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Abstract

Genomic structural variations (SVs) are genetic alterations that result in duplications, 
insertions, deletions, inversions, and translocations of segments of DNA covering 50 or 
more base pairs. By changing the organization of DNA, SVs can contribute to phenotypic 
variation or cause pathological consequences as neurobehavioral disorders, autoimmune 
diseases, obesity, and cancers. SVs were first examined using classic cytogenetic methods, 
revealing changes down to 3 Mb. Later techniques for SV detection were based on array 
comparative genome hybridization (aCGH) and single-nucleotide polymorphism (SNP) 
arrays. Next-generation sequencing (NGS) approaches enabled precise characterization 
of breakpoints of SVs of various types and sizes at a genome-wide scale. Dissecting SVs 
from NGS presents substantial challenge due to the relatively short sequence reads and 
the large volume of the data. Benign variants and reference errors in the genome present 
another dimension of problem complexity. Even though a wide range of tools is available, 
the usage of SV callers in routine molecular diagnostic is still limited. SV detection algo-
rithms relay on different properties of the underlying data and vary in accuracy and sensi-
tivity; therefore, SV detection process usually utilizes multiple variant callers. This chapter 
summarizes strengths and limitations of different tools in effective NGS SV calling.

Keywords: bioinformatics, genome organization, next-generation sequencing, structural 
variation, variant calling

1. Introduction

First, efforts in exploring genetic variations were focused on single-nucleotide polymor-
phisms (SNPs) which were initially considered the main source of genetic and phenotypic 
human variation [1], while larger variations were thought to be rare events. However, in 2004 
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two studies [2, 3] revealed an unexpectedly large amount of large-scale variations (several kb 
to hundreds of kb) in the human genome. The evidence for the prevalence of structural vari-
ants (SVs), such as deletions, duplications, and inversions, began to accumulate. By changing 
the organization of the DNA, SVs can contribute to the phenotypic differences among healthy 
individuals or cause severe phenotypic consequences. SVs are involved in a wide range of 
diseases and conditions, such as autism spectrum disorders [4–6], schizophrenia [7], Crohn’s 
disease [8], rheumatoid arthritis [9], lupus erythematosus [10], psoriasis [11], obesity [12], 
and cancers [13, 14]. Among the different classes of genetic variations, SVs have remained 
the most challenging to detect and characterize. SVs were examined since the identification 
of chromosomal abnormalities using classic cytogenetic methods, revealing changes down to 
3 Mb. Later techniques for SVs detection are based on array comparative genome hybridiza-
tion (aCGH) and single-nucleotide polymorphism arrays. Next-generation sequencing (NGS) 
has enabled methods for precise definition of breakpoints of SVs of different sizes and types. 
Characterization of SVs from high-throughput sequencing data presents complex task due to 
the volume of the data and short sequence reads.

2. Structural variations

Genomic structural variations (SVs) are genetic alterations that result in amplifications, 
losses, inversions, and translocations of segments of DNA greater than 50 bp. SVs are a 
normal part of genomic variation but can also cause disorders. Standard detection methods 
include chromosome banding, fluorescent in situ hybridization (FISH), and array com-
parative genome hybridization (aCGH) that is very useful to detect copy number varia-
tions (CNVs) but cannot detect copy-neutral SVs (inversions, balanced translocations) [15]. 
Recent methods include employment of NGS to identify SVs, which are not detectable by 
cytogenetic methods.

Chromosomal rearrangements can occur on a single chromosome (interchromosomal SVs) 
or can involve exchange of genomic DNA between chromosomes (intrachromosomal SVs). 
Intrachromosomal SVs are a product of one or more double-strand breaks, which may result 
in deletions, inversions, and duplications. Deletions and duplications are copy number varia-
tions and are easily detected by employing NGS data (read coverage method), whereas inver-
sions are copy number-neutral. Intrachromosomal translocation is the exchange of genetic 
material between two non-homologous chromosomes. In a reciprocal translocation, two 
broken-off pieces of two non-homologous chromosomes are exchanged, usually producing 
two balanced derivative chromosomes. Unless breakpoints disrupt important developmental 
genes, balanced translocations do not affect phenotype [15]. However, during gamete forma-
tion such chromosomes may segregate in unbalanced manner or unbalanced translocations 
may occur de novo and lead to monosomy and trisomy of different chromosome segments 
[16], which account for approximately 1% of developmental delay and intellectual disability 
cases in human [17–19]. Robertsonian translocations are a type of SVs resulting from chro-
mosome end breaks near centromeric regions of two acrocentric chromosomes and their 
reciprocal exchange, which results in one large metacentric chromosome and one very small 
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chromosome that is usually lost without phenotype effect. In case three or more chromo-
somal breakpoints are involved, we speak of complex chromosome rearrangements, which 
may result in balanced or unbalanced state [20].

3. Next-generation sequencing

The first commercially available next-generation sequencing platform was released in 2005 
[21]. The technology has been continuously upgraded and has fundamentally changed the 
field of genetics studies. Next-generation sequencing (NGS), also known as high-through-
put sequencing, parallelizes the sequencing process and produces millions of short reads 
(50–400 bp each) in a single experimental run. It has contributed to rapid progress in single-
nucleotide polymorphisms detection. Due to the nature of the NGS short-read sequences, 
the category of longer variants remained poorly characterized. Variants in range 10–100 kb 
are small for detection by cytogenetic methods [22] but too large for reliable detection with 
short-read sequencing. SVs affect more bases than single-nucleotide polymorphisms [23] and 
present an important class of genetic variation. Moreover, many SVs have been shown to play 
relevant roles in phenotypic variability and disease [24].

3.1. NGS data analysis pipeline

Once the samples are sequenced, the NGS data analysis becomes the task in bioinformatics 
field. The computational analysis and interpretation of the data generated remains one of 
the major bottlenecks in NGS projects. The basic steps for analyzing NGS data are quality 
assessment, reads alignment (mapping) to a reference sequence, and variant identification. 
The second stage of analysis comprises variant analysis, visualization, and interpretation 
of the variants in relation to phenotypes. Commercial packages such as CLCBio Genomic 
Workbench, CASAVA, and SeqNext often provide all-in-one solutions, while academic pipe-
lines typically consist of sequential tools for specific steps in the analysis.

The output from the sequencing machines are reads, which are usually stored in text-based 
FASTQ files. The data obtained from NGS are compromised by sequence artifacts, including 
read errors, poor-quality reads, and primer contamination [25]. To avoid erroneous conclu-
sions, the artifacts should be removed. A number of bioinformatics tools for sequencing qual-
ity assessment, such as FastQC, FASTX-Toolkit, PRINSEQ [26], TagDust [27], and NGS QC 
Toolkit [28] are designed. Next step in NGS data analysis is alignment of short reads to corre-
sponding positions on a reference sequence. A variety of algorithms have been developed for 
this task. Representative read mappers are Bowtie2 [29], BWA [30], and Novoalign. The typical 
output from the read mapper is BAM file which contains information about qualities and posi-
tions of aligned sequences. Variant analysis consists of genotyping, variant calling, annotation, 
and prioritization. Genomic variants, such as SNPs and short-scale insertions and deletions 
are identified by variant callers. Widely used tools for variant calling are Genome Analysis 
Tool Kit HaplotypeCaller (GATK-HC) [14], Samtools mpileup [31], Freebayes and Torrent 
Variant Caller (TVC). Variant callers take in a BAM file and return a list of variants. To annotate  
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variants, SnpEff [32], VariantAnnotator from the GATK [33], and ANOVAR [34] tools are used. 
To systematically filter, evaluate, and prioritize thousands of variants VAAST 2.0 [35], VarSifer 
[36], KGGseq [37], and commercial software Ingenuity Variant Analysis are available.

3.2. Single-read and paired-end sequencing

Initially, NGS technologies produced extremely short reads (25–36 bp), sequenced from only 
one end of the DNA (single-read sequencing) [38]. As technology developed, read lengths 
consistently increased and sequencers have been improved to sequence both ends of a frag-
ment with or without a non-sequenced stretch in between (paired-end sequencing). This not 
only has the benefit from doubling the number of reads but also improves accuracy and offers 
additional information for structural variants detection.

The reads obtained from paired-end sequencing (R1 and R2) come from the same fragment of 
DNA. The length of the fragment is usually longer than the length of reads (R1 + R2), so there 
is a gap between them (Figure 1). Although the sequence of the fragment between reads is not 
known, the knowledge that R1 and R2 are next to each other on the known distance and have 
opposite orientation is useful.

4. Overview of the structural variation detection algorithms

Using NGS technologies, large volume of sequence data at an unprecedented speed and con-
stantly reducing cost is produced. Consequently, the computational tools for analysis of mas-
sive amounts of genomic data are in demand. There is a growing awareness that structural 
variations represent a significant contribution to genotypic and phenotypic diversity [39]. 
However, the accurate detection of structural variants from NGS is a daunting task [40]. A 
number of algorithms have been proposed to address the issue of structural variants calling 
from NGS data [41]. SV detection algorithms rely on different properties of the underlying 
data and vary in accuracy and sensitivity. The algorithms follow one or a combination of 
strategies, which could be classified into categories: (1) read depth (RD), (2) paired-end (PE), 
(3) split reads (SR), and (4) de novo assembly (AS). The most suitable method for SV detection 
depends on the size and variant type as well as characteristics of the sequencing data [42]. SV 
detection process usually utilizes multiple variant callers.

Figure 1. Paired-end sequencing; the inner distance between paired reads (R1 and R2) is known.
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4.1. Algorithms based on read depth

Read depth (RD) algorithms are able to identify CNVs. RD-based algorithms can accurately 
predict absolute copy-numbers [43] but are unable to detect copy-number neutral variants 
such as inversions and balanced translocations. The breakpoint identification resolution is 
low and depends on the sequence coverage.

RD algorithms divide the reference sequence in intervals and calculate the number of reads 
aligned within them. The read depth per interval should follow a normal distribution centered 
at the average read depth for the entire reference sequence. When the read depth of contiguous 
intervals significantly differs from the average observed, the CNV is detected (Figure 2). Deleted 
regions show reduced read depth when compared to entire reference sequence (Figure 3).

Figure 2. An example of CNV including gene KIT with flanking regions in four pig genomes. The read coverage is higher 
in the region of the CNV. The figure was made using Golden Helix GenomeBrowse.
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4.2. Paired-end approaches

Paired-end sequencing data allow detection of many types of SVs. Paired-end (PE) SV calling 
approaches detect deviations from expected library insert size (donor reads map at inconsis-
tent distances). When a pair of reads does not overlap with any SV, the distance between them 
is the same as the size of the library insert and reads have correct orientation (concordant 
pairs). When the read pair overlaps a SV, the mapping distance of paired reads differs from 
the library insert size and their orientation may be inverted. Discordantly mapped paired-
reads can be (1) further apart than expected, (2) closer together than expected, (3) in inverted 
orientation, (4) in incorrect order, (5) on different chromosomes. Clusters of read pairs aligned 
to the same genomic regions with the distance shorter than expected can be explained by 
insertion in the sequenced samples (donor). Larger distances between reads than expected 
can be explained by deletion in the sample (donor) (Figure 4). The resolution of the break-
points detected by this approach depends on the library’s insert size and on the read cover-
age. Insertions larger than the library insert size cannot be detected.

4.3. Algorithms based on split-reads

Split-read (SR) algorithm can detect SVs with a single base-pair resolution. Split reads contain 
the breakpoint of the structural variant. Their alignments to the reference genome are split 

Figure 3. An example of deletion within upstream and downstream regions of LEPR locus in five pig genomes. The read 
coverage is low in the region of deletion. The figure was made using Golden Helix GenomeBrowse.
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into two parts (Figure 5). Parts of a read are independently aligned to the reference genome, 
so the reads should be long enough to be aligned uniquely. Therefore, algorithms based on 
split-reads are feasible only when the sequencing reads are sufficiently long.

4.4. Algorithms based on de novo assembly

Algorithms based on de novo assembly (AS) are able to detect all forms of structural variation. 
De novo assembly refers to reassembling the original sequence from which the fragments 
were sampled. When the sequenced genome is assembled, it is compared to the reference 
genome to identify SVs. The method enables discovery of novel sequence fragments (inser-
tions). The approach is time-consuming, costly, and prone to assembly errors. In terms of 
computational efficiency and detection power, targeted SV assembly is more effective. They 
dissect a problem into a set of local assembly problems that can be more effectively solved.

Figure 4. Examples of identification of deletion, insertion, and inversion using paired-end approach: (A) paired-reads 
are closer together than expected (deletion), (B) paired-reads are further apart than expected (insertion), (C) paired-reads 
are in inverted orientation (inversion).
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Figure 5. An example of deletion in an individual genome detected by split-read method.

Tool SV type Strategy Released Reference

PEMer Indels, inversions paired-reads 2009 Feb [49]

VariationHunter Transposon insertions paired-reads 2010 Jun [50]

SegSeq CNVs read-depth 2009 Jan [51]

BreakDancer Indels, inversions, and 
translocations

paired-reads 2009 Jul [52]

Pindel Breakpoints of large deletions and 
medium-sized insertions

split-read 2009 Nov [53]

VariationHunter Transposon insertions paired-reads 2010 Jun [50]

Cortex simple and complex SVs de novo assembly 2011 Apr [54]

CNVnator CNVs read-depth 2011 Jun [55]

GASVPro Indels, inversions, 
interchromosomal translocations

read-depth, paired-end 2012 Mar [56]

SVseq2 Indels with exact breakpoints split-read, paired-end 2012 Apr [57]

Breakpointer Indels, mobile insertions and non-
homologous recombinations

read-depth, split-read, 2012 Apr [58]

DELLY Copy-number variable deletions, 
tandem duplications, inversions, 
reciprocal translocations

split-read, paired-end 2012 Sep [59]

SVM2 Short insertions and deletions paired-end, machine 
learning

2012 Oct [60]

PeSV-Fisher Deletions, gains, intra- and 
interchromosomal translocations, 
and inversions

paired-reads, read-depth 2013 May [61]

LUMPY Deletions, inversions, 
tandem duplications, and 
interchromosomal translocations

split-read, paired-end 2014 Jun [62]
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4.5. Hybrid-approaches for SV calling

SV detection algorithms rely on different properties of the underlying data and vary in accu-
racy and sensitivity. One single method cannot detect complete range of SVs, each is limited 
to specific type of SVs. Combined approaches can overcome limitations of a single method 
[44]. Two directions can be taken, combining strategies within one caller or combining SV call-
ers [45]. A class of SV detection methods bases on machine learning. Variations are identified 
by various methods and are filtered against empirically derived training set data.

4.6. Bioinformatics tools for structural variation calling

A number of algorithms have been proposed to address the issue of structural variants calling 
from NGS data, but the structural variation calling remains challenging. The complete range of 
SVs cannot be discovered using one single method. The process of SV calling usually utilizes mul-
tiple variant callers to overcome limitations of individual approaches. Knowing advantages and 
drawbacks of various tools (Table 1) is important to make proper decisions when designing NGS 
data analysis pipelines. Different callers yield lists of identified SVs with limited overlap. Pipelines 
SVMerge [46], HugeSeq [47], iSVP [48], and IntanSV that integrate different SV callers, such as 
BreakDancer, CNVnator, SVseq2, Pindel, and DELLY and merge their results were published.

5. Conclusions

Using next-generation sequencing technologies, large volume of sequence data is produced 
with an unprecedented speed and constantly reducing cost. It allowed rapid progress in  

Tool SV type Strategy Released Reference

Gustaf Deletions, inversions, dispersed 
duplications and translocations of 
≥30 bp

split-read 2014 Dec [63]

MetaSV Indels, insertions, inversions, 
translocations, and CNVs

integration of SV callers 
(BreakSeq, Breakdancer, 
Pindel, CNVnator), local 
assembly

2015 Aug [64]

Manta Medium-sized indels, large 
insertions

split-read, paired-end 2016 Apr [65]

SRBreak CNV breakpoints read-depth, split-read 2016 Sep [66]

Seeksv Deletion, insertion, inversion and 
interchromosomal transfer

split-read, paired-end, 
read-depth fragments with 
two ends unmapped

2017 Jan [67]

SVachra Large insertions-deletions, 
inversions, inter and 
intrachromosomal translocations

paired-end 2017 Oct [68]

Table 1. The list of tools for different types of SV calling.
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single-nucleotide polymorphisms detection. The awareness that structural variations rep-
resent a significant source of genotypic and phenotypic variation is permanently growing. 
However, the accurate detection of structural variants from NGS data is a daunting task. 
Relatively short reads, often repetitive character of SV, large amount of data, and large num-
ber of benign variants in complex genomes represent a major challenge for bioinformatics 
analysis of SVs. A number of algorithms have been proposed to address the issue of structural 
variants calling from NGS data. SV detection algorithms rely on different properties of the 
underlying data and vary in accuracy and sensitivity. SV detection process usually utilizes 
multiple variant callers. However, knowing advantages, drawbacks, and properties of differ-
ent tools is inevitably required for proper decisions when designing NGS data analysis pipe-
lines from publicly available tools. This chapter summarizes basic concepts of bioinformatics 
analysis of SV and introduces some rules for their assessment.
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