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1. Introduction     

The Reinforcement Learning methods have been a subject of great interest in the machine 
learning area, since it does not require an intelligent “professor” to provide training 
examples. That is why it is a suitable tool for dealing with complex domains where it is hard 
or even impossible to obtain such examples (Russell & Norvig, 2003). Among the 
Reinforcement Learning methods, one can be stood out: the TD learning methods. They are 
widely used with highly efficient results, including in the construction of agents capable of 
learning to play Draughts, Chess, Backgammon, Othello, GO or other games (Samuel, 1959; 
Lynch, 1997; Lynch & Griffith, 1997; Neto & Julia, 2007; Schaeffer et al., 2001; Thrun, 1995; 
Tesauro, 1994; Leuski, 1995; Schraudolph et al., 2001 and Epstein, 2001). Such agents have 
demonstrated that the games are, undoubtedly, a very suitable domain to study and to 
check the efficiency of the main techniques of machine learning. 
As an example of good automatic player agents, the LS-Draughts - (Neto & Julia, 2007) can 
be cited. It is a Draughts learning system based on Mark Lynch’s NeuroDraughts player 
(Lynch & Griffith, 1997) which uses three important tools in machine leaning: Genetic 
Algorithms (AGs), Artificial Neural Network (ANN) and Temporal Differences (TD) 
Reinforcement Learning methods. It also adopts the NET-FEATUREMAP mapping 
technique to represent the game board states. This mapping represents the game board 
states by means of a set of functions – called features – that capture relevant knowledge 
about the domain of draughts and use this knowledge to map the game board in the input 
of an Artificial Neural Network. Using Genetic Algorithms, the LS-Draughts extends 
NeuroDraughts and automatically generates a concise and efficient set of features which is 
relevant to represent the game board states and to optimize the training of the draughts 
player agent (NeuroDraughts uses a fixed and manually defined set of features). The core of 
LS-Draughts consists of an Artificial Neural Network whose weights are updated by the 
Temporal Differences Reinforcement Learning methods. The Network output corresponds 
to a real number (prediction) that indicates to what extent the board sate represented by 
features in the Network input is favorable to the agent. The agent is trained by self-play 
coupled with a cloning technique. The minimax algorithm is used to choose the best action 
to be executed considering the current game board state. LS-Draughts shows that the GAs 
can be an important tool for improving the general performance of automatic players. O
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Source: Theory and Novel Applications of Machine Learning, Book edited by: Meng Joo Er and Yi Zhou,  
 ISBN 978-3-902613-55-4, pp. 376, February 2009, I-Tech, Vienna, Austria
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Furthermore, GAs presented a good performance along with another important machine 
learning technique: the Temporal Differences Reinforcement Learning methods. Despite of 
the fact that LS-Draughts improved the general performance of NeuroDraughts, it did not 
manage to lessen its endgame loop problems (Neto & Julia, 2007).  
In order to attack this problem, here the authors present an extended version of LS-Draughts 
where the endgame databases of the exceptional automatic draughts player Chinook 
(Schaeffer et al., 1996; Schaeffer, 1997) have been added to.  
The main purpose of including the endgame databases of Chinook into the extended LS-
Draughts is to try to answer two important questions:  
1. Will the addition of the endgame databases into the original LS-Draughts contribute, in 

fact, for improving its general performance? 
2. Will the use of the endgame databases help to decrease the rate of endgame loops in the 

original LS-Draughts? (This problem occurs in NeuroDraughts as well). 
Finally, a tournament was executed between the available player of NeuroDraughts, the 

best player of the original LS-Draughts and the best player generated by the extended 

version of LS-Draughts proposed here. Furthermore, the rates of endgame loops occurred 

during the training process of these three players were also estimated. The results obtained 

show that the insertion of endgame databases into LS-Draughts produced a much better 

player and decreased significantly the rate of endgame loops. 

2. Temporal differences methods in games 

This section explains how TD Reinforcement Learning methods can be used along with 

minimax search by a player Neural Network. First, the Network is rewarded for a good 

performance (that is, it receives from the environment a positive reinforcement 

corresponding to the endgame state, in case of victory) and it is punished for a bad 

performance (it receives from the environment a negative reinforcement corresponding to 

the endgame, in case of defeat). For all the intermediate game board states (between the 

starting board and the final board) represented in the input layer of the Network, as no 

specific reward is available, the TD mechanism calculates the prediction P of victory by 

means of the following equation: 

 ( ),outputP g in=  (1) 

where g is the hyperbolic tangent function and inoutput is the local induced field on the 

neuron of the Network output layer (Haykin, 1998; Lynch, 1997). It means that the value of 

P depends on the Network weights. Then, a prediction P corresponds to a real number 

belonging to the interval [-1,1] that indicates how much the game board state represented in 

the Network input is favorable to the agent. Each time the agent must move a piece, the 

minimax algorithm is used to build a depth n breadth-first search tree whose root S is the 

current state (resultant from the last opponent move), whose depth 1 nodes correspond to 

the states resultant from all possible moves available to the agent considering the state S, 

and so on for the depth 2, depth 3, …, depth n, which correspond to all possible states 

resulting from the opponent’s and agent’s later moves up to the depth n level. The Network 

calculates, then, the predictions P for each depth n sate. Finally, these values will be 

returned to the minimax algorithm in order to allow it to indicate to the agent which is the 
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best action to choose and to execute in S. Whenever the agent  executes a move, the Network 

weights are updated according to equation 2 (Sutton, 1988): 

 
1
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where 
t
P  is the prediction corresponding to the current game board state, 

1t
P−  is the 

prediction corresponding to the previous game board sate, each 
k
P  represents the 

prediction corresponding to an earlier game board state, α  is the learning rate (defined 

according to how fast the system will update the Network weights), λ  is a constant defined 

according to how much the system will consider the impact of an earlier state 
k
P  in the 

weight updating process and 
w k
P∇  corresponds to the partial derivate of 

k
P  with respect to 

the variable w (weight). 
A small revolution in the field of Reinforcement Learning occurred when Gerald Tesauro 
presented his training results obtained by applying the TD methods to an evaluation 
function (Tesauro, 1992; Tesauro, 1995). Tesauro’s program, TD-Gammon, is a backgammon 
player that, in spite of having very little knowledge about backgammon, is able to play as 
efficiently as the greatest world players (Tesauro, 1994). The principles of TD methods were 
first applied by Samuels, who pioneered the idea of updating evaluations based on 
successive predictions in a checker program (Samuel, 1959). Another very successful work 
with the TD methods is that proposed by Jonathan Schaeffer and other researchers 
(Schaeffer et al., 2001) that produced a detailed comparative study between an evaluation 
function trained manually by experts (which is the case of the current draught champion 
CHINOOK (Schaeffer et al., 1996)) and an evaluation function trained by the Temporal 
Differences methods. This analysis showed that the self-learning strategy along with the TD 
methods is an efficient tool to produce automatic agents able to play with a high level of 
performance. 
Other works that obtained good results with the TD method are: Mark Lynch (Lynch, 1997), 
Neto and Julia (Neto & Julia, 2007), Thrun (Thrun, 1995), Leuski (Leuski, 1995), Schraudolph 
(Schraudolph et al., 2001), Baxter (Baxter et al., 1998) and Levinson and Weber (Levinson & 
Weber, 2002). 

3. Evolutionary computation in games 

Evolutionary Computation is an area of Computer Science which uses ideas from biological 
evolution to solve computational problems. Many such problems require searching through 
a huge space of possibilities for solutions, such as the classification task in data mining, the 
selection of a collection of rules (or actions) that will control a robot as it navigates in its 
environment, or the job-shop scheduling task. Such computational problems often require a 
system to be adaptive – that is, to continue to perform well in a changing environment.   
The basis for Evolutionary Computation is the schema theory modeled mathematically by 
Holland (Holland, 1992). The schema theory is inspired on the principle of survival of the 
fittest individuals of the Darwin’s theory of natural selection, where the fittest individuals 
are selected to produce offspring for the next generation. In the context of search, 
individuals are candidate solutions to a given search problem. Hence, reproduction of the 
fittest individuals means reproduction of the best current candidate solutions. Genetic 
operators such as selection, crossover and mutation generate offspring from the fittest 
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individuals. One of the advantages of Evolutionary Computation over “traditional” search 
methods is that the former performs a kind of global search using a population of 
individuals, rather than performing a local search. The global search methods are more 
vigorous than the local search methods to avoid to be trapped into a local maximum. There 
are several approaches that have been followed in the field of Evolutionary Computation. 
The general term for such approaches is evolutionary algorithms. The most widely used 
form of evolutionary algorithms is Genetic Algorithms, which was the main focus of the 
original version of LS-Draughts (Neto & Julia, 2007). Other common forms of evolutionary 
algorithms are Evolution Strategies, Evolutionary Programming and Genetic Programming 
(Mitchell & Taylor, 1999). 
The application of Evolutionary Computation in games has helped to produce very good 
player agents, principally as an alternative paradigm to the conventional training process. 
David Fogel, using  evolutionary algorithms to update the weights of the chess player 
Multilayer Neural Network corresponding to his best chess player BLONDIE25 (Fogel et al., 
2004), as well as to update the weights of the draught player Multilayer Neural Network 
corresponding to his best draught player ANACONDA (Fogel & Chellapilla, 2002), proved 
the usefulness of the evolutionary algorithms as a training tool, once BLONDIE25 and 
ANACONDA obtained the titles of master in chess and expert in draughts, respectively, due 
to their excellent performance in international tournaments. 
Fogel also tested his player ANACONDA against an ancient good version of CHINOOK . 
The former obtained a better performance: 4 victories, 3 defeats and 3 draws. 

4. Temporal differences x evolutionary computation 

Paul Darwen demonstrates in (Darwen, 2001) that the TD methods are more efficient than 
Evolutionary Computation methods to train backgammon player agents implemented as 
nonlinear systems, since the former methods requires only a few hundred thousand training 
games to produce a good player, whereas the later ones would require billions of training 
games to obtain the same performance. On the other hand, Darwen showed that 
Evolutionary Computation is more efficient than TD methods to train backgammon player 
agents implemented as linear systems. The same seems to be also valid for draughts 
domain. For instance, ANACONDA needed 126.000 training games to present the same 
performance obtained by Schaeffer’s world champion player CHINOOK – trained manually 
– after only 10.000 training games.  
Inspired by Darwen’s results, Neto and Julia demonstrated in (Neto & Julia, 2007) that GAs 
can be an important tool for improving the general performance of draughts player Neural 
Networks trained by the Temporal Differences methods. Their best draughts player 
obtained a better performance in relation to the Mark Lynch’s NeuroDraughts player: 2 
victories and 5 draws. However, despite of the fact LS-Draughts has improved the general 
performance of NeuroDraughts, it presented endgame loop problems. For example, 
analysing the 5 draws against NeuroDraughts, in 2 of them the best player of LS-Draughts 
could easily have won if it was able to detect endgame loops. In order to solve this problem, 
as mentioned above, the authors present, in the next section, the architecture and the 
implementation of the extended version of LS-Draughts (including the GA of the original 
version) where the endgame databases of the draughts player Chinook have been added to. 
Next, the problem of the endgame loops found in the original LS-Draughts will be shown. 
Finally, this chapter shows the results obtained by the extended version of LS-Draughts. 
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5. The LS-Draughts with endgame databases 

The extended LS-Draughts is a learning system whose main objective is to generate a 
draught player agent able to play draughts on a high performance level. In order to cope 
with this objective, the LS-Draughts extends the Mark Lynch’s NeuroDraughts player 
(Lynch, 1997; Lynch & Griffith, 1997)  by the adiction of the following modules:  
1. An automatic feature generation module whose purpose is to automatically generate, 

by means of Genetic Algorithms, a concise set of features which are essential  for 
representing the game board states and to optimize the training of the LS-Draugths’ 
player agents. More concisely, each agent consists of an Artificial Neural Network 
whose weights are updated by the Temporal Differences methods  (Neto & Julia, 2007);  

2. An endgame database module whose purpose is to anticipate the result of the game 
(victory, defeat or draw) for draughts board states with up to eight pieces on the board. 
By adding this endgame database, the extended LS-Draughts tries to  improve the 
adjustment of the Neural Network weights through perfect information retrieved from 
the database indicating predictions of victory, defeat or draw (instead of using heuristic 
information). Indeed, this procedure tends to let the evaluation function of the extended 
LS-Draughts more efficienty and more accuraty, reducing, therefore, the rate of 
endgame loops. 

The new architecture of LS-Draughts is indicated in figure 1. The figure shows, through a 
flowchart of arrows enumerated from 1 up to 14, an overview of total training process of LS-
Draughts, including the six modules. The architecture and the flowchart are explained 
below. 
 

 

Fig. 1. LS-Draughts’ new architecture, with endgame databases. 
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The system is composed of six main modules: 
1. The Automatic Feature Generation Module or GA: corresponds to Genetic Algorithms 

that generate 
P
T  individuals which  represent subsets of every available features in the 

NET-FEATUREMAP mapping (the same mapping technique used by Lynch in 
NeuroDraughts); 

2. The Draughts Player Agent Module (ANN): corresponds to a Multilayer Neural 
Network whose input layer represents a game board state. The Network output 
corresponds to a real number (prediction) that indicates to what extent the input state is 
favorable to the agent; 

3. The Board Mapping Module: the draughts game board is implemented in an array of 
32 positions, which each position represents a specific square of the draughts board. 
The mapping used by LS-Draughts is the NET-FEATUREMAP (more details about this 
kind of mapping can be found in (Lynch, 1997)). The role of this module is to represent 
a game board state (or array of 32 positions), in the Neural Network input, by means of 
a set of functions called features; 

4. The Minimax Search Module: the role of this module is to select the best action to be 
executed by the agent according to the current game board state. The classical minimax 
algorithm can be found in (Russel & Norvig, 2003). Section 5.4.2 presents the pseudo-
code corresponding to the search algorithm here proposed, which combines the 
minimax algorithm and the use of endgame databases; 

5. The Agent Training Module or TD: corresponds to the learning process of the player 
agent or ANN. This module uses Temporal Differences Reinforcement Learning 
methods and self-play with cloning as training strategy; 

6. The Endgame Database Module:  the use of endgame database (Lake et al., 1994; 
Schaeffer et al., 1996) reduces the sequence of necessary moves, from the initial game 
board, in order to reach a position with defined theoretical value, that is, victory, defeat 
or draw. The endgame databases used by LS-Draughts are available on 
http://www.cs.ualberta.ca/~chinook/ and the library of functions that allows to access 
to these databases is available on http://pages.prodigy.net/ 
eyg/checkers/kingsrow.htm. 

As cited in (Neto & Julia, 2007), the learning process of LS-Draughts is similar to the one 

performed by NeuroDraughts (this latter corresponds to second, third, fourth and fifth 

modules of the new architecture of LS-Draughts). However, the fifth module of LS-

Draughts modifies the training process of NeuroDraughts in the following way: in the 

former, innumerous individuals – that is, innumerous sets of features – are trained, 

whereas in the latter, just one is trained. Furthermore, the first and sixth modules extend 

the Mark Lynch’s player. The first module automatically generates, by means of GAs, 

feature sets that tend to represent, efficiently, the game board states in order to produce 

good draught players. The sixth module uses the endgame databases of Chinook in order 

to reduce endgame loop problems and to improve the learning of the individuals. Note 

that this new version of LS-Draughts extends the original version only by the addiction of 

the sixth module. The interaction between the second, fourth and fifth modules have 

already been described in the section 2. More details about these can be found in (Lynch, 

1997).  

An overview of the flowchart of arrows indicated in the figure 1 is presented as follow: 
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1. Automatic Feature Generation Module (GA) å Generation of the ANN structure 
(input layer, hidden layer and output layer) of each player agent å Draughts Player 

Agent Module (ANN):  firstly, the GA generates 
P
T  individuals which represent 

subsets of every available features in the NET-FEATUREMAP mapping. Next, each 
individual is introduced in the input of the Artificial Neural Network corresponding to 

it. Consequently, 
P
T  draughts player Neural Networks (or draughts player agents) are 

produced here.  
Henceforth, the next steps of the flowchart of arrows (enumerated from 2 up to 14) will 
refer to the training process of the extended LS-Draughts considering only one 
individual, that is, just one player Neural Network. Therefore, in practice, during the 
training process of LS-Draughts, the next steps should be repeated for each individual 

associated to its player Neural Network, that is, 
P
T  times; 

2. Current State å Perception å Minimax Search Module: each time the player agent 
must move a piece, the minimax algorithm is used to build a depth n breadth-first 
search tree whose root S is the current state. So, the parameters of the Minimax Search 
Module are the depth n and the current state S; 

3. Minimax Search Module å Perfect Information? å Endgame Database Module: 
before that the Minimax Search Module can build the game search tree for the current 
state S, it checks, through the Endgame Database Module, whether S belongs to the 
endgame databases; 

4. Endgame Database Module å Yes/No å Minimax Search Module: if true, the 
Minimax Search Module goes to the step 8. Otherwise, it carries on next step; 

5. Minimax Search Module å Leaf Nodes å Board Mapping Module: after building the 
game search tree, the Minimax Search Module checks whether all of the leaf nodes of 
this tree belong to the endgame databases. If true, then the Minimax Search Module can 
compute the game theoretic value (victory, defeat or draw) using the perfect knowledge 
of the endgame databases, instead of using the heuristic evaluation function. So, if all 
leaf nodes belong to the databases, the Minimax Search Module gets their 
corresponding theoretic values and goes to the step 8. Otherwise, for each leaf node that 
does not belong to the endgame databases, the Board Mapping Module is called for 
mapping the game board state associated to. 
Note that the theoretic value is obtained through the Endgame Database Module and 
the heuristic value is obtained through the ANN (Draughts Player Agent Module). The 
steps 6 and 7 below show the latter situation; 

6. Board Mapping Module å Evaluation Leaf Nodes å Draughts Player Agent Module 
(ANN): the Board Mapping Module maps the game board states, associated to each leaf 
node of the game tree into the input layer of the player Neural Network; 

7. Draughts Player Agent Module (ANN) å Prediction Leaf Nodes å Minimax Search 
Module: for each leaf node, represented in the input layer of the player Neural 
Network, a prediction P of victory is calculated. This prediction P corresponds to a real 
number belonging to the interval [-1,1] that indicates how much the game board state is 
favorable to the agent; 

8. Minimax Search Module å Best Action å Current State: the values that are returned 
to the minimax algorithm (corresponding to the theoretic values of the endgame 
databases and/or corresponding to the heuristic values of the prediction of the player 
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Neural Network) are used in order to indicate to the agent which is the best action to 
choose and to execute in the current state S; 

9. Current State å Movement å Next State: the best action is executed and the game 
board current state is changed to the next state S’; 

10. Next State å Perception å Board Mapping Module: the Board Mapping Module is 
called for mapping the game board state S’ resultant of the best action executed by 
agent; 

11. Board Mapping Module å Perception å Draughts Player Agent Module (ANN): the 
Board Mapping Module maps the new state S’ in the input layer of the player Neural 
Network; 

12. Draughts Player Agent Module (ANN) å Prediction of the best action å Agent 
Training Module (TD): the TD mechanism calculates the prediction P’ of victory for the 
new state S’ (represented in the input layer of the player Neural Network) by means of 
the equation 1 showed in the section 2; 

13. Agent Training Module (TD) å Synaptic Weight Change å Draughts Player Agent 
Module (ANN): the new prediction P’ calculated by TD mechanism is used for 
updating the synaptic weights of the player Neural Network according to equation 2 of 
the section 2; 

14. Draughts Player Agent Module (ANN) å Next Step å Current State: the flowchart 
returns to the step 2 and repeats the whole flow until the end of the training game. 

In the next subsections, the authors present the structures of the first and the sixth modules 

which characterize the LS-Draughts. As shown before, each individual generated by the first 

module will be attached to a neural network that will learn by means of training games 

guided by the TD methods. 

5.1 Population and individual encoding in the LS-Draughts 

Each individual in the population is encoded as a binary chromosome whose length is 15 

genes. The binary representation indicates whether a determined feature 
i
F  occurs or not in 

the gene
i
G , where { }1,2,3,...,15i∈ , as shown in figure 2. 

 

 
 

Fig. 2. Example of an individual encoding in the population. 

Table 1 shows the 15 features to be represented in the genes. Each integer number in column 

BITS corresponding to a feature 
i
F  indicates the quantity of neurons that will be reserved to 

represent 
i
F  in the input layer of the Network. 

In this chapter, the GA population is composed of 50 individuals, that is, 
p
T =50. Therefore, 

the population will be formed by 50 chromosome structures (or individuals) where each 
of them will be associated to a Neural Network. These 50 individuals will evolve within 
the GA along 50 generations (the original LS-Draughts evolved them along 30 
generations). 
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FEATURES BITS 

F1: PieceAdvantage 4 

F2: PieceDisadvantage 4 
F3: PieceThreat 3 

F4: PieceTake 3 

F5: Advancement 3 

F6: DoubleDiagonal 4 

F7: Backrowbridge 1 

F8: Centrecontrol 3 

F9: XCentrecontrol 3 

F10: TotalMobility 4 

F11: Exposure 3 
F12: 
KingCentreControl 

3 

F13: DiagonalMoment 3 

F14: Threat 3 

F15: Taken 3 

Table 1. Set of features used by LS-Draughts. 

The individuals will be generated according to the following steps: 

1. All the 50 individuals of the first generation 
0

GE are generated by a randomly binary 

activation (1 or 0) of their genes. Next, each of these individuals (which represents a 
game state) is introduced in the input of the Network that corresponds to it. The 50 
Networks produced are trained (the training process will be discussed later). After this, 
LS-Draughts starts a tournament involving the 50 available trained Networks. At the 
end of the tournament, an evaluation (or fitness) is calculated for each individual based 
on its performance during the tournament (as detailed in the subsection 5.4).  Next, the 

50 individuals of 
0

GE are passed as parents to the next generation (generation 
1

GE );  

2. All the 50 individuals of the remaining 49 generations 
i

GE , where 1 49i≤ ≤ , are 

generated as described below: 50 new individuals are generated by applying the genetic 
operators of crossover and mutation to 25 pairs of individuals chosen by a stochastic 

tournament selection process over the 50 parents received from the generation 
1i

GE − . 

Next, 50 new Networks associated to these 50 new individuals are trained. After this, 
LS-Draughts starts a tournament involving the 100 available trained Networks (50 

corresponding to 
1i

GE −  and 50 corresponding to 
i

GE ). At the end of the tournament, an 

evaluation (or fitness) is calculated for each individual based on its performance during 
the tournament. The 50 individuals which present the best fitness will be passed as 

parents to the next generation 
1i

GE + , and so on. 

5.2 Individual selection and application of genetic operators 

The selection method used by LS-Draughts to select the parents in order to apply the genetic 
operators is the stochastic tournament whose tour is 3 (Mitchell & Taylor, 1999). For each 2 
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parents selected by the stochastic tournament selection, two new children are generated. 
The crossover method used is the simple crossing of genes (one-point crossover) with 

crossover probability = 100%. The mutation probability rate –
mut
P – used is 0.3. Thus, in each 

individual, 5 genes are chosen randomly to be modified by mutation. 

5.3 Neural Networks training 

The multilayer Network associated with an individual 
i
I  has 

A
N  neurons in the input 

layer, where 
A
N  represents the quantity of bits associated to the active genes (digit 1) in 

i
I . 

The hidden layer and the output layer have 20 neurons and 1 neuron, respectively. For 
example, in figure 3, the Network attached to the individual M will utilize only the features 

1
F , 

2
F  and 

14
F  (corresponding to the 3 active genes) in order to represent the board state in 

the input Neural Network. Consequently, as shown in table 1, 
A
N  is equal to 11 in the 

Network that represents the individual M. The initial weights of the Neural Network linked 

to individual 
i
I  are generated randomly between -0.2 and +0.2 and the bias term is fixed as 

being 1. This process is repeated for every individual 
i
I , where { }1,2,3,...,50i∈ . 

 

 

Fig. 3. Selection of active features of an individual M to define the NET-FEATUREMAP 
mapping which the attached neural network will use in the training. 

After the generation of a Neural Network for each 
i
I , where { }1,2,3,...,50i∈ , LS-Draughts 

starts the training phase of the 50 Neural Networks attached to the 50 generated individuals. 
In the training games, the Networks learn by reinforcement, as described in the section 2. 
The training of each Neural Network consists of a group of 4 sessions of 400 training games, 
where the Network plays a half of these 400 games as black player (black pieces) and the 
other 200 games as red player (red pieces). Such a strategy has the purpose of training the 
agent for diversified situations, once the features establish constraints that are related to the 

color of the pieces (for example: feature 
9
F  indicates the number of red pieces in the center 

of the game board).  

Before starting the ten training session by self-play, a copy of the Neural Network 
i

net  

attached to the individual 
i
I  is made, thus producing the clone Network 

i
cnet . Next, 

i
net  

and 
i

cnet  play the 200 games which correspond to the first session. During these games, 

only the weights of 
i

net  are updated. At the end of the first session, two test-games are 
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played to check whether the new Network 
i

net  corresponding to the individual 
i
I  

(remember that the original weights of 
i

net  were updated during the games) became better 

than its clone. If it is true, the 
i

cnet  weights are replaced by the 
i

net  weights and the next 

session begins involving the players 
i

net  and the modified 
i

cnet  (which are, in fact, 

equivalents). Otherwise, 
i

cnet  is not modified and the next session begins involving the 

players 
i

net  and 
i

cnet . It is interesting to point out that in these test-games the strategy of 

changing the color corresponding to each player is adopted, that is, each network plays one 

game-test as red pieces and the other one as black pieces. This process is repeated until the 

end of the fourth session. Note that, in all these games, both player Networks use the same 

strategy to choose the best action described in the section 2. 
Considering the possibility that it is not reasonable to guarantee that the best network 
obtained in the end of the fourth session is really the best one (in case it has been specialized 
to beat only its last clone during the training process), a small tournament is realized 
between the final network obtained and all its clones generated in the four sessions. Finally, 
the winner of this tournament is considered as being the best network corresponding to the 

individual 
i
I  that has been trained. 

The input parameters utilized to train an individual 
i
I  are: a game board file containing the 

initial game board settings and the minimum score required to allow the replacement of the 

weights of a clone by the weights of the Network from which it originated; the learning rate 

1
α  corresponding to the first layer (

1
1/

A
Nα = ); the learning rate 

2
α  corresponding to the 

hidden layer (
2

1/ 20α = ); and, finally, the λ  (see section 2) value ( 0.1λ = ). 

5.4 Using endgame databases in the neural networks training 

Considering the depth-first search algorithm, the time complexity is ( )mO b  for a state space 

with branching factor b and maximal depth m (Russell & Norvig, 2003). This means that the 
state space grows exponentially with depth. For large state spaces, a good solution for this 
problem consists of combining the depth-first search with retrograde analysis techniques 
based on information that is eventually stored in Databases (DBs). In other words, whenever 

the depth-firth search tries to evaluate a node 
1
N , before evaluating it, the algorithm will 

check whether the DB stores information about 
1
N . If it does, this piece of information will 

free the search algorithm from the burden of evaluating 
1
N . The state space of Draughts is 

approximately composed of 205 10∗  distinct board states. Even considering recent 

computational resources, it is impracticable to traverse such a state space by adopting the 
depth-first search strategy. Therefore, the use of endgame DBs in Draughts strongly 
improves the general performance of player agents. In fact, even if the current board state S 
that is being evaluated is distant from endgame board states, some of its descendents may 
already be in the DB, what may limit the search depth to the level of these descendents.  The 
great success and efficiency of Chinook, for example, is mainly based on its endgame DBs 
(Lake et al., 1994). Considering the large dimension of the Draughts state space, the 
construction of its endgame DBs is a hard task. In fact, in Chinook, the efforts to build the 
DBs have begun in 1989 and, since that year, almost continuously, several computers have 
worked exclusively to cope with this activity (Schaeffer et al., 2007). In 1992, there were 
more than 200 computers simultaneously working in the construction of these DBs. 
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Nowadays, they store information about all game board states that comprise 10 or less 
pieces. Particularly, for each of these states, the DBs indicate whether it corresponds to a 
win, a loss or a draw state. Considering the arguments above, in order to improve its search 
method, the extended LS-Draughts combines the minimax algorithm with a subset of 
endgame DBs of Chinook, which allows it to find the best movement spending much less 
time. During the search process, whenever a board state S is found in the DB, the extended 
LS-Draughts, instead of using its heuristic evaluation function to calculate the prediction 
corresponding to S, retrieves from the DB its exact value. In this case, the extended LS-
Draughts does not need to evaluate any of the descendant nodes of S in the search tree, 
what correspond to a relevant simplification in the minimax search process. The 
combination between minimax and endgame DBs produces an efficient search method 
which simplifies the search tree and obtains more precise results, since the predictions of 
win, loss or draw retrieved from the DBs are exact (Schaeffer et al., 2002). The next 
subsections present how to construct endgame DBs and detail how the extended LS-
Draughts uses them.  

5.4.1. How to build endgame DBs 

The previous section showed that retrograde analysis is an efficient tool to improve the 

search process. It has also been successfully applied in the construction of DBs for several 

games (Lake et al., 1994; Schaeffer et al., 2007; Gasser, 1990; Gasser, 1996; Romein & Bal, 

2002; Romein & Bal, 2003). As the construction of DBs for games requires many resources of 

memory, execution time and input/output (I/O), the same techniques used to implement 

them can be also used to solve several problems in Mathematics and other related sciences 

where an optimal solution must be found in large state spaces. To construct DBs 

corresponding to Draughts board states with n pieces, the state space to be analysed will be 

a graph that may be a cyclic one (Diestel, 2000).  The board states are represented in the 

nodes of the graph. The DBs for  game boards composed of n pieces are calculated by means 

of an iterative algorithm which uses the results obtained for the DBs of  1, 2, …, (n – 1) pieces 

previously calculated.  Then, the DB for the board states with only 1 piece (terminal states) 

must be calculated first. Note that, in this case, according to the rules of Draughts, the player 

which owns the remaining piece is the winner. The algorithm must enumerate all the 120 

possible terminal states and classify them as win or loss. Next, the DB corresponding to the 

board states with 2 pieces (6.972 distinct states) must be constructed based on the DB for the 

terminal nodes and so on. The following pseudo-code resumes the algorithm for 

constructing the DBs (Lake et al., 1994): 

1. Set all positions to UNKNOWN; 
2. Iterate and resolve all capture positions; 
3. Iterate and resolve non capture positions; 
4. Go to step 3 if any non-capture position was resolved; 
5. Set all remaining UNKNOWN to DRAWs. 
First, every board state is classified as unknown. Next, the following considerations must be 

observed: 

1. Some board states may be classified as win or loss, according to the rules of the game. 
For example, a player without any piece or without any legal move available is in a loss 
terminal state; 
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2. All state nodes which have at  least one child already classified in the DB as win will 
also be classified as win states;   

3. All state nodes whose all children have already been classified as loss in the DB  will 
also be classified as loss states; 

4. Whenever there is no more information to modify the classification of any board state in 
the DB, all the board states that could not be classified (that is, which remained as 
unknown states), will be classified as draw states. 

The execution of the first iterative module of the algorithm described above (step 2) takes 
into account one important rule of the Draughts game: a capture move must be executed 
before all the other ones.  Therefore, the step 2 classifies all the capture states and postpones 
the classification of all the remaining ones for the next steps. Since a capture which has 
occurred in a state with n pieces takes to a board state with (n – 1) pieces (or less), each 
capture state with n pieces is classified according to the BDs previously calculated. Near 
50% of the states stored in the BDs correspond to capture states (Lake et al., 1994).  
The execution of the second iterative module (step 3) tries to solve only the states S where 
no capture move is available. For each of them, all the legal moves are generated. Each legal 
move is executed and the values associated to the descendants of S are retrieved from the 
DB. The value unknown of S is only replaced when at least one of its children is classified as 
win, when all of them are classified as loss, or when all legal moves have already been 
solved. This procedure goes on until no board state can be solved anymore. At this point, all 
unknown states are classified as draw states. 
In fact, there are two approaches to solve unknown states S:  
1. Forward Approach: one generates the descendants of S and one tries to classify S 

according to them; 
2. Backward Approach: one generates the ancestors of each solved state and one checks 

whether there is sufficient information to classify some of them. 
The best choice depends on the proportion of solved and non solved nodes in a certain 
iteration process. In Chinook, it was performed a successfully combination of both 
approaches (Lake et al., 1994).  

5.4.2. How LS-draughts uses endgame DBs 

The endgame databases of Chinook that have been added to the extended LS-Draughts store 
information about victory, defeat or draw for: 
1. All draughts board states with combination of 4 pieces x 4 pieces; 
2. All draughts board states with combination of 4 pieces x 3 pieces; 
3. All draughts board states involving 6 or less pieces on the board.  
The main purpose of including the Chinook’s endgame databases into the extended LS-
Draughts is to try to answer two important questions: 
1. Will the addition of the DBs into the original LS-Draughts contribute, in fact, for 

improving its general performance? 
2. Will the use of the DBs help to decrease the rate of endgame loops in the original LS-

Draughts? (This problem occurs in NeuroDraughts as well).  
Next, it is presented the pseudo-code of the search algorithm of the extended LS-Draughts, 
followed by resuming of its main characteristics. 
 

1. fun minimax (n:node, depth:int, bestmove:move) : float = 
2.   if ((not isRoot(n)) and (isLookupBoard(n))) 
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3.       db_value := lookup_positions(n) 
4.       if (db_value==1) and (n is a min node) 
5.           return -1.0 
6.       if (db_value==1) and (n is a max node) 
7.           return +1.0 
8.       if (db_value==2) and (n is a min node) 
9.          return +1.0 
10.      if (db_value==2) and (n is a max node) 
11.         return -1.0 
12.      if (db_value==3) 
13.         return 0.0 
14.      if leaf(n) or depth=0 return evaluate(n) 
      if n is a max node 
         besteval := - infinity 
         for each child of n 
            v := minimax (child, d-1, bestmove) 
            if v > besteval 
               besteval:= v 
               thebest := bestmove 
               bestmove := thebest 
         return besteval 
      if n is a min node 
         besteval := + infinity 
         for each child of n 
             v := minimax (child, d-1, bestmove) 
             if v < besteval 
                 besteval:= v 
                 thebest := bestmove 
                 bestmove := thebest 
         return besteval 
 

Line 2: The function isLookupBoard() is used to check whether the current board state n 
satisfies the constraints that allow the access to the DBs (that is, it checks whether n owns the 
adequate quantity of pieces and respects the capture constraints). The function not isRoot() is 
used to guarantee that the states n  to be consulted in the DB have, at least, one ancestor in 
the search graph; 
Line 3: the function lookup_positions() consults the DB in order to try to retrieve the 
prediction corresponding to n; 
Line 4: The result db_value = 1 indicates that n corresponds to a victory for the next player to 
execute a move and, therefore, corresponds to a defeat for its opponent (the parent of n). 
Case n is a min node, its parent is a max node. Therefore, the value -1.0 must be returned in 
line 5 in order to guarantee that the parent of n only chooses this move in case there is no 
other choice for it; 
Line 6: The result db_value = 1 indicates that n corresponds to a victory for the next player to 
execute a move and, therefore, corresponds to a defeat for its opponent (the parent of n). 
Case n is a max node, its parent is a min node. Therefore, the value +1.0 must be returned in 
line 7 as an evident prevision that the parent of n, normally, will not choose that move;  
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Line 8: The result db_value = 2 indicates that n corresponds to a defeat for the next player to 
execute a move and, therefore, corresponds to a victory for its opponent (the parent of n). 
Case n is a min node, its parent is a max node. Therefore, the value +1.0 must be returned in 
line 9 in order to guarantee that the parent of n chooses this move whenever it is available; 
Line 10: The result db_value = 2 indicates that n corresponds to a defeat for the next player to 
execute a move and, therefore, corresponds to a victory for its opponent (the parent of n). 
Case n is a max node, its parent is a min node. Therefore, the value -1.0 must be returned in 
line 11 as an evident prevision that the parent of n, normally, will choose that move;  
Line 12: The result db_value = 3 indicates that n corresponds to a draw for the next player to 
execute a move and, therefore, corresponds to a draw for its opponent (the parent of n). In 
this case, the value 0.0 is returned in line 13, independently of the min or max situation of n; 
Line 14: From this line, the classical minimax algorithm (see the Minimax Search Module 
presented in the beginning of the section 5) is presented. Note that it will be executed only 
when the current state n is not available in the DB. 

5.5 Fitness calculus 

In the tournament organized to calculate the fitness of the individuals in a given generation 

(cited in the subsection 5.1), each individual 
i
I  plays 10 games against the remaining 

individual of that generation. The results of this tournament are used to calculate the 
i
I  

fitness in the following way: 2 points for each victory, 1 point for each draw and 0 point for 

each defeat.  

6. Endgame loop problem in the original LS-Draughts 

The original LS-Draughts was executed for 30 generations with a population of 50 

individuals, as presented in (Neto & Julia, 2007). For each generation, the best individual 

was compared with the Mark Lynch’s NeuroDraughts player, in a tournament composed of 

7 games, in order to evaluate its performance in relation to the latter one. The best 

individuals of LS-Draughts that managed to beat NeuroDraughts were the best individual 

9B
I −  of the 9th generation and the best individual 

25B
I −  of the 25th generation. The scores of 

both individuals were: 1 victory and 6 draws for 
9B

I − ;  2 victories and 5 draws for 
25B

I − . 

Despite of the good performance of 
9B

I −  and 
25B

I −  against NeuroDraughts, both individuals 

of LS-Draughts presented endgame loop problems. As shown in the section 4, by analysing 

the 5 draws of 
25B

I −  against NeuroDraughts, one can conclude that, in 2 of them, the LS-

Draughts could have won , since 
25B

I −  counted on 3 checkers and 1 simple piece on the 

endgame board and NeuroDraughts only counted on 1 checker. Figure 4 shows this 

example of endgame loop problem which affected the individual 
25B

I − : from the game board 

position of the figure (4.a) , resultant of the NeuroDraughts’ 43rd move, the game got up to 

the board position of the figure (4.b) after the 44th move of NeuroDraughts. Next, the game 

got back to the board position indicated in figure (4.a), as a result of the 45th move of 

NeuroDraughts. Finally, it occurred an alternate infinite loop between these two game 

board positions, that is, figure (4.a) and figure (4.b), respectively. 

The same problem affected the individual
9B

I − . Analysing the 6 draws of its tournament 

against NeuroDraughts, 3 of them it would easily have won if 
9B

I −  was able to detect 

endgame loops. For example, in one of these 3 games, even though 
9B

I −  counted on 2 
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checkers and 3 simple pieces, it was not able to beat NeuroDraughts, which only counted on 

1 checker and 1 simple piece. 
 

 

Fig. 4. Game between LS-Draughts’ 25th best individual (black player) and the 
NeuroDraughts (red player). a) Position of the draughts game board state after the 43rd red 
player move; b) Position of the draughts game board state after the 44th red player move. 

For many other individuals of the original LS-Draughts, the endgame loop problem came 
out. 

7. Experimental results 

The new version of LS-Draughts was executed for 50 generations with a population of 50 

individuals. Differently from the original version presented in (Neto & Julia, 2007), the 

individuals here were trained using an endgame database module that allows to anticipate 

the result of the game (victory, defeat or draw) for draughts board states with, at most, 8 

pieces.  

As cited before, the main purpose of including the endgame databases of Chinook into the 
LS-Draughts was to try to answer two important questions: 
1. Will the addition of the endgame databases into the original LS-Draughts contribute, in 

fact, for improving its general performance? 
2. Will the use of the endgame databases help to decrease the rate of endgame loops in the 

original LS-Draughts? This problem was found by Neto and Julia in the players 
NeuroDraughts and original LS-Draughts (Neto & Julia, 2007). 

In order to answer the first question, a tournament was executed between the available 

player of NeuroDraughts ( _1PLAYER ), the best individual of the 50th generation of the 

original LS-Draughts ( _ 2PLAYER ) and the best individual of the 50th generation of the 

extended version of LS-Draughts proposed here ( _ 3PLAYER ): 

www.intechopen.com



LS-Draughts: Using Databases to Treat Endgame Loops in a Hybrid Evolutionary Learning System 

 

295 

1. FIRST MATCH: _1PLAYER  x _ 2PLAYER  

• Number of victories of _ 2PLAYER : 5; 

• Number of defeats of _ 2PLAYER : 1; 

• Number of draws: 8 (6 real draws and 2 draws with endgame loop problem); 
2. SECOND MATCH: _1PLAYER  x _ 3PLAYER  

• Number of victories of _ 3PLAYER : 6; 

• Number of defeats of _ 3PLAYER : 0; 

• Number of draws: 8 (5 real draws and 3 draws with endgame loop problem); 
3. THIRD MATCH: _ 2PLAYER  x _ 3PLAYER  

• Number of victories of _ 3PLAYER : 3; 

• Number of defeats of _ 3PLAYER : 1; 

• Number of draws: 10 (3 real draws and 7 draws with endgame loop problem); 
Furthermore, the rates of endgame loops occurred during the training process of 

_1PLAYER , _ 2PLAYER  e _ 3PLAYER  were also estimated in order to answer the second 

question raised above. However, to get these rates, the three players needed to be trained 
again, using the same training parameters, initial configuration and search, as follow: 

• The player NeuroDraughts was trained using the set of features defined by Lynch in 
(Lynch, 1997; Lynch & Griffith, 1997), an Artificial Neural Network whose weights were 
generated randomly, search algorithm with depth 4 and a training strategy with 10 
sessions of 200 training games. During the 2000 games, 1.045 games were finished with 
endgame loop problem; 

• The best individual of the 50th generation of the original LS-Draughts also was trained 
using the following: an Artificial Neural Network whose weights were generated 
randomly, search algorithm with depth 4 and a training strategy with 10 sessions of 200 
training games. During the 2000 games, 759 games were finished with endgame loop 
problem; 

• Finally, the best individual of the 50th generation of the extended version of LS-
Draughts was trained using an Artificial Neural Network whose weights were 
generated randomly, search algorithm with depth 4 and a training strategy with 10 
sessions of 200 training games. During the 2000 games, 172 games were finished with 
endgame loop problem; 

Figure 5 shows the rates of endgame loops obtained by three players during their 2000 
training games. Note that que the extended version of LS-Draughts produced a rate of 
endgame loops corresponding to 16.46% of the one produced by NeuroDraughts, and  
cooresponding to 22.66%  of the rate produced by the original LS-Draughts. 

 

Fig. 5. Rates of endgame loops during 2000 training games 
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Theses results show that endgame DBs improved significantly the original LS-Draughts, 
introducing efficency and accuracy in its general performance and reducing, therefore, the 
rate of endgame loops. 

8. Conclusion 

This paper presented an extended version of LS-Draughts – a Learning System which, using 
endgame databases, GAs, TD methods, minimax algorithm and self-play with cloning 
strategy, generates a draught player much better than the original LS-Draughts. The results 
obtained show that: 
1. The extended  LS-Draughts was the best player of the tournament, with 6 victories, 8 

draws and 0 defeat against NeuroDraughts and  3 victories, 10 draws and 1 defeat 
against the original LS-Draughts; 

2. In relation to the rate of endgame loops, the extended LS-Draughts player decreased 
from 83% the rate of endgame loops produced by NeuroDraughts player and from 77% 
the rate of endgame loops produced by the original LS-Draughts player. 

Therefore, the results confirm the improvement that was obtained in the original LS-
Draughts with the insertion of the endgame databases module. 
Nevertheless, the introduction of a search module more efficient than minimax algorithm 
can improve much more the performance of the extended version of LS-Draughts. That is 
why, as future work, the authors intend to substitute the alpha-beta algorithm combined 
with transposition table for the minimax algorithm of LS-Draughts.  
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