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1. Introduction 

In many manufacturing and assembly facilities, a number of operations have to be done on 
every job. Often these operations have to be done on all jobs in the same order implying that 
the jobs follow the same route. These machines are assumed to be set up in series, and the 
environment is referred to as a flow-shop. The assumption of classical flow-shop scheduling 
problems that each job visits each machine only once (Baker, 1974) is sometimes violated in 
practice. A new type of manufacturing shop, the re-entrant shop has recently attracted 
attention. The basic characteristic of a re-entrant shop is that a job visits certain machines 
more than once. The re-entrant flow-shop (RFS) means that there are n jobs to be processed
on m machines in the shop and every job must be processed on machines in the order of M1,
M2, …, Mm, M1, M2, …, Mm, …, and M1, M2, …, Mm. For example, in semiconductor 
manufacturing, consequently, each wafer re-visits the same machines for multiple 
processing steps (Vargas-Villamil & Rivera, 2001). The wafer traverses flow lines several 
times to produce different layer on each circuit (Bispo & Tayur, 2001). 
Finding an optimal schedule to minimize the makespan in RFS is never an easy task. In 
fact, a flow-shop scheduling, the sequencing problem in which n jobs have to be processed 
on m machines, is known to be NP-hard (Kubiak et al., 1996; Pinedo, 2002; Wang et al., 
1997); except when the number of machines is smaller than or equal to two. Because of 
their intractability, this study presents the genetic algorithm (GA) to solve the RFS 
scheduling problems. GA has been widely used to solve classical flow-shop problems and 
has performed well. In addition, hybrid genetic algorithms (HGA) are proposed to 
enhance the performance of pure GA. The HGA is compared to the optimal solutions 
generated by the integer programming technique, and to the near optimal solutions 
generated by pure GA and the non-delay schedule generation procedure. Computational 
experiments are performed to illustrate the effectiveness and efficiency of the proposed 
HGA algorithm.  

2. Literature review 

Flow-shop scheduling problem is one of the most well known problems in the area of 
scheduling. It is a production planning problem in which n jobs have to be processed in the 
same sequence on m machines. Most of these problems concern the objective of minimizing 
makespan. The time between the beginning of the execution of the first job on the first O
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machine and the completion of the execution of the last job on the last machine is called 
makespan. To minimize the makespan is equivalent to maximize the utilization of the 
machines. 
Johnson (1954) is the pioneer in the research of flow-shop problems. He proposed an 
“easy” algorithm to the two-machine flow-shop problem with makespan as the criterion. 
Since then, several researchers have focused on solving m-machine (m > 2) flow-shop 
problems with the same criterion. However, these fall in the class of NP-hard (Rinnooy 
Kan, 1976; Garey et al., 1976), complete enumeration techniques must be used to solve 
these problems. As the problem size increases, this approach is not computationally 
practical. For this reason, researchers have constantly focused on developing heuristics for 
the hard problem. 
In today’s competitive, global markets, effective production scheduling systems which 
manage the movement of material through production facilities provide firms with 
significant competitive advantages such as utilization of production capacity. These 
systems are particularly important in complex manufacturing environments such as 
semiconductor manufacturing where each wafer re-visits the same machines for multiple 
processing steps (Vargas-Villamil & Rivera, 2001). A wafer traverses flow lines several 
times to produce different layers on each circuit. This environment is one of the RFS 
scheduling problems.  
In a RFS problem, these processes cannot be treated as a simple flow-shop problem. The 
repetitive use of the same machines by the same job means that there may be conflicts 
among jobs, at some machines, at different levels in the process. Later operations to be done 
on a particular job by some machine may interfere with earlier operations to be done at the 
same machine on a job that started later. This re-entrant or returning characteristic makes 
the process look more like a job-shop on first examination. Jobs arrive at a machine from 
several different sources or predecessor facilities and may go to several successor machines.  
A number of researchers have studied the RFS scheduling problems. Graves et al. (1983) 
modeled a wafer fab as a RFS, where the objective is to minimize average throughput time 
subject to meeting a given production rate. Kubiak et al. (1996) examined the scheduling 
of re-entrant shops to minimize total completion time. Some researchers examined 
dispatching rules and order release policies for RFS. Hwang and Sun (1998) addressed a 
two-machine flow-shop problem with re-entrant work flows and sequence dependent 
setup times to minimize makespan. Demirkol and Uzsoy (2000) proposed a 
decomposition method to minimize maximum lateness for the RFS with sequence-
dependent setup times. 
Pan and Chen (2004) studied the RFS with the objective of minimizing the makespan and 
mean flow time of jobs by proposing optimization models based on integer programming 
technique and heuristic procedures based on active and non-delay schedules. In addition, 
they presented new priority rules to accommodate the reentry feature. Both the new rules 
and some selected rules of earlier research were incorporated in the schedule generation 
algorithm of active (ACT) and non-delay (NDY) schedules, and that of the priority rules in 
finding heuristic solutions for the problems. They compared ACT and NDY procedures and 
tested the combinations of 12 priority rules with ACT and NDY. Their simulation results 
showed that for RFS the best combinations were (NDY, SPT/TWKR) for minimizing 
makespan, where SPT means shortest processing time and TWKR means total work 
remaining. 
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3. Problem statement and optimization model 

3.1 Problem description 

Assumed that there are n jobs, J1, J2, …, Jn, and m machines, M1, M2, …, Mm, to be processed 
through a given machine sequence. Every job in a re-entrant shop must be processed on 
machines in the order of M1, M2, …, Mm, M1, M2, …, Mm, …, and M1, M2, …, Mm. In this case, 
every job can be decomposed into several levels such that each level starts on M1 and 
finishes on Mm. Every job visits certain machines more than once. The processing of a job on 
a machine is called an operation and requires a duration called the processing time. The 
objective is to minimize the makespan. A minimum makespan usually implies a high 
utilization of the machine(s). 
The assumptions made for the RFS scheduling problems are summarized here. Every job 
may visit certain machines more than once. Any two consecutive operations of a job must be 
processed on different machines. The processing times are independent of the sequence. 
There is no randomness; all the data are known and fixed. All jobs are ready for processing 
at time zero at which the machines are idle and immediately available for work. No pre-
emption is allowed; i.e., once an operation is started, it must be completed before another 
one can be started on that machine. Machines never break down and are available 
throughout the scheduling period. The technological constraints are known in advance and 
immutable. There is only one of each type of machine. There is an unlimited waiting space 
for jobs waiting to be processed. 

3.2 Optimization model 
General symbol definition 

Ji  = job number i;
Mk  = machine number k;

i

lk
O  = the operation of Ji on Mk at layer l;

Problem parameters 
m  = number of machines in the shop;  
n  = number of jobs for processing at time zero;  
M  = a very large positive number;  
L  = number of layers for every job; 

i

lk
p  = the processing time of i

lk
O ;

Decision variables 
Cmax= maximum completion time or makespan; 

i

lk
s = the starting time of i

lk
O ;

ii

kll
Z ′

′
 = 1 if i

lk
O  precedes i

kl
O ′

′
 (not necessarily immediately); 0 otherwise; 

Pan and Chen (2004) were the first authors to present the integer programming model for 
solving the reentrant flow-shop problem. The model is as follows. 

Minimize Cmax  (1)

Subject to i

lk
s + i

lk
p ≤

i

kl
s

1, +
   i = 1, 2,..., n; l = 1, 2,..., L; k = 1, 2, ..., m − 1  (2) 

i

lm
s + i

lm
p ≤

i

l
s

1,1+
   i = 1, 2,..., n; l = 1, 2,..., L − 1  (3) 

 M(1 −
ii

kll
Z ′

′
) + ( i

kl
s ′

′
−

i

lk
s ) ≥

i

lk
p    1 ≤ i < i′ ≤ n; l, l′ = 1, 2, ..., L; k = 1, 2, ..., m  (4) 
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 M ii

kll
Z ′

′
+ ( i

lk
s −

i

kl
s ′

′
) ≥

i

kl
p ′

′
   1 ≤ i < i′ ≤ n; l, l′ = 1, 2, ..., L; k = 1, 2, ..., m  (5) 

i

mL
s

,
+ i

mL
p

,
≤ Cmax    i = 1, 2, ..., n  (6) 

Cmax ≥ 0, i

lk
s ≥ 0 i = 1, 2, ..., n; l = 1, 2, ..., L; k = 1, 2, ..., m

ii

kll
Z ′

′
= 0 or 1   1 ≤ i < i′ ≤ n; l, l′ = 1, 2, ..., L; k = 1, 2, ..., m (7) 

Constraint set (2) ensures that Mk begins to work on i

kl
O

,1+
 only after it finishes i

lk
O .

Constraint set (3) ensures that the starting time of i

l
O

1,1+
 is no earlier than the finish time of 

i

lm
O . Constraint sets (2) and (3) together specify the technological constraints. Constraint sets 

(4) and (5) satisfy the requirement that only one job may be processed on a machine at any 
instant of time. Constraint set (6) defines Cmax to be minimized in the objective function (1). 

The non-negativity and binary restrictions for i

lk
s  and ii

kll
Z ′

′
, respectively, are described in (7). 

4. A hybrid genetic algorithm for re-entrant flow-shop 

4.1 Basic genetic algorithm structure 

GA is one of the meta-heuristic searches. Holland (1975) first presented it in his book, 
Adaptation in Natural and Artificial Systems. It originates from Darwin’s “survival of the 
fittest” concept, which means a good parent produce better offspring. GA searches a 
problem space with a population of chromosomes and selects chromosomes for a continued 
search based on their performance. Each chromosome is decoded to form a solution in the 
problem space in the context of optimization problems. Genetic operators are applied to 
high performance structures (parents) in order to generate potentially fitter new structures 
(offspring). Therefore, good performers propagate through the population from one 
generation to the next (Chang et al., 2005). Holland (1975) presented a basic GA called 
“Simple Genetic Algorithm” in his studies that is described as follows: 
Simple genetic algorithm () 

{
  Generate initial population randomly 
  Calculate the fitness value of chromosomes 
  While termination condition not satisfied 
  { 
  Process crossover and mutation at chromosomes  
  Calculate the fitness value of chromosomes 
  Select the offspring to next generation 
 } 
}

A GA contains the following major ingredients: parameter setting, representation of a 
chromosome, initial population and population size, selection of parents, genetic operation, 
and a termination criterion. 

4.2 Hybrid genetic algorithm 

The role of local search in the context of the genetic algorithm has been receiving serious 
consideration and many successful applications are strongly in favor of such a hybrid 
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approach. Because of the complementary properties of GA and conventional heuristics, a 
hybrid approach often outperforms either method operation along. The hybridization can be 
done in a variety of ways (Cheng et al., 1999), including: 
1. Incorporation of heuristics into initialization to generate well-adapted initial 

population. In this way, a hybrid genetic algorithm (HGA) with elitism can guarantee 
to do no worse than the conventional heuristic does. 

2. Incorporation of heuristics into evaluation function to decode chromosomes to 
schedules. 

3. Incorporation of local search heuristic as an add-on extra to the basic loop of GA, 
working together with mutation and crossover operations, to perform quick and 
localized optimization in order to improve offspring before returning it to be evaluated. 

One of the most common HGA forms is incorporating local search techniques as an add-on 
to the main GA’s recombination and selection loop. In the hybrid approach, GAs are used to 
perform global exploration in the population, while heuristic methods are used to perform 
local exploitation of chromosomes. HGA structure is illustrated in Fig. 1. 

Figure 1. The hybrid genetic algorithm structure 

4.3 The proposed hybrid genetic algorithms for re-entrant flow-shop 

In this study, we propose an HGA for RFS with makespan as the criterion. The flowchart of 
the hybrid approach is illustrated in Fig. 2. 

4.3.1 Parameters setting 

The parameters in GA comprise population size, number of generations, crossover 
probability, mutation probability, and the probability of processing other GA operators. 

4.3.2 Encoding 

In GA, each solution is usually encoded as a bit string. That is, binary representation is 
usually used for the coding of each solution. However, this is not suitable for scheduling 
problems. During the past years, many encoding methods have been proposed for 
scheduling problem (Cheng et al., 1996). Among various kinds of encoding methods, job-
based encoding, machine-based encoding and operation-based encoding methods are most 
often used for scheduling problem. This study adopts operation-based encoding method. 
For example, we have a three-job, three-machine, two-level problem. Suppose a 
chromosome to be (1, 1, 2, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 1, 2, 2, 3, 3), which means each job has six 
operations, it occurs exactly six times in the chromosome. If one of the alleles is generated 
more than six times or less than six times by GA operators such as crossover or mutation, 
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this chromosome is not a feasible solution of the RFS problem and it should be repaired to 
form a feasible one. Each gene uniquely indicates an operation and can be determined 
according to its order of occurrence in the sequence. Let Oijk denote the jth operation of job i
on machine k. The chromosome can be translated into a unique list of ordered operations of 
(O111, O122, O211, O311, O133, O222, O322, O141, O333, O233, O152, O241, O341, O163, O252, O263, O352,
O363). Operation O111 has the highest priority and is scheduled first, then O122, and so on. 
Hence there are (n×m×l)!/[(m×l)!]n schedules for an n-job, m-machine, l-level RFS problems. 

Crossover

Mutation

Other genetic operator

Output the best 
solution

Selection

Generating new 
population

End

No

Yes

Input initial 
data

Evaluating fitness 
value

Terminate ?

Encoding

Parameters setting

Generating initial 
population

Figure 2. The flow chart of the proposed hybrid approach 

4.3.3 Generation of initial population 

The initial population sets are generated by two heuristic methods; one is (NDY, 
SPT/TWKR), the best heuristic for RFS problems proposed by Pan and Chen (2004). The 
other is NEH heuristic (Pan & Chen, 2003), the best heuristic for re-entrant permutation 
flow-shop (RPFS) problems. The RFS scheduling problem where no passing is allowed is 
called the RPFS (Pan & Chen, 2003).  
The population is separated into two parts and each part contains a number of 1/2 
population size of individuals. The first schedule of the first part was generated by (NDY, 
SPT/TWKR), the rest of the first part were generated by selecting two locations in the first 
schedule and swapping the operations in them. The first schedule of the second part was 
generated by NEH heuristic (Pan & Chen, 2003) and the remaining individuals of this part 
were produced by interchanging two randomly chosen positions of it. Because the NEH 
heuristic (Pan & Chen, 2003) is based on job number, it is needed to re-encode those 
individuals of the second part based on operations. 

4.3.4 Crossover 

Crossover is an operation to generate a new string (i.e., child) from two parent strings. It is 
the main operator of GA. During the past years, various crossover operators had been 
proposed (Murata et al., 1996). Murata et al. (1996) showed that the two-point crossover is 
effective for flow-shop problems. Hence the two-point crossover method is used in this 
study. 
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Two-point crossover is illustrated in Fig. 3. The set of jobs between two randomly selected 
points are always inherited from one parent to the child, and the other jobs are placed in the 
order of their appearance in the other parent. 

1 2 3 4 5 6 7 8Parent 1

8 1 3 4 5 6 2 7Child

5 8 1 4 2 3 7 6Parent 2

Figure 3. A two-point crossover 

4.3.5 Mutation 

Mutation is another usually used operator of GA. Such an operation can be viewed as a 
transition from a current solution to its neighborhood solution in a local search algorithm. It 
is used to prevent premature and fall into local optimum. In RFS, neighborhood search-
based method is used to replace mutation as discussed next. 

4.3.6 Other genetic operators 

In traditional genetic approach, mutation is a basic operator just used to produce small 
variations on chromosomes in order to maintain the diversity of population. Tsujimura and 
Gen (1999) proposed a mutation inspired by neighbor search technique which is not a basic 
operator and is used to perform intensive search in order to find an improved offspring. 
Hence, we use neighborhood search-based method to replace mutation. 

4 1 3 1 2 3 2 4Parent

Neighbor chromosome

3 1 3 2 4 1 4 2

4 1 3 3 2 1 2 4 3 1 3 2 4 1 4 2

4 1 3 4 2 3 2 1 3 1 3 2 4 1 4 2

4 1 3 1 2 4 2 3 3 1 3 2 4 1 4 2

4 1 3 3 2 4 2 1 3 1 3 2 4 1 4 2

4 1 3 4 2 1 2 3 3 1 3 2 4 1 4 2

4 1 3 1 2 3 2 4 3 1 3 2 4 1 4 2

Figure 4. A local search mutation 
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For operation-based encoding, the neighborhood for a given chromosome can be considered 
as the set of chromosomes transformable from a given chromosome by exchanging the 
position of k genes (randomly selected and non-identical genes). A chromosome is said to be 
k-optimum, if it is better than any others in the neighborhood according to their fitness 
value. Consider the following example. Suppose genes on position 4, 6, and 8 are randomly 
selected. They are (1, 3, 4) and their possible permutations are (3, 1, 4), (4, 3, 1), (1, 4, 3), (3, 4, 
1) and (4, 1, 3). The permutations of the genes together with remaining genes of the 
chromosome from the neighbor chromosomes are shown in Fig. 4. Then all neighbor 
chromosomes are evaluated and the chromosome with the best fitness value is used as the 
offspring.

4.3.7 Fitness function 

Fitness value is used to determine the selection probability for each chromosome. In 
proportional selection procedure, the selection probability of a chromosome is proportional 
to its fitness value. Hence, fitter chromosomes have higher probabilities of being selected to 
next generation. To determine the fitness function, first calculate the makespan for all the 
chromosomes in a population, find the largest makespan over all chromosomes in current 
population and denote it as Vmax. The difference between each individual’s makespan and 
Vmax to the 1.005 power is the fitness value of that particular individual. The power law 

scaling (α) was proposed by Gillies (1985), which powers the raw fitness to a specific value. 
In general, the value is problem-dependent. Gillies (1985) reported a value of 1.005. The 

fitness function denote by Fi = (Vmax − Vi)
α. This is done to ensure that the probability of 

selection for a schedule with lower makespan is high. 

4.3.8 Termination 

GA continues to process the above procedure until achieving the stop criterion set by user. 
The commonly used criterions are: (1) The number of executed generation; (2) A particular 
object; and (3) The homogeneity of population. This study uses a fixed number of 
generations to serve as the termination condition.  

4.3.9 Selection 

Selection is another important factor to consider in implementing GA. It is a procedure to 
select offspring from parents to the next generation. According to the general definition, the 
selection probability of a chromosome should show the performance measure of the 
chromosome in the population. Hence a parent with a higher performance has higher 
probabilities of being selected to next generation. In this study, the process for selecting 
parents is implementing via the common roulette wheel selection procedure presented by 
Goldberg (1989). The procedure is described below. 
Step 1: Calculate the total fitness value for each chromosome in the population. 
Step 2: Calculate the selection probability of each chromosome. This is equal to the 

chromosome’s fitness value divided by the sum of each chromosome’s fitness value 
in the population. 

Step 3: Calculate the cumulative probability of each chromosome. 
Step 4: Generate a probability P randomly where P~[0, total cumulative probability], if

P(n) ≤ P ≤ P(n + 1), after that select the (n + 1) chromosome of population to next 
generation, where P(n) is the cumulative probability of the nth chromosome. 
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In this way, the fitter chromosomes have a higher number of offspring in the next 
generation. However, this method is not guaranteed that every good chromosome can be 
selected to the offspring to next generation. Hence one chromosome is randomly selected to 
be replaced by the best chromosome found until now. 

5. Analysis of experiment results and conclusions 

5.1 Experiment design 

We describe types of problems, comparison of exact and heuristic algorithms, experimental 
environment, and facility in this section. 

5.1.1 Types of problems 

The instance size is denoted by n×m×L, where n is the number of jobs, m is the number of 
machines, and L represents the number of levels. The test instances are classified into three 
categories: small, medium, and large problems. Small problems include 3×3×3, 3×3×4, 
3×4×2, 4×3×3, 4×4×3, 4×5×3, 4×4×4, and 4×5×4. Medium problems include 6×6×2, 6×8×5, 
6×9×3, 7×7×5, 7×8×4, 8×8×3, 9×9×2, and 10×10×2. Large problems include 12×12×10, 
15×15×5, 20×20×4, 25×25×8, and 30×30×5. The processing time of each operation for each 
type of problem is a random integer number generated from [1, 100], since the processing 
times of most library benchmark problems are generated in this range (Beasly 1990). 

5.1.2 Performance of exact and heuristic algorithms 

For small problems, the performances of HGA are compared with optimal solution, NEH, 
and (NDY, SPT/TWKR). For medium and large problems, the performances of HGA are 
compared with that of (NDY, SPT/TWKR), and non-hybrid version of GA, i.e., pure GA.  

5.1.3 Experimental environment and facility 

Hybrid GA, pure GA, NEH, and (NDY, SPT/TWKR) are implemented in Visual C++ while 
optimal solutions are solved by ILOG CPLEX. These programs are executed on a PC with 
Pentium IV 1.7GHz. 

5.2 Analysis of RFS experiment results 

The analysis of RFS experiment results are described in this section. The test instances are 
classified into three categories: small, medium, and large problems. 

5.2.1 Small problems 

The HGA parameters setting are as follows: the population size is 50, the crossover 
probability is 0.8, the mutation probability is 0.1, the hybrid operator probability is 0.5, and 
the maximum number of generations allowed is 100.  
For small size problems, there are 8 types of problems with 10 instances in each type, i.e., 80 
instances are tested. The optimal solution is obtained by using integer programming 
technique (Pan & Chen, 2004). Because GA is a stochastic searching heuristic, the result of 
every test instance is unlikely to be the same. In order to compare the average performance, 
10 instances were solved in each test and the average makespan (denoted by Avg. Cmax) and 
the minimum of these makespans (denoted by Min. Cmax) are recorded. 



Multiprocessor Scheduling: Theory and Applications 162

The decoding scheme in this study is based on NDY schedule generation method, i.e., the 
schedules are always non-delay. Though sometimes the HGA cannot find optimal solutions 
because optimal solutions are not necessarily non-delay, Pan and Chen (2004) reported that 
for RFS problems, the solution quality of non-delay schedules is obviously superior to that 
of the active schedules; therefore, the makespan is calculated by non-delay schedule in this 
study. 
The experimental results for small size problems of integer programming (IP), HGA, NEH 
and (NDY, SPT/TWKR) are listed in Table 1. The deviation is defined as follows. 

Deviation = 
)IP(

)IP()H(

max

maxmax

C

CC −
× 100% 

where Cmax(H) denotes the makespan obtained by heuristic H. Heuristic H includes pure 
GA, HGA, NEH, and (NDY, SPT/TWKR). Cmax(IP) denotes the optimal makespan and that 
is obtained by using integer programming technique (Pan & Chen, 2004). 
The improvement rate of method A over method B is defined as follows. 

Improvement rate = 
)H_B(

)H_A()H_B(

max

maxmax

C

CC −
× 100% 

where Cmax(H_A) and Cmax(H_B) denote the makespan obtained by heuristics H_A and H_B, 
respectively.
The experimental results of IP, HGA, NEH and (NDY, SPT/TWKR) for small size problems 
are listed in Table 1. From Table 1, HGA performs quite well. The objective function values 
it obtained are about 0.3% above the optimal values. While compared to NEH and (NDY, 
SPT/TWKR), HGA performs better than both of them by having improvement rate of 2.68% 
and 5.28%, respectively. The number of times that HGA finds optimal solutions is obviously 
more than those of NEH and (NDY, SPT/TWKR). This result is similar to that of small size 
problems, and it is found that the range of processing time does not affect the solution 
quality of the proposed GA. 

5.2.2 Medium problems 

The parameters are the same as those in small problems, except that generation is 200. There 
are 8 types of problems with 10 instances in each type. The performances are compared with 
(NDY, SPT/TWKR).  
Table 2 shows the comparison results of pure GA, HGA, and (NDY, SPT/TWKR). The 
column (Cmax(HGA) < Cmax(GA)) is the number of times that the Min. Cmax of HGA is better 
than that of pure GA in each instances. In medium size problems, the improvement rate of 
HGA over (NDY, SPT/TWKR) is nearly 6.93%. Table 2 also shows that although the 
improvement rate does not enhance obviously, the solution of HGA are consistent better 
than that of pure GA. 

5.2.3 Large problems 

The parameters are the same as those in small problems, except that generation is 400. There 
are 5 types of problems with 10 instances in each type. Table 3 reports the performances of 
pure GA, HGA, and (NDY, SPT/TWKR) in large problems. 
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The experimental results show that even when dealing with large size problems, HGA still 
has good performance. The average improvement rate of HGA over (NDY, SPT/TWKR) is 
5.25% and average improvement of HGA over pure GA is 1.36%. 

Number of optimal solution 
found 

CPU time(s) 
The improvement 
rate of HGA over 

Problems* 

HGA NEH 
(NDY, 

SPT/TWKR) 
IP HGA NEH 

(NDY, 
SPT/TWKR) 

Avg. 
deviation 
of HGA 

3×3×3 10 6 2 0.31 7.05 1.32% 3.69% 0.06% 

3×3×4 10 3 2 0.80 6.73 2.50% 4.04% 0.00% 

3×4×2 10 5 4 0.09 4.86 1.10% 4.22% 0.00% 

4×3×3 6 0 0 7.38 5.33 4.46% 5.34% 0.42% 

4×4×3 7 0 0 6.65 4.04 2.13% 4.50% 0.59% 

4×5×3 8 1 0 6.75 16.25 2.66% 5.50% 0.29% 

4×4×4 5 0 0 209.44 12.29 4.41% 9.02% 0.50% 

4×5×4 8 0 0 32.76 17.85 2.87% 5.95% 0.28% 

*Specified by n jobs × m machines × L levels. 

Table 1. Comparison of all small problems 

CPU time(s) HGA versus GA 
HGA versus 

NDY(SPT/TWKR) 

Problems* 

GA HGA
(NDY, 

SPT/TWKR)

The 
improvement 
rate of HGA 

over GA 

Cmax(HGA)
<

Cmax(GA) 

The 
improvement 
rate of HGA 
over (NDY, 

SPT/TWKR)

Cmax(HGA) 
<

Cmax(NDY, 
SPT/TWKR)

6×6×2 5.56 23.88 <0.1 1.82% 10 6.42% 10 

6×8×5 8.04 23.88 <0.1 2.31% 10 7.27% 10 

6×9×3 8.43 19.37 <0.1 1.74% 10 8.86% 10 

7×7×5 13.13 26.55 <0.1 2.73% 10 6.87% 10 

7×8×4 9.83 26.73 <0.1 1.76% 9 5.54% 10 

8×8×3 5.27 32.40 <0.1 1.43% 9 4.22% 10 

9×9×2 5.02 31.89 <0.1 1.29% 10 7.24% 10 

10×10×2 5.90 38.28 <0.1 1.44% 10 8.97% 10 

*Specified by n jobs × m machines × L levels. 

Table 2. Comparison of all medium problems 
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CPU time(s) HGA versus GA 
HGA versus 

NDY(SPT/TWKR) 

Problems*
GA HGA 

(NDY, 
SPT/TWKR)

The 
improvement 
rate of HGA 

over GA 

Cmax(HGA)
<

Cmax(GA) 

The 
improvement 
rate of HGA 
over (NDY, 

SPT/TWKR)

Cmax(HGA) 
<

Cmax(NDY, 
SPT/TWKR)

12×12×10 121.61 368.28 0.12 1.38% 10 4.83% 10 

15×15×5 107.77 366.26 0.13 1.39% 10 4.76% 10 

20×20×4 161.29 695.76 0.13 1.27% 10 5.56% 10 

25×25×8 241.36 965.44 0.17 1.44% 10 5.73% 10 

30×30×5 188.70 634.80 0.15 1.31% 10 5.37% 10 

*Specified by n jobs × m machines × L levels. 

Table 3. Comparison of all large problems 

6. Conclusions and suggestions 

This study developed a hybrid genetic algorithm (HGA) for the RFS problems with 
makespan as the criterion. The computational experiments have shown that the HGA can 
favorably improve the results obtained by (NDY, SPT/TWKR) and NEH in RFS problems. 
GA is inspired by nature phenomena. If it mimics exactly the way nature works, an 
unexpected long computational time must take. Hence the effect of parameters must be 
studied thoroughly in order to obtain good solution in a reasonable time. The probability to 
obtain near-optimal solution increases in the cost of longer computational time when the 
number of generations or population size enlarges. When dealing with large size problems 
or large re-entrant times, the probability to obtain near optimal solution increases by setting 
larger population size or generations. In conclusion, GA provides a variety of options and 
parameter settings which still have to be fully investigated. This study has demonstrated the 
potential for solving RFS problems by means of a GA, and it clearly suggests that such 
procedures are well worth exploring in the context of solving large and difficult 
combinatorial problems. 
The most challenging problem in the test of RFS is to prevent early convergence of the 
genetic algorithm. The convergence speeds up when the number of operations enlarges. In 
future study, a thorough investigation may be done on this issue. The parameter setting in 
GA affects computational efficiency and quality of solution greatly. Not only job numbers 
and machine numbers have impacts on parameter setting, but also the number of levels 
contributed a lot. It is an important future study issue to determine the best parameter 
setting for GA in different environment. In future study, the GA can be combined with other 
heuristics or algorithms to obtain the more efficiency and the better quality solution. 
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