 ¼ ∂f
∂x

����
x̂þ

k�1,uk�1

¼ I3�3 I3�3Δt
03�3 I3�3

� �
(27)

Hk ¼ ∂h
∂x

����
x̂�

k

¼

y
x2 þ y2

�x
x2 þ y2

0

�xz
x2 þ y2 þ z2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p �yz

x2 þ y2 þ z2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

03�3

2666666664

3777777775
(28)

where x; y; z½ �T ¼ xt � xs; yt � ys; zt � zs
� �T is the relative position vector. Note

that the matrix Hk varies with different values of x; y; z½ �T on which the filtering
result will, therefore, depend. Thus, one can plan the trajectory of the sensor to get a
better filtering result [6]. Developing such a method is one of active research topics.

In the simulation, the sensor is initially located at xs; ys; zs
� �T ¼ 40; 20; 50½ �T and

the sensor is moving in a circular pattern with a radius of 20 centered at
20; 20; 50½ �T. The initial state of the target is x0 ¼ 10;�10;0;�1;�2;0½ �T. The sen-
sor is moving with a constant velocity of �1;�2;0½ �T. The trajectory of the target
and the sensor is shown in Figure 3. Note that this is the case where we are aware
that the target has a constant velocity, unlike the example in Section 2.3, which is
why we modeled the state transition as the near-constant-velocity model in (4). Let
us consider N ¼ 20 time steps (k ¼ 1, 2, 3,…, NÞ with Δt ¼ 1. Suppose the measure-
ments are corrupted with a Gaussian noise whose standard deviation is
0:02;0:02; 1:0½ �T .

In the filter side, the covariance matrix for the process noise can be set as:

Q ¼ 03�3 03�3

03�3 I3�3σ2v

� �
(29)

9

Introduction to Kalman Filter and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.80600



where σv ¼ 5 is the tuning parameter that denotes how uncertain the velocity
estimate is. The measurement covariance matrix was constructed following the real
noise statistics as:

R ¼
0:022 0 0

0 0:022 0

0 0 1:02

264
375 (30)

M ¼ 100 Monte-Carlo runs were conducted with the following initial guesses:

x̂þ
0 ¼ x0 þ normrnd 0; 1; 1;0;0;0;0½ �ð Þ (31)

Pþ
0 ¼ I3�312 03�3

03�3 I3�30:12

" #
(32)

The above equation means that the error of the initial guess for the target state is
randomly sampled from a Gaussian distribution with a standard deviation of
1; 1;0;0;0;0½ �.

Time history of an estimation result for x-axis position and velocity is drawn
together with the true value in Figure 4. The shape of the line will be different at
each run. The statistical result can be shown as Figure 5. Note that the filter worked
inconsistently with the estimated error covariance different from the actual value.
This is because the process error covariance is set to a very large number. In this
example, the large process error covariance is the only choice a user can make
because the measurement cannot correct the velocity. One can notice that the
measurement Eq. (26) has no term dependent on the velocity, and therefore, matrix
H in (28) has zero elements on the right side of the matrix where the derivatives of
the measurement equation with respect to velocity are located. As a result, the
measurement residual has no effect on velocity correction. In this case, we say the
system has no observability on velocity. In practice, this problem can be mitigated
by setting the process noise covariance to a large number so that the filter believes
the measurement is more reliable. In this way, we can prevent at least the position
estimate from diverging.

Figure 3.
Trajectory of the sensor and the target.

10

Introduction and Implementations of the Kalman Filter



Source code of MATLAB implementation for this example can be found in [5]. It
is recommended for the readers to change the parameters and trajectories by your-
self and see what happens.

3.3.2 Terrain-referenced navigation

Terrain-referenced navigation (TRN), also known as terrain-aided navigation
(TAN), provides positioning data by comparing terrain measurements with a digital
elevation model (DEM) stored on an on-board computer of an aircraft. The TRN
algorithm blends a navigational solution from an inertial navigation system (INS)

Figure 4.
Time history of an estimation result for x-axis position and velocity.

Figure 5.
Actual and estimated standard deviation for x axis estimate errors.

11

Introduction to Kalman Filter and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.80600



with the measured terrain profile underneath the aircraft. Terrain measurements
have generally been obtained by using radar altimeters. TRN systems using cameras
[7], airborne laser sensors [8], and interferometric radar altimeters [9] have also
been addressed. Unlike GNSS’s, TRN systems are resistant to electronic jamming
and interference, and are able to operate in a wide range of weather conditions.
Thus, TRN systems are expected to be alternative/supplement systems to GNSS’s.

The movement of the aircraft is modeled by the following Markov process:

xk ¼ xk�1 þ uk�1 þwk�1 (33)

where xk�1, uk�1, and wk�1 denote the state vector, the relative movement, and
the additive Gaussian process noise, respectively, at time k� 1. xk ¼ ϕ; λ½ �T is a two-
dimensional state vector, which denotes the aircraft’s horizontal position. Estimates
of the relative movement (velocity) are provided by the INS and their error is
absorbed intowk�1 to limit the dimensionality of the state. The simple model in (33)
is considered realistic without details of INS integration if an independent attitude
solution is available so that the velocity can be resolved in an earth-fixed frame [10].
The estimation models we deal with belong to the TRN filter block in Figure 6,
taking relative movement information from the INS as uk.

Typical TRN systems utilize measurements of the terrain elevation underneath
an aircraft. The terrain elevation measurement is modeled as:

zk ¼ h xkð Þ þ υk (34)

where h xkð Þ denotes terrain elevation from the DEM evaluated at the horizontal
position, xk, and υk denotes the additive Gaussian measurement noise. The eleva-
tion measurement is obtained by subtracting the ground clearance measurement
from a radar altimeter, hr, from the barometric altimeter measurement, hb. υk
contains errors of the radar altimeter, barometric altimeter, and DEM. The ground
clearance and the barometric altitude correspond to the above ground level (AGL)
height and the mean sea level (MSL) height, respectively. The relationship between
the measurements is depicted in Figure 7. Note that the terrain elevation that
comprises the measurement model in (34) is highly nonlinear.

The process model in (33) and themeasurementmodel in (34) can be linearized as:

Fk�1 ¼ ∂f
∂x

����
x̂þ

k�1,uk�1

¼ I2�2 (35)

Figure 6.
Conventional TRN structure.

12

Introduction and Implementations of the Kalman Filter



Hk ¼ ∂h
∂x

����
x̂�

k

¼ ∂D ϕ; λð Þ
∂ϕ

∂D ϕ; λð Þ
∂λ

� �
(36)

where D ϕ; λð Þ denotes the terrain elevation from the DEM on the horizontal
position ϕ; λ½ �T.

The DEMs are essentially provided as matrices containing grid-spaced elevation
data. For obtaining finer-resolution data, interpolation techniques are often used to
estimate the unknown value in between the grid points. One of the simplest
methods is linear interpolation. Linear interpolation is quick and easy, but it is not
very precise. A generalization of linear interpolation is polynomial interpolation.
Polynomial interpolation expresses data points as higher degree polynomial. Poly-
nomial interpolation overcomes most of the problems of linear interpolation. How-
ever, calculating the interpolating polynomial is computationally expensive.
Furthermore, the shape of the resulting curve may be different to what is known
about the data, especially for very high or low values of the independent variable.
These disadvantages can be resolved by using spline interpolation. Spline interpo-
lation uses low-degree polynomials in each of the data intervals and let the polyno-
mial pieces fit smoothly together. That is, its second derivative is zero at the grid
points (see [11] for more details). Classical approach to use polynomials of degree 3
is called cubic spline. Because the elevation data are contained in a two-dimensional
array, bilinear or bicubic interpolation are generally used. Interpolation for two-
dimensional gridded data can be realized by interp2 function in MATLAB. Cubic
spline interpolation is used in this example.

The DEM we are using in this example has a 100� 100 grid with a resolution of
30. The profile of the DEM can be depicted as Figure 8. The figure represents
contours of the terrain where brighter color denotes regions with higher altitude.
The point (20, 10) in the grid corresponds to the position 600; 300½ �T in the navi-
gation frame.

An aircraft, initially located at x0 ¼ 400;400½ �T, is moving by 20 every time step
in x direction. The aircraft is equipped with a radar altimter and a barometric
altimter, which are used for obtaining the terrain elevation. This measured terrain
elevation is compared to the DEM to estimate the vehicle’s position.

The process noise wk�1 is a zero-mean Gaussian noise with the standard devia-
tion of 0:5;0:5½ �T . The radar altimeter is corrupted with a zero-mean Gaussian noise

Figure 7.
Relationship between measurements in TRN.

13

Introduction to Kalman Filter and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.80600



with the standard deviation of 3. The matrices Q and R are following the real
statistics of the noises as:

Q ¼ 0:52 0

0 0:52

" #
(37)

R ¼ 32 (38)

Let us consider N ¼ 100 time steps (k ¼ 1, 2, 3,…, NÞ with Δt ¼ 1. M ¼ 100
Monte-Carlo runs were conducted with the following initial guesses:

x̂þ
0 ¼ x0 þ normrnd 0; 50; 50½ �ð Þ (39)

Pþ
0 ¼ 502 0

0 502

" #
(40)

The above equation means the error of the initial guess for the target state is
randomly sampled from a Gaussian distribution with a standard deviation of
50; 50½ �.

The time history of RMSE of the navigation is shown in Figure 9. One can observe
the RMSE converges relatively slower than other examples. Because the TRN esti-
mates 2D position by using the height measurements, it often lacks information on
the vehicle state. Moreover, note that the extended Kalman filter linearizes the terrain
model and deals with the slope that is effective locally. If the gradient of the terrain is
zero, the measurement matrix H has zero-diagonal terms that has zero effect on the
state correction. In this case, the measurement is called ambiguous [12] and this
ambiguous measurement often causes filter degradation and divergence even in
nonlinear filtering techniques. With highly nonlinear terrain models, TRN systems
have recently been constructed with other nonlinear filtering methods such as point-
mass filters and particle filters, rather than extended Kalman filters.

Figure 8.
Contour representation of terrain profile.

14

Introduction and Implementations of the Kalman Filter



Source code of MATLAB implementation for this example can be found in [5]. It
is recommended for the readers to change the parameters and aircraft trajectory by
yourself and see what happens.

4. Conclusion

In this chapter, we introduced the Kalman filter and extended Kalman filter
algorithms. INS/GNSS navigation, target tracking, and terrain-referenced naviga-
tion were provided as examples for reader’s better understanding of practical usage
of the Kalman filters. This chapter will become a prerequisite for other contents in
the book for those who do not have a strong background in estimation theory.

Author details

Youngjoo Kim* and Hyochoong Bang
Korea Advanced Institute of Science and Technology, Daejeon, South Korea

*Address all correspondence to: yjkim@ascl.kaist.ac.kr

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

Figure 9.
Time history of RMSE.

15

Introduction to Kalman Filter and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.80600



References

[1] Simon D. Optimal State Estimation:
Kalman, H Infinity, and Nonlinear
Approaches. Oxford: John Wiley &
Sons; 2006

[2] Li XR, Jilkov VP. Survey of
maneuvering target tracking. Part I.
Dynamic models. IEEE Transactions on
Aerospace and Electronic Systems.
2003;39(4):1333-1364

[3] Rajamani MR, Rawlings JB.
Estimation of the disturbance structure
from data using semidefinite
programming and optimal weighting.
Automatica. 2009;45(1):142-148

[4] Matisko P, Havlena V. Noise
covariance estimation for Kalman filter
tuning using Bayesian approach and
Monte Carlo. International Journal of
Adaptive Control and Signal Processing.
2013;27(11):957-973

[5] Introduction to Kalman Filter and Its
Applications. 2018. Available from:
https://uk.mathworks.com/
matlabcentral/fileexchange/
68262-introduction-to-kalman-
filter-and-its-applications

[6] Kim Y, Jung W, Bang H. Real-time
path planning to dispatch a mobile
sensor into an operational area.
Information Fusion. 2019;45:27-37

[7] Kim Y, Bang H. Vision-based
navigation for unmanned aircraft using
ground feature points and terrain
elevation data. Proceedings of the
Institution of Mechanical Engineers,
Part G: Journal of Aerospace
Engineering. 2018;232(7):1334-1346

[8] Vadlamani AK, de Haag MU. Dual
airborne laser scanners aided inertial for
improved autonomous navigation. IEEE
Transactions on Aerospace and
Electronic Systems. 2009;45(4):1483-
1498

[9] Kim Y, Park J, Bang H. Terrain
referenced navigation using an
interferometric radar altimeter,
NAVIGATION. Journal of the Institute
of Navigation. 2018;65(2):157-167

[10] Rogers RM. Applied mathematics in
integrated navigation systems.
American Institute of Aeronautics and
Astronautics. 2007

[11] Interpolation. Available from:
https://en.wikipedia.org/w/index.php?
title=Interpolation&oldid=765887238

[12] Kim Y, Hong K, Bang H. Utilizing
out-of-sequence measurement for
ambiguous update in particle filtering.
IEEE Transactions on Aerospace and
Electronic Systems. 2018;54(1):493-501

16

Introduction and Implementations of the Kalman Filter


	Outline placeholder
	1. Introduction
	2. Kalman filter
	2.1 Problem definition
	2.2 Kalman filter algorithm
	2.3 Example

	3. Extended Kalman filter
	3.1 Problem definition
	3.2. Extended Kalman filter algorithm
	3.3 Example
	3.3.1 Target tracking
	3.3.2 Terrain-referenced� navigation


	4. Conclusion


