
19

LS-Draughts: Using Databases to Treat
Endgame Loops in a Hybrid Evolutionary

Learning System

Henrique Castro Neto, Rita Maria Silva Julia and Gutierrez Soares Caixeta
Computer Science Department, Federal University of Uberlândia

Brazil

1. Introduction

The Reinforcement Learning methods have been a subject of great interest in the machine
learning area, since it does not require an intelligent “professor” to provide training
examples. That is why it is a suitable tool for dealing with complex domains where it is hard
or even impossible to obtain such examples (Russell & Norvig, 2003). Among the
Reinforcement Learning methods, one can be stood out: the TD learning methods. They are
widely used with highly efficient results, including in the construction of agents capable of
learning to play Draughts, Chess, Backgammon, Othello, GO or other games (Samuel, 1959;
Lynch, 1997; Lynch & Griffith, 1997; Neto & Julia, 2007; Schaeffer et al., 2001; Thrun, 1995;
Tesauro, 1994; Leuski, 1995; Schraudolph et al., 2001 and Epstein, 2001). Such agents have
demonstrated that the games are, undoubtedly, a very suitable domain to study and to
check the efficiency of the main techniques of machine learning.
As an example of good automatic player agents, the LS-Draughts - (Neto & Julia, 2007) can
be cited. It is a Draughts learning system based on Mark Lynch’s NeuroDraughts player
(Lynch & Griffith, 1997) which uses three important tools in machine leaning: Genetic
Algorithms (AGs), Artificial Neural Network (ANN) and Temporal Differences (TD)
Reinforcement Learning methods. It also adopts the NET-FEATUREMAP mapping
technique to represent the game board states. This mapping represents the game board
states by means of a set of functions – called features – that capture relevant knowledge
about the domain of draughts and use this knowledge to map the game board in the input
of an Artificial Neural Network. Using Genetic Algorithms, the LS-Draughts extends
NeuroDraughts and automatically generates a concise and efficient set of features which is
relevant to represent the game board states and to optimize the training of the draughts
player agent (NeuroDraughts uses a fixed and manually defined set of features). The core of
LS-Draughts consists of an Artificial Neural Network whose weights are updated by the
Temporal Differences Reinforcement Learning methods. The Network output corresponds
to a real number (prediction) that indicates to what extent the board sate represented by
features in the Network input is favorable to the agent. The agent is trained by self-play
coupled with a cloning technique. The minimax algorithm is used to choose the best action
to be executed considering the current game board state. LS-Draughts shows that the GAs
can be an important tool for improving the general performance of automatic players. O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Theory and Novel Applications of Machine Learning, Book edited by: Meng Joo Er and Yi Zhou,
 ISBN 978-3-902613-55-4, pp. 376, February 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Theory and Novel Applications of Machine Learning

280

Furthermore, GAs presented a good performance along with another important machine
learning technique: the Temporal Differences Reinforcement Learning methods. Despite of
the fact that LS-Draughts improved the general performance of NeuroDraughts, it did not
manage to lessen its endgame loop problems (Neto & Julia, 2007).
In order to attack this problem, here the authors present an extended version of LS-Draughts
where the endgame databases of the exceptional automatic draughts player Chinook
(Schaeffer et al., 1996; Schaeffer, 1997) have been added to.
The main purpose of including the endgame databases of Chinook into the extended LS-
Draughts is to try to answer two important questions:
1. Will the addition of the endgame databases into the original LS-Draughts contribute, in

fact, for improving its general performance?
2. Will the use of the endgame databases help to decrease the rate of endgame loops in the

original LS-Draughts? (This problem occurs in NeuroDraughts as well).
Finally, a tournament was executed between the available player of NeuroDraughts, the

best player of the original LS-Draughts and the best player generated by the extended

version of LS-Draughts proposed here. Furthermore, the rates of endgame loops occurred

during the training process of these three players were also estimated. The results obtained

show that the insertion of endgame databases into LS-Draughts produced a much better

player and decreased significantly the rate of endgame loops.

2. Temporal differences methods in games

This section explains how TD Reinforcement Learning methods can be used along with

minimax search by a player Neural Network. First, the Network is rewarded for a good

performance (that is, it receives from the environment a positive reinforcement

corresponding to the endgame state, in case of victory) and it is punished for a bad

performance (it receives from the environment a negative reinforcement corresponding to

the endgame, in case of defeat). For all the intermediate game board states (between the

starting board and the final board) represented in the input layer of the Network, as no

specific reward is available, the TD mechanism calculates the prediction P of victory by

means of the following equation:

 (),outputP g in= (1)

where g is the hyperbolic tangent function and inoutput is the local induced field on the

neuron of the Network output layer (Haykin, 1998; Lynch, 1997). It means that the value of

P depends on the Network weights. Then, a prediction P corresponds to a real number

belonging to the interval [-1,1] that indicates how much the game board state represented in

the Network input is favorable to the agent. Each time the agent must move a piece, the

minimax algorithm is used to build a depth n breadth-first search tree whose root S is the

current state (resultant from the last opponent move), whose depth 1 nodes correspond to

the states resultant from all possible moves available to the agent considering the state S,

and so on for the depth 2, depth 3, …, depth n, which correspond to all possible states

resulting from the opponent’s and agent’s later moves up to the depth n level. The Network

calculates, then, the predictions P for each depth n sate. Finally, these values will be

returned to the minimax algorithm in order to allow it to indicate to the agent which is the

www.intechopen.com

LS-Draughts: Using Databases to Treat Endgame Loops in a Hybrid Evolutionary Learning System

281

best action to choose and to execute in S. Whenever the agent executes a move, the Network

weights are updated according to equation 2 (Sutton, 1988):

1

(1)

1
1

() ,
t

t k

t t t w k
k

w P P Pα λ− − −
− =

Δ = − ∇∑ (2)

where
t
P is the prediction corresponding to the current game board state,

1t
P− is the

prediction corresponding to the previous game board sate, each
k
P represents the

prediction corresponding to an earlier game board state, α is the learning rate (defined

according to how fast the system will update the Network weights), λ is a constant defined

according to how much the system will consider the impact of an earlier state
k
P in the

weight updating process and
w k
P∇ corresponds to the partial derivate of

k
P with respect to

the variable w (weight).
A small revolution in the field of Reinforcement Learning occurred when Gerald Tesauro
presented his training results obtained by applying the TD methods to an evaluation
function (Tesauro, 1992; Tesauro, 1995). Tesauro’s program, TD-Gammon, is a backgammon
player that, in spite of having very little knowledge about backgammon, is able to play as
efficiently as the greatest world players (Tesauro, 1994). The principles of TD methods were
first applied by Samuels, who pioneered the idea of updating evaluations based on
successive predictions in a checker program (Samuel, 1959). Another very successful work
with the TD methods is that proposed by Jonathan Schaeffer and other researchers
(Schaeffer et al., 2001) that produced a detailed comparative study between an evaluation
function trained manually by experts (which is the case of the current draught champion
CHINOOK (Schaeffer et al., 1996)) and an evaluation function trained by the Temporal
Differences methods. This analysis showed that the self-learning strategy along with the TD
methods is an efficient tool to produce automatic agents able to play with a high level of
performance.
Other works that obtained good results with the TD method are: Mark Lynch (Lynch, 1997),
Neto and Julia (Neto & Julia, 2007), Thrun (Thrun, 1995), Leuski (Leuski, 1995), Schraudolph
(Schraudolph et al., 2001), Baxter (Baxter et al., 1998) and Levinson and Weber (Levinson &
Weber, 2002).

3. Evolutionary computation in games

Evolutionary Computation is an area of Computer Science which uses ideas from biological
evolution to solve computational problems. Many such problems require searching through
a huge space of possibilities for solutions, such as the classification task in data mining, the
selection of a collection of rules (or actions) that will control a robot as it navigates in its
environment, or the job-shop scheduling task. Such computational problems often require a
system to be adaptive – that is, to continue to perform well in a changing environment.
The basis for Evolutionary Computation is the schema theory modeled mathematically by
Holland (Holland, 1992). The schema theory is inspired on the principle of survival of the
fittest individuals of the Darwin’s theory of natural selection, where the fittest individuals
are selected to produce offspring for the next generation. In the context of search,
individuals are candidate solutions to a given search problem. Hence, reproduction of the
fittest individuals means reproduction of the best current candidate solutions. Genetic
operators such as selection, crossover and mutation generate offspring from the fittest

www.intechopen.com

 Theory and Novel Applications of Machine Learning

282

individuals. One of the advantages of Evolutionary Computation over “traditional” search
methods is that the former performs a kind of global search using a population of
individuals, rather than performing a local search. The global search methods are more
vigorous than the local search methods to avoid to be trapped into a local maximum. There
are several approaches that have been followed in the field of Evolutionary Computation.
The general term for such approaches is evolutionary algorithms. The most widely used
form of evolutionary algorithms is Genetic Algorithms, which was the main focus of the
original version of LS-Draughts (Neto & Julia, 2007). Other common forms of evolutionary
algorithms are Evolution Strategies, Evolutionary Programming and Genetic Programming
(Mitchell & Taylor, 1999).
The application of Evolutionary Computation in games has helped to produce very good
player agents, principally as an alternative paradigm to the conventional training process.
David Fogel, using evolutionary algorithms to update the weights of the chess player
Multilayer Neural Network corresponding to his best chess player BLONDIE25 (Fogel et al.,
2004), as well as to update the weights of the draught player Multilayer Neural Network
corresponding to his best draught player ANACONDA (Fogel & Chellapilla, 2002), proved
the usefulness of the evolutionary algorithms as a training tool, once BLONDIE25 and
ANACONDA obtained the titles of master in chess and expert in draughts, respectively, due
to their excellent performance in international tournaments.
Fogel also tested his player ANACONDA against an ancient good version of CHINOOK .
The former obtained a better performance: 4 victories, 3 defeats and 3 draws.

4. Temporal differences x evolutionary computation

Paul Darwen demonstrates in (Darwen, 2001) that the TD methods are more efficient than
Evolutionary Computation methods to train backgammon player agents implemented as
nonlinear systems, since the former methods requires only a few hundred thousand training
games to produce a good player, whereas the later ones would require billions of training
games to obtain the same performance. On the other hand, Darwen showed that
Evolutionary Computation is more efficient than TD methods to train backgammon player
agents implemented as linear systems. The same seems to be also valid for draughts
domain. For instance, ANACONDA needed 126.000 training games to present the same
performance obtained by Schaeffer’s world champion player CHINOOK – trained manually
– after only 10.000 training games.
Inspired by Darwen’s results, Neto and Julia demonstrated in (Neto & Julia, 2007) that GAs
can be an important tool for improving the general performance of draughts player Neural
Networks trained by the Temporal Differences methods. Their best draughts player
obtained a better performance in relation to the Mark Lynch’s NeuroDraughts player: 2
victories and 5 draws. However, despite of the fact LS-Draughts has improved the general
performance of NeuroDraughts, it presented endgame loop problems. For example,
analysing the 5 draws against NeuroDraughts, in 2 of them the best player of LS-Draughts
could easily have won if it was able to detect endgame loops. In order to solve this problem,
as mentioned above, the authors present, in the next section, the architecture and the
implementation of the extended version of LS-Draughts (including the GA of the original
version) where the endgame databases of the draughts player Chinook have been added to.
Next, the problem of the endgame loops found in the original LS-Draughts will be shown.
Finally, this chapter shows the results obtained by the extended version of LS-Draughts.

www.intechopen.com

LS-Draughts: Using Databases to Treat Endgame Loops in a Hybrid Evolutionary Learning System

283

5. The LS-Draughts with endgame databases

The extended LS-Draughts is a learning system whose main objective is to generate a
draught player agent able to play draughts on a high performance level. In order to cope
with this objective, the LS-Draughts extends the Mark Lynch’s NeuroDraughts player
(Lynch, 1997; Lynch & Griffith, 1997) by the adiction of the following modules:
1. An automatic feature generation module whose purpose is to automatically generate,

by means of Genetic Algorithms, a concise set of features which are essential for
representing the game board states and to optimize the training of the LS-Draugths’
player agents. More concisely, each agent consists of an Artificial Neural Network
whose weights are updated by the Temporal Differences methods (Neto & Julia, 2007);

2. An endgame database module whose purpose is to anticipate the result of the game
(victory, defeat or draw) for draughts board states with up to eight pieces on the board.
By adding this endgame database, the extended LS-Draughts tries to improve the
adjustment of the Neural Network weights through perfect information retrieved from
the database indicating predictions of victory, defeat or draw (instead of using heuristic
information). Indeed, this procedure tends to let the evaluation function of the extended
LS-Draughts more efficienty and more accuraty, reducing, therefore, the rate of
endgame loops.

The new architecture of LS-Draughts is indicated in figure 1. The figure shows, through a
flowchart of arrows enumerated from 1 up to 14, an overview of total training process of LS-
Draughts, including the six modules. The architecture and the flowchart are explained
below.

Fig. 1. LS-Draughts’ new architecture, with endgame databases.

www.intechopen.com

 Theory and Novel Applications of Machine Learning

284

The system is composed of six main modules:
1. The Automatic Feature Generation Module or GA: corresponds to Genetic Algorithms

that generate
P
T individuals which represent subsets of every available features in the

NET-FEATUREMAP mapping (the same mapping technique used by Lynch in
NeuroDraughts);

2. The Draughts Player Agent Module (ANN): corresponds to a Multilayer Neural
Network whose input layer represents a game board state. The Network output
corresponds to a real number (prediction) that indicates to what extent the input state is
favorable to the agent;

3. The Board Mapping Module: the draughts game board is implemented in an array of
32 positions, which each position represents a specific square of the draughts board.
The mapping used by LS-Draughts is the NET-FEATUREMAP (more details about this
kind of mapping can be found in (Lynch, 1997)). The role of this module is to represent
a game board state (or array of 32 positions), in the Neural Network input, by means of
a set of functions called features;

4. The Minimax Search Module: the role of this module is to select the best action to be
executed by the agent according to the current game board state. The classical minimax
algorithm can be found in (Russel & Norvig, 2003). Section 5.4.2 presents the pseudo-
code corresponding to the search algorithm here proposed, which combines the
minimax algorithm and the use of endgame databases;

5. The Agent Training Module or TD: corresponds to the learning process of the player
agent or ANN. This module uses Temporal Differences Reinforcement Learning
methods and self-play with cloning as training strategy;

6. The Endgame Database Module: the use of endgame database (Lake et al., 1994;
Schaeffer et al., 1996) reduces the sequence of necessary moves, from the initial game
board, in order to reach a position with defined theoretical value, that is, victory, defeat
or draw. The endgame databases used by LS-Draughts are available on
http://www.cs.ualberta.ca/~chinook/ and the library of functions that allows to access
to these databases is available on http://pages.prodigy.net/
eyg/checkers/kingsrow.htm.

As cited in (Neto & Julia, 2007), the learning process of LS-Draughts is similar to the one

performed by NeuroDraughts (this latter corresponds to second, third, fourth and fifth

modules of the new architecture of LS-Draughts). However, the fifth module of LS-

Draughts modifies the training process of NeuroDraughts in the following way: in the

former, innumerous individuals – that is, innumerous sets of features – are trained,

whereas in the latter, just one is trained. Furthermore, the first and sixth modules extend

the Mark Lynch’s player. The first module automatically generates, by means of GAs,

feature sets that tend to represent, efficiently, the game board states in order to produce

good draught players. The sixth module uses the endgame databases of Chinook in order

to reduce endgame loop problems and to improve the learning of the individuals. Note

that this new version of LS-Draughts extends the original version only by the addiction of

the sixth module. The interaction between the second, fourth and fifth modules have

already been described in the section 2. More details about these can be found in (Lynch,

1997).

An overview of the flowchart of arrows indicated in the figure 1 is presented as follow:

www.intechopen.com

LS-Draughts: Using Databases to Treat Endgame Loops in a Hybrid Evolutionary Learning System

285

1. Automatic Feature Generation Module (GA) å Generation of the ANN structure
(input layer, hidden layer and output layer) of each player agent å Draughts Player

Agent Module (ANN): firstly, the GA generates
P
T individuals which represent

subsets of every available features in the NET-FEATUREMAP mapping. Next, each
individual is introduced in the input of the Artificial Neural Network corresponding to

it. Consequently,
P
T draughts player Neural Networks (or draughts player agents) are

produced here.
Henceforth, the next steps of the flowchart of arrows (enumerated from 2 up to 14) will
refer to the training process of the extended LS-Draughts considering only one
individual, that is, just one player Neural Network. Therefore, in practice, during the
training process of LS-Draughts, the next steps should be repeated for each individual

associated to its player Neural Network, that is,
P
T times;

2. Current State å Perception å Minimax Search Module: each time the player agent
must move a piece, the minimax algorithm is used to build a depth n breadth-first
search tree whose root S is the current state. So, the parameters of the Minimax Search
Module are the depth n and the current state S;

3. Minimax Search Module å Perfect Information? å Endgame Database Module:
before that the Minimax Search Module can build the game search tree for the current
state S, it checks, through the Endgame Database Module, whether S belongs to the
endgame databases;

4. Endgame Database Module å Yes/No å Minimax Search Module: if true, the
Minimax Search Module goes to the step 8. Otherwise, it carries on next step;

5. Minimax Search Module å Leaf Nodes å Board Mapping Module: after building the
game search tree, the Minimax Search Module checks whether all of the leaf nodes of
this tree belong to the endgame databases. If true, then the Minimax Search Module can
compute the game theoretic value (victory, defeat or draw) using the perfect knowledge
of the endgame databases, instead of using the heuristic evaluation function. So, if all
leaf nodes belong to the databases, the Minimax Search Module gets their
corresponding theoretic values and goes to the step 8. Otherwise, for each leaf node that
does not belong to the endgame databases, the Board Mapping Module is called for
mapping the game board state associated to.
Note that the theoretic value is obtained through the Endgame Database Module and
the heuristic value is obtained through the ANN (Draughts Player Agent Module). The
steps 6 and 7 below show the latter situation;

6. Board Mapping Module å Evaluation Leaf Nodes å Draughts Player Agent Module
(ANN): the Board Mapping Module maps the game board states, associated to each leaf
node of the game tree into the input layer of the player Neural Network;

7. Draughts Player Agent Module (ANN) å Prediction Leaf Nodes å Minimax Search
Module: for each leaf node, represented in the input layer of the player Neural
Network, a prediction P of victory is calculated. This prediction P corresponds to a real
number belonging to the interval [-1,1] that indicates how much the game board state is
favorable to the agent;

8. Minimax Search Module å Best Action å Current State: the values that are returned
to the minimax algorithm (corresponding to the theoretic values of the endgame
databases and/or corresponding to the heuristic values of the prediction of the player

www.intechopen.com

 Theory and Novel Applications of Machine Learning

286

Neural Network) are used in order to indicate to the agent which is the best action to
choose and to execute in the current state S;

9. Current State å Movement å Next State: the best action is executed and the game
board current state is changed to the next state S’;

10. Next State å Perception å Board Mapping Module: the Board Mapping Module is
called for mapping the game board state S’ resultant of the best action executed by
agent;

11. Board Mapping Module å Perception å Draughts Player Agent Module (ANN): the
Board Mapping Module maps the new state S’ in the input layer of the player Neural
Network;

12. Draughts Player Agent Module (ANN) å Prediction of the best action å Agent
Training Module (TD): the TD mechanism calculates the prediction P’ of victory for the
new state S’ (represented in the input layer of the player Neural Network) by means of
the equation 1 showed in the section 2;

13. Agent Training Module (TD) å Synaptic Weight Change å Draughts Player Agent
Module (ANN): the new prediction P’ calculated by TD mechanism is used for
updating the synaptic weights of the player Neural Network according to equation 2 of
the section 2;

14. Draughts Player Agent Module (ANN) å Next Step å Current State: the flowchart
returns to the step 2 and repeats the whole flow until the end of the training game.

In the next subsections, the authors present the structures of the first and the sixth modules

which characterize the LS-Draughts. As shown before, each individual generated by the first

module will be attached to a neural network that will learn by means of training games

guided by the TD methods.

5.1 Population and individual encoding in the LS-Draughts

Each individual in the population is encoded as a binary chromosome whose length is 15

genes. The binary representation indicates whether a determined feature
i
F occurs or not in

the gene
i
G , where { }1,2,3,...,15i∈ , as shown in figure 2.

Fig. 2. Example of an individual encoding in the population.

Table 1 shows the 15 features to be represented in the genes. Each integer number in column

BITS corresponding to a feature
i
F indicates the quantity of neurons that will be reserved to

represent
i
F in the input layer of the Network.

In this chapter, the GA population is composed of 50 individuals, that is,
p
T =50. Therefore,

the population will be formed by 50 chromosome structures (or individuals) where each
of them will be associated to a Neural Network. These 50 individuals will evolve within
the GA along 50 generations (the original LS-Draughts evolved them along 30
generations).

www.intechopen.com

LS-Draughts: Using Databases to Treat Endgame Loops in a Hybrid Evolutionary Learning System

287

FEATURES BITS

F1: PieceAdvantage 4

F2: PieceDisadvantage 4
F3: PieceThreat 3

F4: PieceTake 3

F5: Advancement 3

F6: DoubleDiagonal 4

F7: Backrowbridge 1

F8: Centrecontrol 3

F9: XCentrecontrol 3

F10: TotalMobility 4

F11: Exposure 3
F12:
KingCentreControl

3

F13: DiagonalMoment 3

F14: Threat 3

F15: Taken 3

Table 1. Set of features used by LS-Draughts.

The individuals will be generated according to the following steps:

1. All the 50 individuals of the first generation
0

GE are generated by a randomly binary

activation (1 or 0) of their genes. Next, each of these individuals (which represents a
game state) is introduced in the input of the Network that corresponds to it. The 50
Networks produced are trained (the training process will be discussed later). After this,
LS-Draughts starts a tournament involving the 50 available trained Networks. At the
end of the tournament, an evaluation (or fitness) is calculated for each individual based
on its performance during the tournament (as detailed in the subsection 5.4). Next, the

50 individuals of
0

GE are passed as parents to the next generation (generation
1

GE);

2. All the 50 individuals of the remaining 49 generations
i

GE , where 1 49i≤ ≤ , are

generated as described below: 50 new individuals are generated by applying the genetic
operators of crossover and mutation to 25 pairs of individuals chosen by a stochastic

tournament selection process over the 50 parents received from the generation
1i

GE − .

Next, 50 new Networks associated to these 50 new individuals are trained. After this,
LS-Draughts starts a tournament involving the 100 available trained Networks (50

corresponding to
1i

GE − and 50 corresponding to
i

GE). At the end of the tournament, an

evaluation (or fitness) is calculated for each individual based on its performance during
the tournament. The 50 individuals which present the best fitness will be passed as

parents to the next generation
1i

GE + , and so on.

5.2 Individual selection and application of genetic operators

The selection method used by LS-Draughts to select the parents in order to apply the genetic
operators is the stochastic tournament whose tour is 3 (Mitchell & Taylor, 1999). For each 2

www.intechopen.com

 Theory and Novel Applications of Machine Learning

288

parents selected by the stochastic tournament selection, two new children are generated.
The crossover method used is the simple crossing of genes (one-point crossover) with

crossover probability = 100%. The mutation probability rate –
mut
P – used is 0.3. Thus, in each

individual, 5 genes are chosen randomly to be modified by mutation.

5.3 Neural Networks training

The multilayer Network associated with an individual
i
I has

A
N neurons in the input

layer, where
A
N represents the quantity of bits associated to the active genes (digit 1) in

i
I .

The hidden layer and the output layer have 20 neurons and 1 neuron, respectively. For
example, in figure 3, the Network attached to the individual M will utilize only the features

1
F ,

2
F and

14
F (corresponding to the 3 active genes) in order to represent the board state in

the input Neural Network. Consequently, as shown in table 1,
A
N is equal to 11 in the

Network that represents the individual M. The initial weights of the Neural Network linked

to individual
i
I are generated randomly between -0.2 and +0.2 and the bias term is fixed as

being 1. This process is repeated for every individual
i
I , where { }1,2,3,...,50i∈ .

Fig. 3. Selection of active features of an individual M to define the NET-FEATUREMAP
mapping which the attached neural network will use in the training.

After the generation of a Neural Network for each
i
I , where { }1,2,3,...,50i∈ , LS-Draughts

starts the training phase of the 50 Neural Networks attached to the 50 generated individuals.
In the training games, the Networks learn by reinforcement, as described in the section 2.
The training of each Neural Network consists of a group of 4 sessions of 400 training games,
where the Network plays a half of these 400 games as black player (black pieces) and the
other 200 games as red player (red pieces). Such a strategy has the purpose of training the
agent for diversified situations, once the features establish constraints that are related to the

color of the pieces (for example: feature
9
F indicates the number of red pieces in the center

of the game board).

Before starting the ten training session by self-play, a copy of the Neural Network
i

net

attached to the individual
i
I is made, thus producing the clone Network

i
cnet . Next,

i
net

and
i

cnet play the 200 games which correspond to the first session. During these games,

only the weights of
i

net are updated. At the end of the first session, two test-games are

www.intechopen.com

LS-Draughts: Using Databases to Treat Endgame Loops in a Hybrid Evolutionary Learning System

289

played to check whether the new Network
i

net corresponding to the individual
i
I

(remember that the original weights of
i

net were updated during the games) became better

than its clone. If it is true, the
i

cnet weights are replaced by the
i

net weights and the next

session begins involving the players
i

net and the modified
i

cnet (which are, in fact,

equivalents). Otherwise,
i

cnet is not modified and the next session begins involving the

players
i

net and
i

cnet . It is interesting to point out that in these test-games the strategy of

changing the color corresponding to each player is adopted, that is, each network plays one

game-test as red pieces and the other one as black pieces. This process is repeated until the

end of the fourth session. Note that, in all these games, both player Networks use the same

strategy to choose the best action described in the section 2.
Considering the possibility that it is not reasonable to guarantee that the best network
obtained in the end of the fourth session is really the best one (in case it has been specialized
to beat only its last clone during the training process), a small tournament is realized
between the final network obtained and all its clones generated in the four sessions. Finally,
the winner of this tournament is considered as being the best network corresponding to the

individual
i
I that has been trained.

The input parameters utilized to train an individual
i
I are: a game board file containing the

initial game board settings and the minimum score required to allow the replacement of the

weights of a clone by the weights of the Network from which it originated; the learning rate

1
α corresponding to the first layer (

1
1/

A
Nα =); the learning rate

2
α corresponding to the

hidden layer (
2

1/ 20α =); and, finally, the λ (see section 2) value (0.1λ =).

5.4 Using endgame databases in the neural networks training

Considering the depth-first search algorithm, the time complexity is ()mO b for a state space

with branching factor b and maximal depth m (Russell & Norvig, 2003). This means that the
state space grows exponentially with depth. For large state spaces, a good solution for this
problem consists of combining the depth-first search with retrograde analysis techniques
based on information that is eventually stored in Databases (DBs). In other words, whenever

the depth-firth search tries to evaluate a node
1
N , before evaluating it, the algorithm will

check whether the DB stores information about
1
N . If it does, this piece of information will

free the search algorithm from the burden of evaluating
1
N . The state space of Draughts is

approximately composed of 205 10∗ distinct board states. Even considering recent

computational resources, it is impracticable to traverse such a state space by adopting the
depth-first search strategy. Therefore, the use of endgame DBs in Draughts strongly
improves the general performance of player agents. In fact, even if the current board state S
that is being evaluated is distant from endgame board states, some of its descendents may
already be in the DB, what may limit the search depth to the level of these descendents. The
great success and efficiency of Chinook, for example, is mainly based on its endgame DBs
(Lake et al., 1994). Considering the large dimension of the Draughts state space, the
construction of its endgame DBs is a hard task. In fact, in Chinook, the efforts to build the
DBs have begun in 1989 and, since that year, almost continuously, several computers have
worked exclusively to cope with this activity (Schaeffer et al., 2007). In 1992, there were
more than 200 computers simultaneously working in the construction of these DBs.

www.intechopen.com

 Theory and Novel Applications of Machine Learning

290

Nowadays, they store information about all game board states that comprise 10 or less
pieces. Particularly, for each of these states, the DBs indicate whether it corresponds to a
win, a loss or a draw state. Considering the arguments above, in order to improve its search
method, the extended LS-Draughts combines the minimax algorithm with a subset of
endgame DBs of Chinook, which allows it to find the best movement spending much less
time. During the search process, whenever a board state S is found in the DB, the extended
LS-Draughts, instead of using its heuristic evaluation function to calculate the prediction
corresponding to S, retrieves from the DB its exact value. In this case, the extended LS-
Draughts does not need to evaluate any of the descendant nodes of S in the search tree,
what correspond to a relevant simplification in the minimax search process. The
combination between minimax and endgame DBs produces an efficient search method
which simplifies the search tree and obtains more precise results, since the predictions of
win, loss or draw retrieved from the DBs are exact (Schaeffer et al., 2002). The next
subsections present how to construct endgame DBs and detail how the extended LS-
Draughts uses them.

5.4.1. How to build endgame DBs

The previous section showed that retrograde analysis is an efficient tool to improve the

search process. It has also been successfully applied in the construction of DBs for several

games (Lake et al., 1994; Schaeffer et al., 2007; Gasser, 1990; Gasser, 1996; Romein & Bal,

2002; Romein & Bal, 2003). As the construction of DBs for games requires many resources of

memory, execution time and input/output (I/O), the same techniques used to implement

them can be also used to solve several problems in Mathematics and other related sciences

where an optimal solution must be found in large state spaces. To construct DBs

corresponding to Draughts board states with n pieces, the state space to be analysed will be

a graph that may be a cyclic one (Diestel, 2000). The board states are represented in the

nodes of the graph. The DBs for game boards composed of n pieces are calculated by means

of an iterative algorithm which uses the results obtained for the DBs of 1, 2, …, (n – 1) pieces

previously calculated. Then, the DB for the board states with only 1 piece (terminal states)

must be calculated first. Note that, in this case, according to the rules of Draughts, the player

which owns the remaining piece is the winner. The algorithm must enumerate all the 120

possible terminal states and classify them as win or loss. Next, the DB corresponding to the

board states with 2 pieces (6.972 distinct states) must be constructed based on the DB for the

terminal nodes and so on. The following pseudo-code resumes the algorithm for

constructing the DBs (Lake et al., 1994):

1. Set all positions to UNKNOWN;
2. Iterate and resolve all capture positions;
3. Iterate and resolve non capture positions;
4. Go to step 3 if any non-capture position was resolved;
5. Set all remaining UNKNOWN to DRAWs.
First, every board state is classified as unknown. Next, the following considerations must be

observed:

1. Some board states may be classified as win or loss, according to the rules of the game.
For example, a player without any piece or without any legal move available is in a loss
terminal state;

www.intechopen.com

LS-Draughts: Using Databases to Treat Endgame Loops in a Hybrid Evolutionary Learning System

291

2. All state nodes which have at least one child already classified in the DB as win will
also be classified as win states;

3. All state nodes whose all children have already been classified as loss in the DB will
also be classified as loss states;

4. Whenever there is no more information to modify the classification of any board state in
the DB, all the board states that could not be classified (that is, which remained as
unknown states), will be classified as draw states.

The execution of the first iterative module of the algorithm described above (step 2) takes
into account one important rule of the Draughts game: a capture move must be executed
before all the other ones. Therefore, the step 2 classifies all the capture states and postpones
the classification of all the remaining ones for the next steps. Since a capture which has
occurred in a state with n pieces takes to a board state with (n – 1) pieces (or less), each
capture state with n pieces is classified according to the BDs previously calculated. Near
50% of the states stored in the BDs correspond to capture states (Lake et al., 1994).
The execution of the second iterative module (step 3) tries to solve only the states S where
no capture move is available. For each of them, all the legal moves are generated. Each legal
move is executed and the values associated to the descendants of S are retrieved from the
DB. The value unknown of S is only replaced when at least one of its children is classified as
win, when all of them are classified as loss, or when all legal moves have already been
solved. This procedure goes on until no board state can be solved anymore. At this point, all
unknown states are classified as draw states.
In fact, there are two approaches to solve unknown states S:
1. Forward Approach: one generates the descendants of S and one tries to classify S

according to them;
2. Backward Approach: one generates the ancestors of each solved state and one checks

whether there is sufficient information to classify some of them.
The best choice depends on the proportion of solved and non solved nodes in a certain
iteration process. In Chinook, it was performed a successfully combination of both
approaches (Lake et al., 1994).

5.4.2. How LS-draughts uses endgame DBs

The endgame databases of Chinook that have been added to the extended LS-Draughts store
information about victory, defeat or draw for:
1. All draughts board states with combination of 4 pieces x 4 pieces;
2. All draughts board states with combination of 4 pieces x 3 pieces;
3. All draughts board states involving 6 or less pieces on the board.
The main purpose of including the Chinook’s endgame databases into the extended LS-
Draughts is to try to answer two important questions:
1. Will the addition of the DBs into the original LS-Draughts contribute, in fact, for

improving its general performance?
2. Will the use of the DBs help to decrease the rate of endgame loops in the original LS-

Draughts? (This problem occurs in NeuroDraughts as well).
Next, it is presented the pseudo-code of the search algorithm of the extended LS-Draughts,
followed by resuming of its main characteristics.

1. fun minimax (n:node, depth:int, bestmove:move) : float =
2. if ((not isRoot(n)) and (isLookupBoard(n)))

www.intechopen.com

 Theory and Novel Applications of Machine Learning

292

3. db_value := lookup_positions(n)
4. if (db_value==1) and (n is a min node)
5. return -1.0
6. if (db_value==1) and (n is a max node)
7. return +1.0
8. if (db_value==2) and (n is a min node)
9. return +1.0
10. if (db_value==2) and (n is a max node)
11. return -1.0
12. if (db_value==3)
13. return 0.0
14. if leaf(n) or depth=0 return evaluate(n)
 if n is a max node
 besteval := - infinity
 for each child of n
 v := minimax (child, d-1, bestmove)
 if v > besteval
 besteval:= v
 thebest := bestmove
 bestmove := thebest
 return besteval
 if n is a min node
 besteval := + infinity
 for each child of n
 v := minimax (child, d-1, bestmove)
 if v < besteval
 besteval:= v
 thebest := bestmove
 bestmove := thebest
 return besteval

Line 2: The function isLookupBoard() is used to check whether the current board state n
satisfies the constraints that allow the access to the DBs (that is, it checks whether n owns the
adequate quantity of pieces and respects the capture constraints). The function not isRoot() is
used to guarantee that the states n to be consulted in the DB have, at least, one ancestor in
the search graph;
Line 3: the function lookup_positions() consults the DB in order to try to retrieve the
prediction corresponding to n;
Line 4: The result db_value = 1 indicates that n corresponds to a victory for the next player to
execute a move and, therefore, corresponds to a defeat for its opponent (the parent of n).
Case n is a min node, its parent is a max node. Therefore, the value -1.0 must be returned in
line 5 in order to guarantee that the parent of n only chooses this move in case there is no
other choice for it;
Line 6: The result db_value = 1 indicates that n corresponds to a victory for the next player to
execute a move and, therefore, corresponds to a defeat for its opponent (the parent of n).
Case n is a max node, its parent is a min node. Therefore, the value +1.0 must be returned in
line 7 as an evident prevision that the parent of n, normally, will not choose that move;

www.intechopen.com

LS-Draughts: Using Databases to Treat Endgame Loops in a Hybrid Evolutionary Learning System

293

Line 8: The result db_value = 2 indicates that n corresponds to a defeat for the next player to
execute a move and, therefore, corresponds to a victory for its opponent (the parent of n).
Case n is a min node, its parent is a max node. Therefore, the value +1.0 must be returned in
line 9 in order to guarantee that the parent of n chooses this move whenever it is available;
Line 10: The result db_value = 2 indicates that n corresponds to a defeat for the next player to
execute a move and, therefore, corresponds to a victory for its opponent (the parent of n).
Case n is a max node, its parent is a min node. Therefore, the value -1.0 must be returned in
line 11 as an evident prevision that the parent of n, normally, will choose that move;
Line 12: The result db_value = 3 indicates that n corresponds to a draw for the next player to
execute a move and, therefore, corresponds to a draw for its opponent (the parent of n). In
this case, the value 0.0 is returned in line 13, independently of the min or max situation of n;
Line 14: From this line, the classical minimax algorithm (see the Minimax Search Module
presented in the beginning of the section 5) is presented. Note that it will be executed only
when the current state n is not available in the DB.

5.5 Fitness calculus

In the tournament organized to calculate the fitness of the individuals in a given generation

(cited in the subsection 5.1), each individual
i
I plays 10 games against the remaining

individual of that generation. The results of this tournament are used to calculate the
i
I

fitness in the following way: 2 points for each victory, 1 point for each draw and 0 point for

each defeat.

6. Endgame loop problem in the original LS-Draughts

The original LS-Draughts was executed for 30 generations with a population of 50

individuals, as presented in (Neto & Julia, 2007). For each generation, the best individual

was compared with the Mark Lynch’s NeuroDraughts player, in a tournament composed of

7 games, in order to evaluate its performance in relation to the latter one. The best

individuals of LS-Draughts that managed to beat NeuroDraughts were the best individual

9B
I − of the 9th generation and the best individual

25B
I − of the 25th generation. The scores of

both individuals were: 1 victory and 6 draws for
9B

I − ; 2 victories and 5 draws for
25B

I − .

Despite of the good performance of
9B

I − and
25B

I − against NeuroDraughts, both individuals

of LS-Draughts presented endgame loop problems. As shown in the section 4, by analysing

the 5 draws of
25B

I − against NeuroDraughts, one can conclude that, in 2 of them, the LS-

Draughts could have won , since
25B

I − counted on 3 checkers and 1 simple piece on the

endgame board and NeuroDraughts only counted on 1 checker. Figure 4 shows this

example of endgame loop problem which affected the individual
25B

I − : from the game board

position of the figure (4.a) , resultant of the NeuroDraughts’ 43rd move, the game got up to

the board position of the figure (4.b) after the 44th move of NeuroDraughts. Next, the game

got back to the board position indicated in figure (4.a), as a result of the 45th move of

NeuroDraughts. Finally, it occurred an alternate infinite loop between these two game

board positions, that is, figure (4.a) and figure (4.b), respectively.

The same problem affected the individual
9B

I − . Analysing the 6 draws of its tournament

against NeuroDraughts, 3 of them it would easily have won if
9B

I − was able to detect

endgame loops. For example, in one of these 3 games, even though
9B

I − counted on 2

www.intechopen.com

 Theory and Novel Applications of Machine Learning

294

checkers and 3 simple pieces, it was not able to beat NeuroDraughts, which only counted on

1 checker and 1 simple piece.

Fig. 4. Game between LS-Draughts’ 25th best individual (black player) and the
NeuroDraughts (red player). a) Position of the draughts game board state after the 43rd red
player move; b) Position of the draughts game board state after the 44th red player move.

For many other individuals of the original LS-Draughts, the endgame loop problem came
out.

7. Experimental results

The new version of LS-Draughts was executed for 50 generations with a population of 50

individuals. Differently from the original version presented in (Neto & Julia, 2007), the

individuals here were trained using an endgame database module that allows to anticipate

the result of the game (victory, defeat or draw) for draughts board states with, at most, 8

pieces.

As cited before, the main purpose of including the endgame databases of Chinook into the
LS-Draughts was to try to answer two important questions:
1. Will the addition of the endgame databases into the original LS-Draughts contribute, in

fact, for improving its general performance?
2. Will the use of the endgame databases help to decrease the rate of endgame loops in the

original LS-Draughts? This problem was found by Neto and Julia in the players
NeuroDraughts and original LS-Draughts (Neto & Julia, 2007).

In order to answer the first question, a tournament was executed between the available

player of NeuroDraughts (_1PLAYER), the best individual of the 50th generation of the

original LS-Draughts (_ 2PLAYER) and the best individual of the 50th generation of the

extended version of LS-Draughts proposed here (_ 3PLAYER):

www.intechopen.com

LS-Draughts: Using Databases to Treat Endgame Loops in a Hybrid Evolutionary Learning System

295

1. FIRST MATCH: _1PLAYER x _ 2PLAYER

• Number of victories of _ 2PLAYER : 5;

• Number of defeats of _ 2PLAYER : 1;

• Number of draws: 8 (6 real draws and 2 draws with endgame loop problem);
2. SECOND MATCH: _1PLAYER x _ 3PLAYER

• Number of victories of _ 3PLAYER : 6;

• Number of defeats of _ 3PLAYER : 0;

• Number of draws: 8 (5 real draws and 3 draws with endgame loop problem);
3. THIRD MATCH: _ 2PLAYER x _ 3PLAYER

• Number of victories of _ 3PLAYER : 3;

• Number of defeats of _ 3PLAYER : 1;

• Number of draws: 10 (3 real draws and 7 draws with endgame loop problem);
Furthermore, the rates of endgame loops occurred during the training process of

_1PLAYER , _ 2PLAYER e _ 3PLAYER were also estimated in order to answer the second

question raised above. However, to get these rates, the three players needed to be trained
again, using the same training parameters, initial configuration and search, as follow:

• The player NeuroDraughts was trained using the set of features defined by Lynch in
(Lynch, 1997; Lynch & Griffith, 1997), an Artificial Neural Network whose weights were
generated randomly, search algorithm with depth 4 and a training strategy with 10
sessions of 200 training games. During the 2000 games, 1.045 games were finished with
endgame loop problem;

• The best individual of the 50th generation of the original LS-Draughts also was trained
using the following: an Artificial Neural Network whose weights were generated
randomly, search algorithm with depth 4 and a training strategy with 10 sessions of 200
training games. During the 2000 games, 759 games were finished with endgame loop
problem;

• Finally, the best individual of the 50th generation of the extended version of LS-
Draughts was trained using an Artificial Neural Network whose weights were
generated randomly, search algorithm with depth 4 and a training strategy with 10
sessions of 200 training games. During the 2000 games, 172 games were finished with
endgame loop problem;

Figure 5 shows the rates of endgame loops obtained by three players during their 2000
training games. Note that que the extended version of LS-Draughts produced a rate of
endgame loops corresponding to 16.46% of the one produced by NeuroDraughts, and
cooresponding to 22.66% of the rate produced by the original LS-Draughts.

Fig. 5. Rates of endgame loops during 2000 training games

www.intechopen.com

 Theory and Novel Applications of Machine Learning

296

Theses results show that endgame DBs improved significantly the original LS-Draughts,
introducing efficency and accuracy in its general performance and reducing, therefore, the
rate of endgame loops.

8. Conclusion

This paper presented an extended version of LS-Draughts – a Learning System which, using
endgame databases, GAs, TD methods, minimax algorithm and self-play with cloning
strategy, generates a draught player much better than the original LS-Draughts. The results
obtained show that:
1. The extended LS-Draughts was the best player of the tournament, with 6 victories, 8

draws and 0 defeat against NeuroDraughts and 3 victories, 10 draws and 1 defeat
against the original LS-Draughts;

2. In relation to the rate of endgame loops, the extended LS-Draughts player decreased
from 83% the rate of endgame loops produced by NeuroDraughts player and from 77%
the rate of endgame loops produced by the original LS-Draughts player.

Therefore, the results confirm the improvement that was obtained in the original LS-
Draughts with the insertion of the endgame databases module.
Nevertheless, the introduction of a search module more efficient than minimax algorithm
can improve much more the performance of the extended version of LS-Draughts. That is
why, as future work, the authors intend to substitute the alpha-beta algorithm combined
with transposition table for the minimax algorithm of LS-Draughts.

9. References

Baxter, J. ; Tridgell, A. & Weaver, L. (1998). Knightcap: a chess program that learns by

combining TD(λ) with game-tree search, Proceedings of the 15th International

Conference on Machine Learning, pp. 28-36

Darwen, P. J. (2001). Why co-evolution beats temporal difference learning at backgammon

for a linear architecture, but not a non-linear architecture, Proceedings of the 2001

Congress on Evolutionary Computation CEC2001, IEEE Press, pp. 1003-1010

Diestel, R. (2000). Graph Theory, Springer-Verlag New York, Inc.

Epstein, S. (2001). Learning to play expertly: a tutorial on hoyle, Machines That Learn to Play

Games, Nova Science Publishers, Huntington

Fogel, D. B. & Chellapilla, K. (2002). Verifying anaconda’s expert rating by competing

against Chinook: experiments in co-evolving a neural checkers player,

Neurocomputing, Vol. 42, No. 1-4, pp. 69-86

Fogel, D. B. ; Hays, T. J. ; Hahn, S. L. & Quon, J. (2004). A self-learning evolutionary chess

program, Proceedings of the IEEE, Vol. 92, No. 12, pp. 1947-1954

Gasser, R. (1990). Applying Retrograde Analysis to Nine Men’s Morris. Available:

http://citeseer.ist.psu.edu/gasser90applying.html

Gasser, R. (1996). Solving nine men’s morris, Computational Intelligence, Vol. 12, pp. 24-41

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation, Second Edition, Prentice

Hall

Holland, J. H. (1992). Adaptation in natural and artificial systems, Second Edition, Cambridge,

MA, USA, MIT Press

www.intechopen.com

LS-Draughts: Using Databases to Treat Endgame Loops in a Hybrid Evolutionary Learning System

297

Lake, R.; Schaeffer, J.; LU, P (1994). Solving Large Retrograde Analysis Problems Using a

Network of Workstations, Advances in Computer Chess VII, Maastricht, Netherlands,

pp. 135-162

Leuski, A. (1995). Learning of position evaluation in the game of Othello. Available:

http://people.ict.usc.edu/~leuski/publications

Levinson, R. & Weber, R. (2002). Chess neighborhoods, function combination, and

reinforcement learning, Revised Papers from the Second International Conference on

Computers and Games, Springer-Verlag, London, UK, pp. 133-150

Lynch, M. & Griffith, N. (1997). NeuroDraughts: the role of representation, search, training

regime and architecture in a td draughts player, Proceedings of Eighth Ireland

Conference on Artificial Intelligence, pp. 64-72.

 Available: http://iamlynch.com/nd.html

Lynch, M. (1997). NeuroDraughts: An application of temporal difference learning to draughts.

Available: http://iamlynch.com/nd.html

Mitchell, M. & Taylor, C. E. (1999). Evolutionary Computation: An Overview, In Annual

Review of Ecology and Systematics, Vol. 30, pp. 593-616

Neto, H. C. & Julia, R. M. S. (2007). LS-DRAUGHTS – A Draughts Learning System based on

Genetic Algorithms, Neural Network and Temporal Differences, Proceedings of 2007

IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, ISBN:

1424413400, pp. 2523-2529

Romein, J. & Bal, H. (2002). Awari is Solved. Available:

http://citeseer.ist.psu.edu/romein02awari.html

Romein, J. & Bal, H. (2003). Solving the Game of Awari using Parallel Retrograde Analysis.

Available: http://citeseer.ist.psu.edu/romein03solving.html

Russell, S. & Norvig, P. (2003). Artificial Intelligence: A Modern Approach, Prentice Hall, Ed. 2

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, Vol. 3, No. 3, pp. 211-229

Schraudolph, N. N. ; Dayan, P. & Sejnowski, T. J. (2001). Learning to evaluate go positions

via temporal difference methods, Computational Intelligence in Games Studies in

Fuzziness and Soft Computing, Spring Verlag, Vol. 62

Schaeffer, J. ; Lake, R. ; Lu, P. & Bryant, M. (1996). CHINOOK: The world man-machine

checkers champion, AI Magazine, Vol. 17, No. 1, pp. 21-29

Schaeffer, J. (1997). One Jump Ahead: Challenging Human Supremacy in Checkers, Springer-

Verlag New York Inc

Schaeffer, J. ; Hlynka, M. & Jussila, V. (2001). Temporal difference learning applied to a high

performance game-playing program, Proceedings of the International Joint Conference

on Artificial Intelligence (IJCAI), pp. 529-534

Schaeffer, J. (2002). Applying the Experience of Building a High Performance Search Engine for

One Domain to Another

Schaeffer, J. et al. (2007). Checkers is solved, Science, Vol. 317, No. 5844, pp. 1518-1522

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences, Machine

Learning, Vol. 3, No. 1, pp. 9-44

Tesauro, G. J. (1992). Practical issues in temporal difference learning, Machine Learning, Vol.

8, pp. 257-277

www.intechopen.com

 Theory and Novel Applications of Machine Learning

298

Tesauro, G. J. (1994). TD-Gammon, a self-teaching backgammon program, achieves master-

level play, Neural Computation, Vol. 6, No. 2, pp. 215-219

Tesauro, G. J. (1995). Temporal difference learning and td-gammon, Communications of the

ACM, Vol. 38, No. 3, pp. 58-68

Thrun, S. (1995). Learning to play the game of chess. Advances in Neural Information

Processing Systems 7, The MIT Press, pp. 1069-1076

www.intechopen.com

Theory and Novel Applications of Machine Learning
Edited by Meng Joo Er and Yi Zhou

ISBN 978-953-7619-55-4
Hard cover, 376 pages
Publisher InTech
Published online 01, January, 2009
Published in print edition January, 2009

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

Even since computers were invented, many researchers have been trying to understand how human beings
learn and many interesting paradigms and approaches towards emulating human learning abilities have been
proposed. The ability of learning is one of the central features of human intelligence, which makes it an
important ingredient in both traditional Artificial Intelligence (AI) and emerging Cognitive Science. Machine
Learning (ML) draws upon ideas from a diverse set of disciplines, including AI, Probability and Statistics,
Computational Complexity, Information Theory, Psychology and Neurobiology, Control Theory and Philosophy.
ML involves broad topics including Fuzzy Logic, Neural Networks (NNs), Evolutionary Algorithms (EAs),
Probability and Statistics, Decision Trees, etc. Real-world applications of ML are widespread such as Pattern
Recognition, Data Mining, Gaming, Bio-science, Telecommunications, Control and Robotics applications. This
books reports the latest developments and futuristic trends in ML.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Henrique Castro Neto, Rita Maria Silva Julia and Gutierrez Soares Caixeta (2009). LS-Draughts: Using
Databases to Treat Endgame Loops in a Hybrid Evolutionary Learning System, Theory and Novel Applications
of Machine Learning, Meng Joo Er and Yi Zhou (Ed.), ISBN: 978-953-7619-55-4, InTech, Available from:
http://www.intechopen.com/books/theory_and_novel_applications_of_machine_learning/ls-
draughts__using_databases_to_treat_endgame_loops_in_a_hybrid_evolutionary_learning_system

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

