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1. Introduction  

Particle swarm optimisation (PSO) was developed by Kennedy and Eberhart in 1995 
(Kennedy & Eberhart, 1995) inspired by the collective behaviour of natural birds or fish. 
PSO is a stochastic optimisation technique that uses a behaviour of population composed by 
many search points called particle. In spite of easy implementation in computer algorithms, 
it is well known as a powerful numerical optimizer. In the typical PSO algorithms, a set of 
particles searches the optimal solution in the problem space efficiently, by sharing the 
common attractor called global best. There are many modified versions of PSO by 
improving convergence property to a certain problem. While, a standard PSO is defined by 
Bratton and Kennedy (Bratton & Kennedy, 2007) to give a real standard for PSO studies. 
PSO seems as one of the evolutionary computations (ECs), and it has been shown that PSO 
is comparable to a genetic algorithm (Angeline, 1998). Thus, a lot of studies have 
demonstrated the effectiveness of PSO family in optimizing various continuous and discrete 
optimization problems. And a plenty of applications of PSO, such as the neural network 
training, PID controller tuning, electric system optimisation have been studied and achieved 
well results (Kennedy, 1997). 
However, PSO is often failed in searching the global optimal solution in the case of the 
objective function has a large number of dimensions. The reason of this phenomenon is not 
only existence of the local optimal solutions, the velocities of the particles sometimes lapsed 
into the degeneracy, so that the successive range is restricted in the sub-plain of the whole 
search hyper-plain. The sub-plane that is defined by finite number of particle velocities is a 
partial space in the whole search space. The issue of local optima in PSO has been studied 
and proposed several modifications on the basic particle driven equation (Parsopoulos et al., 
2001; Hendtlass, 2005; Liang et al., 2006). There used a kind of adaptation technique or 
randomized method (e.g. mutation in evolutionary computations) to keep particles 
velocities or to accelerate them. Although such improvements work well and have ability to 
avoid fall in the local optima, the problem of early convergence by the degeneracy of some 
dimensions is still remaining, even if there are no local optima. Hence the PSO algorithm 
does not always work well for the high-dimensional function.  
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From this point of view, the purpose of this paper is to improve performance of the PSO 
algorithm in case of high-dimensional optimization. To avoid such convergence with finite 
number of particles, we propose a novel PSO model, called as the Rotated Particle Swarm 
(RPS), where we introduce a coordinate conversion method. The numerical simulation 
results show the RPS is efficient in optimizing high-dimensional functions. 
The remaining parts of this chapter organized as the following.  In Section 2, PSO is briefly 
introduced, and then the early convergence phenomenon is illustrated. The proposed novel 
PSO model is shown in Section 3. Some results of the numerical studies for the benchmark 
problems are presented in Section 4, and we mention about some remarks in the last section. 

2. Particle Swarm Optimization 

Each particle, it is a member of the population, has its own position x and velocity v. A 
velocity decides a movement direction of a particle. The particles fly around the problem 
space, searching for the position of optima. Each particle memorizes two positions in order 
to find a favourite position in the search space. One is its own best position called the 
personal best and the other is the global best that is the best among all particles, denoted by 
p and g, respectively. Then, )(ip  indicates the best position found by i-th particle from the 

first time step and )(ig  indicates the best position among all pi in the neighbour particle of i-

th particle.  Neighbour particle is defined by the topology of particles, which represents the 
network structure of population. Memories are utilized in adjusting the velocity to find 
better solutions.  
In one of the standard versions of PSO algorithm, the velocity and position are updated at 
each time step, according to the following two equations,  
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Here, ┯ is the constriction coefficient, which prevents explosion of the velocity and balances 
between exploration and exploitation. The coefficients r1,d and r2,d are random values  
uniformly distributed over the range [0, 1]. These parameters are often set as ┮1,d = ┮2d = 2.05 

and ┯ = 0.7298 (Kenndy & Clerc, 2002).  )(i

dv  indicates d-th element of velocity vector of i-th 

particle, and  )(i

dx indicates d-th element of position.  )(i

dp  and )(i

dg represent d-th elements of 

)(ip and )(ig  respectively. 

Some theoretical analyses of particle trajectories derived from Eq. (1) and (2) have been 
performed, where PSO algorithm is simplified (e.g., only one particle, one dimension, no 
stochastic elements) (Ozcan & Mohan, 1998; Ozcan & Mohan, 1999; Kenndy & Clerc, 2002). 
In those studies, it is shown that each particle oscillates around the weighted average 
position of its p and g, and settle down in an equilibrium state where velocities are 
considerably small until new p or g  is found by particle. Note that the particles converge are 
not always local or global optima. We consider the effect of this kind of convergence 
property on high-dimensional optimization. Now, we present the experimental results 
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where a standard PSO algorithm is applied to high-dimension Sphere function. Sphere 
function is one of the standard test functions without local optima. It is defined as follows, 

  ∑
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where D represents the number of dimensions.  
Population size is set to 20 particles. Star topology, where all particles are interconnected, is 
used. The average fitness (function value) for 10 dimensions case at each time step over 10 
trials is shown in Fig.1. 

  

Figure 1. Function value of the global best particle, in case of dimension size D=10 

 

Figure 2. Function value of the global best particle, in case of dimension size D=100 

Figure 2 shows the average fitness in the same conditions except for the dimension. In this 
case, a dimension is 100. The function value in 10 dimensions keeps decreasing as the search 
proceeds, while the improvement of the fitness value in 100 dimensions gets slow. Note that 
both vertical and horizontal axes are not same order. For higher dimension, the convergence 
speed is very low, or it does not converge. 
We examined the other topologies such as four clusters, pyramid or ring. They have low 
connectivity to keep diversity in population. Though they yield better results than the Star 
topology, performance gets worse as the dimension of dimensions increases. When PSO 
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does not work well in optimizing high-dimensional function like this result, it is frequently 
observed that diversity of positions and memories of the whole population in some 
dimensions gets lost without trapping local optima.  
It is conjectured that such premature convergence occurs because the velocity updating by 
Eq. (1) depends only on information of the same dimension. Once the diversity of positions 
and memories of certain dimension gets low, particles have difficulty in searching in the 
direction of the dimension. In the next section, we propose the novel velocity model that 
utilizes information of other dimensions. 

3. Rotated Particle Swarm 

Now, to consider the conventional way to update the velocity, we rewrite Eq. (1) by vectors 
and matrixes, such as, 

 ))()(( 21 iiiiii xgxpvv −Φ+−Φ+= χ ,  (4) 

where  

 ),,,( ,1,12,12,11,11,11 DDrrrdiag φφφ K=Φ   (5) 

 ),,,( ,2,22,22,21,21,22 DDrrrdiag φφφ K=Φ .  (6) 

Fig.3 illustrates sample space by )( )()(

1

ii xp −Φ , the second term of Eq. (1), in 2 dimensions.  

 

Figure 3. Geometric illustration of sample space by )( )()(

1

ii xp −Φ  in 2 dimensions 

In 
21 xx −  coordinate system where 

ix  and 
ip  are aligned parallel to the axis, the sample 

space has only one degree of freedom. On the other hand, the sample space is two-
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dimensional in the 
21 xx ′−′  coordinate system. The same can be said about )( )()(

2

ii xg −Φ . 

The original PSO algorithm was designed by emulating birds seeking food. Birds probably 
never change the strategy to seek according to whether food exists in the true north or in the 
northeast. Consequently, particles can search optima even if axes are rotated. We introduce 
the coordinate conversion to the velocity update.  

Before the values are sampled by )( )()(

1

ii xp −Φ and )( )()(

2

ii xg −Φ , the coordinate system is 

rotated.  Thus information of other dimensions is employed in calculating each component 
of velocity.  In the proposed method, the velocity update equation Eq. (5) is substituted into 
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where A is DD×  matrix to rotate the axes. For the remainder of this paper, we refer to the 
PSO algorithm with this proposed velocity update method as the Rotated Particle Swarm 
(RPS). The RPS is designed for high-dimensional optimization. Therefore matrix 
computation is time-consuming if axes are arbitrarily rotated. To avoid it, in this study, 
certain number of axes are randomly selected without duplication and paired respectively. 
Only pairs of selected axes are rotated by θ. Most of the elements of A determined by this 

means are zero. For example, if D = 5 and selected pairs of axes are 
21 xx − and 

53 xx − , 
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4. Numerical Simulation 

The following well-known test functions, i.e. Sphere function, Quatric function (De Jong F4), 
Rosenbrock function, Griewank Function, and Rastrigin function) are used to evaluate 
convergence property of the proposed method.   
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Sphere function, Quatric function and Rosenbrock function are unimodal. The others are 
multimodal functions. Rosenbrock function has dependence among variables.  
For each function, search range and initialization rage were defined as listed in Table.1. 
Rosenbrock function has its global optimum at [1, 1]D and the others have at the origin. We 
use asymmetric initialization method, in which initial population is distributed only in a 
portion of the search range (Angeline, 1998).  Optimal population size is problem-
dependent.  In this study, population size is set to 20 which is commonly used (Bergh & 
Engelbrecht, 2001).  The canonical PSO and the RPS are tested with Star and Von Neumann 
topology.  Von Neumann topology is grid-structured and has been shown to outperform 
other topologies in various problems (Kennedy & Mendes, 2002).  In the RPS algorithm, the 
angle of rotation θ is set to π/5 and number of axes to be rotated is 40% of number of 
dimensions.  The number of dimension D is set to 30, 100, and 400.  Each experiment is run 
20 times in each condition and the fitness at each time step is averaged.   
In the results of Sphere function shown in Fig.3 - 5, in these figures, the bold lines show the 
convergence properties of the conventional PSO and the thin lines show the convergence 
properties of the proposed PSO. The solid lines indicate using the star topology and the 
dash lines indicate using Von-Neumann topology.  
We can see a great difference in convergence ability between the RPS and the canonical PSO.   
Especially in D=400 though it becomes difficult for the canonical PSO to keep converging to 
the optimum, the fitness of RPS keeps decreasing. Similarly, in the case of Quatric, 
Rosenbrock and Griewank shown in Fig.6-14, for every functions, a convergence speed and 
final obtained fitness of the RPS get relatively good compared with the canonical PSO as the 
number of dimension increases. 

Function Search range Range of the initial population 

Sphere [-50, 50]D [25, 40] D  

Quatric [-20, 20]D [10, 16] D  

Rosenbrock [-100, 100]D [50, 80] D  

Griewank [-600, 600]D [300, 500] D  

Rastrigin [-5.12, 5.12]D [1, 4.5]D 

Table 1. Search range and initialization for each function 

5. Conclusion 

The purpose of this study is to improve the early convergence of the particle swarm 
optimization in high-dimensional function optimization problems by the degeneracy. We 
have proposed the novel particle driven model, called Rotated Particle Swarm (RPS). It 
employs a coordinate conversion where information of other dimensions is utilized to keep 
diversity of each dimension. It is very simple technique and it is able to apply to any 
modified PSO model. The experimental results have shown that the proposed RPS is more 
efficient in optimizing high-dimensional functions than a standard PSO. The proposed RPS 
indicated remarkable improvement in convergence for high-dimensional space, especially in 
unimodal functions. An appropriate selection of rotated angles and dimensions are the 
future study, however it is envisioned that the performance of the proposed algorithm has 
robustness for such parameter settings. To compare the proposed method to the other 
modifications and to develop more powerful algorithm by combining with local optima 
technique are now under investigation. 
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Figure 4. Sphere function (D=30) 

 

Figure 5. Sphere function (D=100) 

 

Figure 6. Sphere function (D=400) 
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Figure 7. Quatric function (D=30) 

 

Figure 8. Quatric function (D=100) 

 

Figure 9. Quatric function (D=400) 
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Figure 10. Rosenbrock function (D=30) 

 

Figure 11. Rosenbrock function (D=100) 

 

Figure 12. Rosenbrock function (D=400) 
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Figure 13. Griewank function (D=30) 

 

Figure 14. Griewank function (D=30) 

 

Figure 15. Griewank function (D=30) 
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Figure 16. Rastrigin function (D=30) 

 

Figure 17. Rastrigin function (D=100) 

 

Figure 18. Rastrigin function (D=400) 
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