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Abstract

Adsorption is a broadly used process for the removal of heavy metals and the world 
trend is directed to the application of new technologies to intensify existing processes. 
The properties of the magnetic field (intensity and arrangement) and the intrinsic mag-
netic properties of the adsorbent and the adsorbate are decisive for satisfactory results. 
The intensity of the magnetic field is important, because this implies that the greater 
number of spins present will align with the magnetic field according to the magnetic 
nature present, allowing the mobility of the adsorbate and generating heterogeneity on 
the surface of the adsorbent. Similarly, the arrangement of the magnetic field will deter-
mine the direction of the magnetic field lines. The application of a magnetic field as an 
alternative for the intensification of the adsorption process based on the consideration 
that the magnetic field is safe, environmentally friendly and economic.

Keywords: heavy metals, adsorption, magnetic field

1. Introduction

The importance of removing dissolved heavy metals from water is a primary concern for 
society because heavy metals represent a risk to both public and environmental health. 
Heavy metals are toxic and carcinogenic, and they can easily enter the food chain [1, 2]. 
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According to the Environmental Protection Agency (EPA), heavy metals are considered 
priority pollutants and must be eliminated or reduced from any water body that may or 
may not come into contact with the environment [3, 4]. There are a variety of conventional 
techniques capable of removing heavy metals from water, which have already been tested 
successfully, such as precipitation, ion-exchange, reverse osmosis, membrane separation, 
adsorption, and so on [5, 6]. Specifically, adsorption is one of the most promising and fre-
quently used methods due to easy operation, high efficiency and economic benefits [7, 8]. 
The static magnetization coupled to an adsorption process has attracted special attention 
because it is an easy-to-implement, low-cost and environmentally friendly method. Recent 
studies have presented an improvement in the adsorption process when a magnetic field 
is applied [9], which is attributed to different factors and possible modifications that can 
change properties of the solution and material under magnetic field effect [10]. However, 
there are several parameters and operating conditions that are determinant within the 
adsorption process subjected to a static magnetic field such as the physicochemical and 
magnetic nature of the adsorbate and the adsorbent and the configuration and intensity of 
the magnetic field. The process by which the magnetic field affects the adsorbate-adsorbent 
system is complex, and parameters such as zeta potential, magnetic susceptibility, ionic 
radius and hydration of the ion have allowed to elucidate the possible mechanism.

2. Mineral adsorbents

Table 1 shows mineral adsorbents used in the removal of heavy metals from water 
such as Cd(II), Zn(II), Pb(II), Cu(II), Cr(VI) and Ni(II). Particularly, the Fe3O4/PANI/
MnO2 core-shell hybrid was the most efficient in the removal of Cd(II), showing an 
adsorption capacity of 154  mg/g [11]; followed by hydrotalcite-like compounds (ZnAl-
diethylenetriaminepentaacetic acid and ZnAl-meso-2,3-dimercaptosuccinic acid) with val-
ues of 112.4 and 49.5  mg/g, respectively [12]. On the other hand, the metakaolin-based 
geopolymer showed the higher adsorption capacity of Zn(II) (74.5  mg/g) [13], in com-
parison with natural bentonit and bentonite (52.9 and 39.5 mg/g, respectively) and other 
adsorbents [11, 13, 14]. Also, for the removal of Cr(VI), the processed diatomite/MCM-41 
composite was the most efficient with adsorption capacity of 70.9 mg/g [15]; followed by 
diatomite-supported magnetite nanoparticles with a value of 69.2 mg/g [16]. As well, dif-
ferent adsorbents were used to study the removal of Cu(II) and the better was the hydro-
talcite-like compound ZnAl-meso-2,3-dimercaptosuccinic acid with an adsorption capacity 
of 69.9  mg/g [12]; this material was also used to remove Cd(II) with significant results. 
The Zn(II), Cr(VI), Cu(II) and Ni(II) are the heavy metals more studied with inorganic or 
mineral adsorbents. Respect to removal of Ni(II), natural bentonite obtained the higher 
adsorption capacity (50.0 mg/g) [13]. Finally, other heavy metal studied was the Pb(II) with 
the best value of 404.0 mg/g again using the hydrotalcite-like compound ZnAl-meso-2,3-
dimercaptosuccinic acid [12].
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Adsorbent Removed species Adsorption capacity 
(mg/g)

Ref

Fe3O4/PANI/MnO2 core-shell hybrids Cd(II)

Zn(II)

Pb(II)

Cu(II)

154
a88.0 (17.6 mg/g)
a99.1 (19.8 mg/g)
a99.1 (19.8 mg/g)

[11]

Processed diatomite/MCM-41 composite Cr(VI) 70.9 [15]

Diatomite-supported magnetite nanoparticles Cr(VI) 69.2 [16]

Tannin-immobilized activated clay Cr(VI) 24.1 [17]

Modified natural zeolites Cr(VI) 3.5–8.8 [18]

Modified rectorite Cr(VI) 21 [19]

geopolymer/alginate hybrid spheres Cu(II) 60.8 [20]

Aminopropyltriethoxysilane/sepiolite Cu(II) 8.9 [21]

Multiwalled carbon nanotubes Cu(II) 50.3 [22]

Zeolite Cu(II) 9.0 [23]

Ca-alginate Cu(II) 42.7 [24]

Bentonite/chitosan Cu(II) 9.8 [25]

Inorganic-organic clays Cr(VI) 16.6–17.9 [26]

Hydrotalcite-like compound ZnAl-NO3 [12]

ZnAl-dtpa (diethylenetriaminepentaacetic acid) Cu(II) 48.3

Pb(II) 145.0

Cd(II) 49.5

ZnAl-dmsa (meso-2,3-dimercaptosuccinic acid) Cu(II) 69.9

Pb(II) 404.0

Cd(II) 112.4

Na-bentonite Zn(II) 23.1 [13]

Polyphosphate-modified kaolinite clay Zn(II) 27.8 [13]

Natural zeolite Zn(II) 13.4 [13]

Kaolinite Zn(II) 7.2 [13]

Metakaolinite Zn(II) 12.4 [13]

Vermiculite Zn(II) 31.7 [13]

Bentonite Zn(II) 39.5 [13]

Zeolite Zn(II) 18.7 [13]

Natural bentonite Zn(II) 52.9 [13]
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3. Mineral carbons

The mineral carbons used to study adsorption of heavy metals from water are peat, lignite, 
anthracite, graphite and principally the bituminous carbon, which is the most used. The bitu-
minous carbon has been physically activated with steam and modified by impregnation with 
calcium, phosphoric acid, sulfur and nitric acid, and subsequently, a thermal treatment has 
been applied [27–32].

Table 2 concentrates the mineral carbons used in the adsorption of heavy metals from water 
reported in the literature. There are few reports about the use of this kind of adsorbents and 

Mineral carbon Modification method used Modifying 
agent

Removed 
species

Adsorption 
capacity (mg/g)

Ref

Bituminous carbon Impregnation-thermal 
treatment

Calcium-H3PO4 Zn(II)

Cd(II)

Ni(II)

3.4

8.0

5.0

[27]

Bituminous carbon — — Cd(II)

Cu(II)

Cr(VI)

5.1

13.3

10.5

[28]

Bituminous coal 
(AC-109)

Impregnation-thermal 
treatment

Sulfur Hg0

Hg(II)

1.6

0.7

[29]

Adsorbent Removed species Adsorption capacity 
(mg/g)

Ref

Metakaolin-based geopolymer Zn(II) 74.5 [13]

Vermiculite Ni(II) 25.3 [13]

Natural bentonite Ni(II) 50.0 [13]

Zeolite Ni(II) 1.98 [13]

Na-bentonite Ni(II) 24.2 [13]

Ca-bentonite Ni(II) 6.3 [13]

Natural clinoptilolite Ni(II) 8.7 [13]

Montmorillonite Ni(II) 21.1 [13]

Metakaolin-based geopolymer Ni(II) 42.6 [13]

Mixed silica-alumina oxide Cu(II)

Ni(II)

Zn(II)

0.1

0.2

4.2

[14]

aRemoval percentage.

Table 1. Mineral adsorbents used in the adsorption of heavy metals from water.
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the bituminous carbon is the most studied. Specifically, the better adsorbent to remove Zn(II), 
Cd(II) and Ni(II) is the bituminous carbon modified with calcium and H3PO4 (3.4, 8.0 and 
5.0 mg/g, respectively) [27]. On the other hand, the unmodified bituminous carbon shows the 
higher adsorption capacity of Cu(II) and Cr(VI) with values of 13.3 and 10.5 mg/g, respec-
tively [28]. Additionally, it is important to mention that bituminous charcoal and lignite 
charcoal were used in adsorption studies of a metallurgic effluent containing Cu(II), Cr(VI) 
and Zn(II), and the adsorption capacities were low [30]. Finally, Hg0 and Hg(II) were studied 
employing bituminous coal modified with sulfur and HNO3 and adsorption capacities of 1.9 
and 0.7 mg/g, respectively, were obtained [29].

4. Magnetic adsorbents

The term “magnetic adsorbent” is commonly used to describe the materials derived from 
iron (particles of γ-Fe2O3, Fe3O4 and CoFe2O3) or composites prepared from different types of 
matrix modified with iron compounds, which are used in the adsorption of water contami-
nants [33]. Particularly, for the adsorption of heavy metals from water, the principal magnetic 
adsorbents used are the composites, which are prepared with different methodologies using 
iron compounds and a specific matrix such as activated carbon, biochar, carbon nanotubes, 
α-cellulose, chitosan, cotton, resins, silica, starch, polymers, different type of biomass, and so 
on (see Table 3) [34–55]. The methods used in the preparation of magnetic composites can be 

Mineral carbon Modification method used Modifying 
agent

Removed 
species

Adsorption 
capacity (mg/g)

Ref

Bituminous coal 
(AC-107)

Impregnation-thermal 
treatment

Sulfur Hg0

Hg(II)

1.9

0.7

[29]

Bituminous coal 
(AC-C2)

Impregnation-thermal 
treatment

HNO3 Hg0

Hg(II)

1.8

0.7

[29]

Bituminous charcoal Physical activation Steam Cu(II)

Cr(VI)

Zn(II)

a0.1
a0.3
a0.3

[30]

Lignite charcoal Physical activation Steam Cu(II)

Cr(VI)

Zn(II)

a0.1
a0.3
a0.3

[30]

Bituminous coal Physical activation Water vapor Cd(II)

Zn(II)

1.7

2.0

[31]

Bituminous carbon Impregnation-thermal 
treatment

Calcium-H3PO4 Zn(II)

Cd(II)

Ni(II)

1.6

2.7

2.3

[32]

aIndustrial effluent.

Table 2. Mineral carbons used in the adsorption of heavy metals from water.
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Matrix Modified method Iron compounds Removed 
species

Adsorption 
capacity 
(mg/g)

Ref

Activated carbon Co-precipitation FeSO4·7H2O, 
FeCl3·6H2O

Cu(II) a99.8 [34]

Activated carbon Co-precipitation Fe(NO3)3·9H2O As(III)

As(V)

38.8

51.3

[35]

Activated carbon Co-precipitation FeCl2 As(V) 1.95 [36]

Activated carbon Reduction reaction FeO4S As(III)

As(V)

18.19

12.02

[37]

Carbon nanotubes Co-precipitation FeSO4·4H2O, 
FeCl3·6H2O

Ni(II) 51.62 [38]

Biochar from Astragalus 
mongholicus

Co-precipitation FeSO4·4H2O, 
FeCl3·6H2O

Cr(VI) 44.74 [39]

α-Cellulose Extrusion dropping 
technology

Fe3O4 Cu(II)

Pb(II)

Zn(II)

47.573

37.994

20.800

[40]

Chitosan Co-precipitation FeCl3·6H2O, FeSO4 Cu(II)

Cd(II)

Zn(II)

Cr(VI)

188

159

72

46

[41]

Chitosan Hydrothermal FeCl3·6H2O Pb(II)

Cu(II)

97.97

83.65

[42]

Chitosan Crosslinking

method

Fe3O4 Cu(II) 143.27 [43]

Cotton Impregnation-thermal 
treatment

Fe(NO3)3·9H2O Cr(VI) 3.74 [44]

Cyclosorus interruptus Co-precipitation FeSO4·7H2O, 
FeCl3·6H2O

Pb(II) 90.1 [33]

Dowex 50 WX4 resin Co-precipitation FeCl3·6H2O, 
FeCl2·4H2O

Cr(VI)

Ni(II)

Cu(II)

Cd(II)

Pb(II)

400

384

416

398

380

[45]

Graphene oxide Co-precipitation FeSO4·7H2O, 
FeCl3·6H2O

Hg(II) 400 [46]

Macroalgal biomass (Kelp) Impregnation-thermal 
treatment

FeCl3·6H2O Cd(II)

Cu(II)

Zn(II)

34.89

46.74

95.49

[47]
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grouped in the following categories according to the data reported in the literature [56]: (1) 
chemical co-precipitation, (2) thermal decomposition, (3) hydrothermal, (4) polyol process, (5) 
sol-gel and (6) chemical reduction. In this context, it is relevant to mention that the chemical 
co-precipitation is the most used method for the preparation of magnetic composites and this 
can be carried out in different routes, which include the following: (1) mixture of iron solu-
tions (FeSO4·7H2O and FeCl3·6H2O or FeCl3·6H2O and FeCl2·4H2O or Fe(NO3)3·9H2O) with the 
matrix, and then, the addition of ammonium or sodium hydroxide or NH3·H2O to precipitate 
the iron nanoparticles on the matrix surface [33, 34, 36, 38, 39, 41, 45, 49, 55]. (2) The prepara-
tion of nanoparticles of iron (Fe3O4) by precipitation using FeCl3·6H2O and FeCl2·4H2O with 
additives such as CaCl2·2H2O, Na3PO4·12H2O, EDTA [57, 58]. (3) First, the precipitation of 
nanoparticles of iron (Fe3O4), second, the mixture of Fe3O4 with materials such as Cyclosorus 
interruptus, silica and p-phenylenediamine-thiourea-formaldehyde polymer; and finally, the 
addition of 3-aminopropyltriethoxysilane or tetraethyl orthosilicate or potassium persulfate, 
depending on the final application of composite [33, 51, 53].

The second most popular method used in the preparation of magnetic composites includes 
the impregnation of the matrix with iron compounds such as Fe(NO3)3·9H2O and FeCl3·6H2O 
and a thermal treatment of impregned materials using drying on a regular oven overnight 
[44], pyrolysis in conventional systems [47, 50, 52, 59] or pyrolysis in microwave system [60].

Matrix Modified method Iron compounds Removed 
species

Adsorption 
capacity 
(mg/g)

Ref

Mesoporous silica Thermal 
decomposition

FeCl3·6H2O Fe(III) a79.9 [48]

Palygorskite Co-precipitation FeCl3·6H2O, 
FeCl2·4H2O

Pb(II) 26.7 [49]

Pine bark Impregnation-thermal 
treatment

Fe(NO3)3.9H2O Pb(II)

Cd(II)

25.294

14.960

[50]

Poly p-phenylenediamine Co-precipitation FeCl3·6H2O, 
FeSO4·7H2O

As(V) 35.14 [51]

Poly(vinylidene fluoride) Impregnation-thermal 
treatment

Fe(NO3)3·9H2O Cr(VI) 1423.4 [52]

Silica Co-precipitation FeCl2·4H2O, 
FeCl3·6H2O

Pb(II)

Hg(II)

Pb(II)

270

303

256.4

[53]

Starch Crosslinking

method

Fe3O4 Pb(II)

Cu(II)

a83.1
a66.5

[54]

Waste orange peel Co-precipitation FeSO4·7H2O, 
FeCl3·6H2O

As(III) 11.12 [55]

aRemoval percentage.

Table 3. Magnetic composites used in the adsorption of heavy metals and metalloids from water.
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Table 3 summarizes the different types of magnetic composites used in the removal of some 
heavy metals and metalloids from water such as Pb(II), Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI), 
Fe(III), Hg(II), As(II) and As(V). In general, the composites prepared with the resin Dowex 
50 WX4 were the most efficient in the removal of Ni(II), Cu(II), Cd(II) and Pb(II), showing an 
adsorption capacity of 384, 416, 398 and 380 mg/g, respectively [45]. These values are higher 
than the data registered for other composites obtained from carbon nanotubes [34], α-cellulose 
[40], chitosan [41–43], silica [53], starch [54] and different types of biomass such as waste orange 
peel, pine bark and Cyclosorus interruptus (see Table 3) [33, 50, 55]. Additionally, it is relevant 
to mention that for the removal of Cr(VI), the composite obtained with poly(vinylidene fluo-
ride) shows the higher adsorption capacity (1423.4 mg/g) in comparison with the samples 
prepared from chitosan (46 mg/g), cotton (3.74 mg/g) and Dowex 50 WX4 resin (400 mg/g) 
[41, 44, 45]. In this context, the adsorption of As(III) and As(V) has also been studied employ-
ing magnetic composites prepared with activated carbon principally [35–37]. For example, 
the composite prepared with bituminous coal carbon is showing a high adsorption capacity 
of As(III) and As(V) (38.8 and 51.3 mg/g, respectively), in comparison with the materials pre-
pared with an inorganic matrix as the poly p-phenylenediamine (34.15 mg of As(V)/g) [35, 51]. 
Finally, it is important to mention that one of the most toxic heavy metals, Hg(II), was studied 
employing magnetic composites obtained with silica and with graphene oxide, highlighting 
the latter material with an adsorption capacity of 400 mg/g [46].

In summary, the adsorption of heavy metals has been studied using magnetic composites 
prepared principally by co-precipitation method, however, a homogeneous comparison is not 
possible because all the adsorption conditions and physicochemical properties of magnetic 
adsorbents are different (porosity, chemical functionally, etc.). But, the investigation in this 
area is increasing in past years and the data reported in this chapter will serve as a basis for 
future publications.

5. Adsorbate properties and adsorption conditions

The adsorption of heavy metals on different adsorbents occurs via ion-exchange, complex-
ation, coordination, chelation, microprecipitation, electrostatic interaction and/or combina-
tion of these mechanisms [61]. Consequently, these adsorption mechanisms are defined by 
the physicochemical characteristics of adsorbents (texture and chemical functionality), the 
adsorption conditions (pH, temperature, mass of adsorbent, treated volume, type of adsorp-
tion system, etc.) and the properties of adsorbates. Particularly, the principal properties of 
heavy metals considered in the adsorption mechanism are as follows: (1) ionic radius, (2) 
electronegativity, (3) atomic weight, (4) hydration radius, (5) oxidation number and (6) elec-
trostatic potential.

According to the data reported in the literature, the ionic radius and the electronegativity 
are the two principal properties used in the interpretation of heavy metal adsorption mecha-
nisms. For example, Figure 1 shows the adsorption results of Pb(II), Cd(II), Cu(II), Ni(II) and 
Zn(II) as function of ionic radius. The adsorbents used were the red marine alga Kappaphycus 
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alvarezii, carbon from waste tire rubber, mesoporous silica, natural zeolite and activated car-
bon cloths [61–65]. In general, a clear behavior is not defined and only in the adsorption of 
Pb(II), Cd(II), Cu(II) and Ni(II) on red marine alga, a clear correlation was obtained between 
the adsorbed amount of metal ions and the ionic radius. In this case, the adsorbed amount was 
higher for the heavy metal with greater ionic radius (Pb:1.19 Å), showing a maximum adsorp-
tion capacity of 0.51 mmol/g by the mechanism of electrostatic interaction [61]. The opposite 
behavior was observed for the adsorption of Pb(II), Cd(II), Ni(II) and Zn(II), using natural 
zeolite and carbon prepared from waste tire rubber as an adsorbent, where the adsorbed 
amount decreased as the ionic radius increased [62, 68]. Also, the hydration radius has been 
used to understate the adsorption of heavy metals and the results also do not follow a specific 
trend [66].

On the other hand, the Pauling electronegativity of heavy metals has also been correlated 
with the adsorption of heavy metals. Figure 1 shows the adsorption results of Pb(II), Cd(II), 
Cu(II), Ni(II) and Cr(III) employing different adsorbents in function of Pauling electronega-
tivity [61,  62, 65, 67–69]. Particularly, it is interesting to note that a defined behavior was 
observed in the adsorption of Pb(II) and Ni(II) using the carbon from waste tire rubber as 
an adsorbent [62]. Specifically, this adsorbent has the higher adsorption capacity of Ni(II) 
and Pb(II), and the adsorption was higher for the more electronegative metal. This behavior 
can be associated with the chemical functionality of carbon because this material was acti-
vated with hydrogen peroxide and consequently, the presence of O─H group of phenols 
and C═O group of esters favored the adsorption of heavy metals [62]. Additionally, for the 
adsorption of Pb(II), Cd(II), Cu(II) and Cr(III) on cement kiln dust and peach palm sheath, the  

Figure 1. Adsorption results of heavy metals from water of different adsorbents in function of ionic radius and Pauling 
electronegativity.
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electronegativity does not keep a relation with the absorbed quantity of metals [68, 69]. 
However, it is important to mention that the Cr has a different oxidation number (III) in 
comparison with the other heavy metals (II). In this context, there are few reports that have 
studied the effect of oxidation number of heavy metals in the adsorption process and particu-
larly, the works related with the adsorption by complexation mechanism have considered this 
property. For example, in the removal of Ni2+, Fe2+ and Fe3+ (with external hydroxyl functional 
groups) was demonstrated that high-valence species complex more quickly than the low-
valence due to the ability to accept more of the ligand’s electron donation, where the adsorp-
tion followed the trend Ni2+ > Fe3+ > Fe2+ [70].

Finally, it is relevant to mention that there are many factors which affect heavy metal adsorp-
tion such as initial concentration, temperature, adsorbent dose, pH, contact time and stirring 
speed. However, the pH plays a vital role in deciding the maximum adsorption capacity of 
the adsorbent such as activated carbons, carbon nanotubes, graphene, biosorbents, low-cost 
adsorbents (vegetal and industrial wastes), silica, chitosan, zeolites, alumina, clay, algal bio-
mass, red mud, magnetic composites, and so on. The pH affects the surface charge of the 
adsorbent, the degree of ionization and speciation of the surface functional groups and metal 
ions [71–74]. In general, the adsorption of metallic species increases with increasing pH in 
certain range because at low pH, there a competition between the metallic species and the H+ 
ions of aqueous solution.

6. Magnetic ordering and zeta potential

The behavior of the materials when they are exposed to a magnetic field is different, depending 
on their physicochemical and magnetic nature, this behavior can be observed in Table 4. [75].

On the other hand, superparamagnetism is observed in very small particles of transition met-
als and their compounds, particularly their oxides. It can be used to characterize fine disper-
sions of metal, alloy and their oxides and has applications in several areas. Parameters such 
as the magnetization per cubic centimeter or magnetization per gram are better parameters 
than the susceptibility for describing superparamagnetism and magnetically ordered ferro-
magnetic and ferromagnetic materials. The applied magnetic field is expressed in oersteds 
(Oe). Furthermore, the magnetic moment in ferromagnetic and ferromagnetic materials refers 
to the saturation moment and not the effective moment. Ferromagnetic metals, such as Fe, Co, 
Ni and insulators such as γ-Fe2O3 and Fe3O4, show the well-known hysteresis curve; in their 
unmagnetized state, the unpaired electrons associated with each atom have a net magnetic 
moment or magnetization, which is the vector sum of all unpaired electrons in that domain. 
In this sense, it is important to explain that when ferromagnetic and ferromagnetic materials 
are heated above a critical Curie temperature, they change over to paramagnetic behavior; 
thus the hysteresis disappears. In contrast, ideal superparamagnetic systems, when suffi-
ciently cooled below a critical blocking temperature will experience a very slow relaxation 
time. Their net magnetic moment will align parallel to the applied field and appear to behave 
as if they had an apparent ferromagnetic behavior. This aspect will result in hysteresis of 
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“apparent” ferromagnetic behavior. Conversely, above the critical blocking temperature, the 
hysteresis will disappear and the clusters will show a unique curve with no hysteresis [76].

It is possible to classify the materials from the magnetic point of view as a function of the 
number of Bohr magnetons, whose parameter can be calculated from the Langevin function, 
first derived for the noninteracting paramagnetic spins and to the noninteracting:

	​ ​σ ⁄​σ​ s​​​ = coth ​(​​μ​ c​​ H ⁄ kT​)​ − ​(​kT ⁄​μ​ c​​ H​)​​	 (1)

where ​σ​ is the magnetization per gram; ​​σ​ 
s
​​​ is the magnetization of saturation; ​​μ​ 

c
​​​ is the magnetic 

moment of the cluster; ​H​ is the applied magnetic field; ​k​ is the Boltzmann constant; ​T​ is the 
temperature (K).

A parameter used to corroborate the effect of the magnetic field on an adsorbate-adsorbent 
system is the zeta potential. Some studies have reported this parameter, such as Zhang et al. in 
2004 where the zeta potential was measured in magnetized and non-magnetized Ca-rectorite 
suspensions observing that in the magnetized solutions the zeta potential was larger than in 
the nonmagnetized ones when the Cu concentration was zero. In contrast, the magnetic treat-
ment reduced the zeta potential in Ca-rectorite suspensions containing Cu [77]. This same 
behavior was observed in a study made with Na-rectorite dispersions magnetized and not 
magnetized in the presence and absence of Zn [78].

Magnetic behavior Description

Diamagnetic A magnetic field acting on any atom induces a magnetic dipole for the entire atom by 
influencing the magnetic moment caused by the orbiting electrons. These dipoles can 
oppose the magnetic field, causing the magnetization to be less than zero. A diamagnetic 
behavior gives a negative susceptibility. Materials such as copper, silver, gold and 
alumina are diamagnetic at room temperature

Paramagnetic A net magnetic moment due to electronic spin is associated with each atom when 
materials have unpaired electrons. When a magnetic field is applied, the dipoles line 
up with the field, causing a positive magnetization. Because the dipoles do not interact, 
extremely large magnetic fields are required to align all of the dipoles; so, the effect is 
lost as soon as the magnetic field is removed. This behavior can be observed in metals 
such as aluminum and titanium

Ferromagnetic This type of behavior is promoted by the unfilled energy levels in the 3d level of iron, 
nickel and cobalt. In this kind of materials, the permanent unpaired dipoles easily line up 
with the imposed magnetic field due to the exchange interaction. Large magnetizations 
are obtained even for small magnetic fields

Antiferromagnetic In this behavior, the magnetic moments produced in neighboring dipoles line up in 
opposition to one another in the magnetic field, even though the strength of each dipole 
is very high. Examples of these materials are manganese, chromium, MnO and NiO

Ferrimagnetic Different ions have different magnetic moments, like in ceramic materials. In a magnetic 
field, the dipoles of ion A may line up with the field, while dipoles of ion B oppose the 
field. But because the strengths of the dipoles are not equal, a net magnetization results. 
Ceramics called ferrites perfectly represent this behavior

Table 4. Classification and magnetic behavior of materials.
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In the literature, there is a little information about the mechanism of magnetic effects on 
adsorbate-adsorbent systems. However, one of the clearest suggests that magnetic exposure 
alters the arrangement of water molecules, ions and hydrated ions adsorbed on the surface of 
the particle in such a way that the effective adsorbed layer becomes thicker, then the slipping 
plane shifts outward from the particle surface so that the magnitude of zeta potential will be 
reduced, and the apparent size of the particles becomes larger so that their diffusivity will be 
reduced [79].

7. Importance of the physicochemical and magnetic properties of 
the adsorbates in the adsorption process assisted by an external 
magnetic field

The physicochemical properties of adsorbates play a very important role in the adsorption 
phenomenon in general. Properties such as ionic radius, electronegativity, valence, charge and 
hydration number are considered fundamental for the selection of the adsorbent material and 
the understanding of the adsorption mechanism, since these parameters help to determine 
forces and mobilities [80]. In particular, adsorbates such as heavy metals are present in a positive 
ionic state, this implies that there is an instability in charges; however, being dissolved in water, 
they remain stable in the solution because they balance their charge with the electronic cloud 
of oxygen present in the water molecule, which is highly negative, thus the ion is surrounded 
by water molecules quasi-stabilized; this phenomenon is called ion hydration. The hydration of 
the ion is fundamental in the adsorption process, since it establishes the adsorption force that 
each of the ions will have on the surface of an adsorbent material, in addition, it determines the 
advantage over other ions to occupy active sites, which explains the Gouy-Chapman theory.

The Gouy-Chapman theory states that ions of equal charge are adsorbed with equal force 
on the surface of the adsorbent; however, the hydration radius determines the adsorption 
strength, being those with lower hydrated radius more strongly retained; this implies an 
increase in the size of the ion, reducing its mobility [81]. Based on this, the hydration of each 
ion will be different, since it will be surrounded by a certain number of water molecules 
depending on the size of the ion and its charge, and this number of water molecules sur-
rounding the ion is called the number of water molecules of hydration.

To know the hydration number of an ion, it is necessary to study the mobility of the ion within 
the solution, this mobility is mainly affected by two forces: the electric force ​Fe​ (Eq. (2)) and 
the viscous force ​Fv​ (Eq. (3)):

	​ Fe = ​z​ i​​ ​e​ 0​​ x​	 (2)

where ​​z​ 
i
​​ ​e​ 

0
​​​ is the electric charge; ​x​ is the electric field.

	​ Fv = 6𝜋r𝜂v​	 (3)

where ​r​ is the ionic radius; ​η​ is the viscosity; ​v​ is the ion speed.
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The phenomenon of hydration is explained when the ion reaches a constant speed, which 
implies that the electric and viscous forces are equalized (Eq. (4)).

	​ r = ​ 
​z​ i​​ ​e​ 0​​ x _____ 6𝜋𝜂v ​​	 (4)

Bearing in mind that the electric mobility ​u​ is the result of the velocity ratio on the electric field 
(Eq. (5)), we find the hydrated radius ​ ​r​ 

h
​​​ (Eq. (6)):

	​ u = ​ v __ x ​​	 (5)

	​ ​r​ h​​ = ​ 
​z​ i​​ ​e​ 0​​ _____ 6𝜋𝜂u ​​	 (6)

Finally, the hydration number ​​n​ 
h
​​​ is found by differentiating the hydrated radius ​​r​ 

h
​​​ with the 

crystallographic radius of the ​​r​ 
Cris

​​​ ion divided by the molecular radius of the water ​​r​ 
​H​ 

2
​​O
​​​ (Eq. (7)):

	​ ​n​ h​​ = ​ 
​r​ h​ 3​ − ​r​ Cris​ 3  ​

 ______ ​r​ ​H​ 2​​O
​ 3  ​  ​​	 (7)

Ionic hydration is mainly due to thermodynamic phenomena [82]; however, studies have been 
reported where changes in the hydration of the ions attributable to exposure to an external 
magnetic field were observed, including variation in ion displacement and complex forma-
tion [83]. Alterations in ionic hydration due to exposure to a magnetic field can have a greater 
or lesser effect depending on the thickness of the hydration layer of each ion and the thermo-
dynamic conditions of hydration, suggesting that magnetic field treatment causes changes 
in the structure of the water that hydrates the ions [84]. It is theorized that the magnetic field 
favors the hydration of ionic species due to the creation of normal Lorentz forces that help to 
penetrate the boundary layer of natural hydration generating a molecular arrangement that 
allows greater hydration [85]. In addition, the transport of the adsorbates to the active sites is 
promoted due to the impulse generated by the Lorentz forces and the electrostatic forces of 
Van der Waals, achieving an advantage over viscous forces [86]. On the other hand, it has been 
shown that divalent cations, such as heavy metals, are more susceptible to the presence of a 
magnetic field, since they seem to promote their polarization, as well as showing a “magnetic 
memory” effect that it can break when the temperature increases [87, 88], and at the same 
time, it has been observed that the magnetic memory effect can disappear nonlinearly in time 
depending on the configuration of the applied magnetic field and the exposure time to the 
magnetic field [89]. The alteration in the polarity of the hydrated ions due to the exposure 
to a magnetic field also generates changes in the zeta potential (ζ) of the solutions, influenc-
ing the pH values and encouraging the adsorption of metallic species [77–79, 90]. Figure 2 
explains the improvement in ionic hydration under the influence of a magnetic field which 
is due to a better accommodation of the water molecules surrounding the ion, not only in the 
first hydration layer, but also in the second layer although with a less force than in the first. 
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The improvement in mobility of the hydrated ion under the influence of the magnetic field is 
due to the fact that the magnetic susceptibility of both the ion and the water molecules gener-
ates a component of magnetic force (Fmag) that added to the electrostatic force (Fe), which 
manage to overcome the viscous force (Fv), making the ion more likely to collide with the 
surface of the adsorbent.

The interactions that occur between the ions and the magnetic field can be explained by 
understanding the magnetic susceptibility; this is an intrinsic property that has all the matter. 
Magnetic susceptibility (​​χ​ 

Mag
​​​) is a magnitude that represents the sensitivity to the magnetiza-

tion of a material influenced by a magnetic field, determined by the sum of a diamagnetic 
component or diamagnetic susceptibility (​​χ​ 

Dia
​​​) and a paramagnetic component or paramag-

netic susceptibility (​​χ​ 
Para

​​​) [91] (Eq. (8)), understanding that the diamagnetic matter opposes the 
flow of the magnetic field and the paramagnetic matter is oriented in the same direction of 
the magnetic field.

	​ ​χ​ Mag​​ = ​χ​ Para​​ + ​χ​ Dia​​​	 (8)

Substances that are magnetized in the same direction of the magnetic or paramagnetic field 
have an odd electronic orbital and their magnetic susceptibility is positive, while those that 
are magnetized against the magnetic field or diamagnetic have their electronic orbital even 
and have negative magnetic susceptibility [92, 93], and each substance has a different value 
of magnetic susceptibility, inclusive, the same substance with different oxidation state can 
vary in its magnitude of magnetic susceptibility. In the case of ionic species such as heavy 

Figure 2. Mechanism of adsorption of heavy metals with and without the presence of a magnetic field.
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metals, they have distinct values of magnetic susceptibility between them, coupled with this, 
the water molecules that surround a hydrated ion also have a magnetic susceptibility, so as a 
whole, generates a new magnitude of magnetic susceptibility, being the sum of the suscepti-
bility of the solitary ion and that of each of the water molecules that surround it in the main 
layer. Based on this, the net susceptibility of the hydrated ion will depend on the magnetic 
susceptibility value of the ion ​​χ​ 

Mag
​​​ and the multiplication of the magnetic susceptibility of 

water ​​χ​ 
​H​ 

2
​​O
​​​ by the hydration number ​​n​ 

h
​​​ (Eq. (9)).

	​ ​χ​ h​​ = ​χ​ mag ion​​ + ​[​(​n​ h​​)​​(​χ​ ​H​ 2​​O
​​)​]​​	 (9)

As an example, the susceptibilities of three heavy metals are shown in Table 5: Pb, Cd and 
Zn, where the Pb has a magnetic susceptibility lower than that of the Cd and Zn; contrary to 
the values of ionic radio and electronegativity; however, we found that the hydration index ​​
n​ 

h
​​ ​ of Pb is lower than that of Cd and Zn, which is consistent with the Gouy-Chapman theory. 

On the other hand, the value of the magnetic susceptibility of water, which, like that of heavy 
metals is negative, which implies its diamagnetism and with which it will be possible to deter-
mine the hydrated magnetic susceptibility, resulting to be now larger than the hydrated mag-
netic susceptibilities of both Cd and Zn, compared to that of Pb.

As can be seen in the specific case of Pb, Cd and Zn are diamagnetic species despite being 
heavy metals; however, many transition metal complexes exhibit both diamagnetic and para-
magnetic complexes. For example, the compounds of the complex ion [Co(NH3)6]3+ do not 
have unpaired electrons, but the compounds of [CoF6]3− ion have four per metal ion. Both 
complexes contain Co(III) with 3d6 electronic configuration [94], although both Zn and Cd are 
elements of electronic configuration d, they exhibit diamagnetic behavior because they are at 
the limit of groups IIB and tend to behave similar to group IIIA.

On the other hand, a simple way to know the magnetic ordering of ionic species in aqueous 
solution may be the coloration of the salt from which they start, since in heavy metal com-
pounds, orbitals often are divided into two sets of separate orbitals by the division energies, 
which corresponds to wavelengths of light in the visible region. The absorption of visible light 
causes electronic transitions between orbitals in these sets, which imply a correlation between 
the paramagnetism and the salt coloration, while the diamagnetism of some metallic nitrates 
is colorless [94].

χmag (1 × 10−6 emu/mol) ​​r​ ion​​​ (pm) ​​n​ h​​​ (min–max) [2] χh (1 × 10−6 emu/mol)

Pb −23 1.2 4–7.5 −120.275

Cd −19.7 0.97 10–12.5 −181.825

Zn −9.5 0.74 10–12.5 −171.625

H2O −12.97 — — —

Table 5. Physicochemical and magnetic parameters of different ions and hydrated ions.
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Overall, a strong interdependence of the physicochemical and magnetic properties of ionic 
adsorbates can be observed and how they interact with exposure to a magnetic field.

8. Generation and configuration of a magnetic field applied to an 
adsorption process

Knowing the characteristics of the magnetic field that will interact with both the adsorbate 
and the adsorbent is overriding, three design parameters can be mentioned in the application 
of a magnetic field for assistance in the adsorption process: (1) type of source, (2) arrangement 
or trajectory of field lines and (3) magnetic field strength.

The source of the magnetic field can be classified by its generation in three different ways: 
alternating current (AC) electromagnets, direct current (DC) electromagnets and permanent 
magnets.

In general, the electromagnets consist of a solenoid made from cable made of an electrically 
conductive material, these solenoids generate a magnetic field in their cavity to the passage 
of electric current. The design of the solenoid goes from linear, annular and cylindrical forms 
according to the application, where the magnetic field strength that could generate depends 
on the number of turns, intensity and current potential [95].

The AC electromagnets are distinguished by passing electric current in which the magnitude 
and direction of the current vary in cyclical periods. This type of electromagnets have been 
used to generate magnetic fields applied in multiple ways ranging from heating by induction 
micellar particles to remove dyes from water [96], the acceleration in the germination of seeds 
under the application of a magnetic pulse [97], to be used as an incentive for the adsorp-
tion of volatile organic compounds [98]. They present some advantages in the generation 
of temperatures by induction and work with magnetic pulses of high frequency; however, 
it has some other disadvantages such as the creation of a heterogeneous and discontinuous 
magnetic field.

DC electromagnets are usually the most used for assistance in processes to eliminate water 
pollutants, and they are completely similar to AC electromagnets, with the difference that 
the field they generate is homogeneous and continuous due to the nature of the electric cur-
rent, although they can also generate pulsations [99–101]. Studies have been carried out on 
the application of an electromagnet in adsorption processes, where it has been found that 
the field generated by them decreases the equilibrium time [101], increases the efficiency of 
dye removal by orienting the molecules and creating micromagnets from magnetic adsorbent 
materials [102]. It was also found that there is an effect of the pulsed magnetic field on the 
morphology of the surface of the adsorbents and the intensification of the adsorption activity 
[103]. However, the heating of the solenoid generates a disadvantage because the temperature 
control in adsorption studies is fundamental, so it would be necessary to use a cooling system 
for temperature control [9], raising the equipment costs.
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Within the electromagnets, there is a new modality that is also used for water purification pro-
cesses; it is the superconducting magnets that generate the high-gradient magnetic field. The 
superconducting magnets are capable of generating a magnetic field from 2 to 10 T [95, 104].

Finally, permanent magnets, which are manufactured from ceramic and nonceramic ferromag-
netic materials that have iron, nickel, cobalt, rare earth and even silica as the main elements 
[105–108].

The magnetic force that permanent magnets could present depends on two factors: the coer-
cive field that presents the material and the field strength with which it is loaded in its manu-
facture where it is possible to find a wide variety of intensities that can be higher than 2 T 
per unit of length. In addition to this, they have the advantage of offering a reduction in the 
operational cost related to the consumption of electric power for the generation of magnetic 
field [95]. In addition, both the polarity of the magnet and the versatility of its shape can be an 
advantage in the design of devices for assisting the adsorption process. On the other hand, its 
fragility, oxidation in environments with humidity and limitation in size are rejected for indus-
trial application. Like electromagnets, permanent magnets have been used for their applica-
tion in adsorption processes, showing changes in kinetics [108]; modification in the magnetic 
ordering of materials [109], modification in the magnetic ordering in addition to the removal 
of metals from groundwater without modifying components of Ca and Mg materials [110].

Like the source, the configuration of the magnetic field is significant in the design of an 
adsorption system assisted by magnetic fields, since the influence, gradient of intensity and 
direction will determine the type of effect in some of the adsorption phases. The configura-
tion of the magnetic field will influence in various ways ranging from orienting, hydrating 
and redirecting the adsorbate, to magnetize, activate and prevent the degeneration of the 
adsorbent [111–115].

In the case of adsorption in continuous systems, the application of the magnetic field could be 
based on the orientation of the magnetic field, which could be parallel or perpendicular to the 
directions of the fluid flow [95]. Particularly in the use of permanent magnets, they have been 
used in the treatment of electrolytes where they were arranged around the treatment circuit, 
so that the applied field was orthogonal to the direction of fluid flow [116].

For adsorption studies in batch systems, there are multiple configurations. Experiments have 
been carried out in which a pair of permanent magnets is arranged in parallel, where the 
space between them is the adsorption system showing favorable results [117]. This could 
be explained thanks to the sum of magnetic intensities, which is a phenomenon that occurs 
when it has two or more magnets in parallel and their polarities are attracted, and this is 
only effective at short distances and this distance is a function of the intensities particular 
of each permanent magnet involved. On the other hand, the variation of adsorption results 
was investigated by applying different magnetic dispositions taking as an output variable the 
removal of the adsorbate, where three different configurations in which permanent magnets 
were disposed and evaluated, particularly the behavior of the fluidized adsorbent particles 
was evaluated. In the contaminated solution, obtaining different degrees of removal of a dye, 
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this study explains that the effect of the Lorentz forces modify the trajectories of the adsor-
bent particles inside the container, opposing the turbulent forces created by the mechanical 
agitation [112]. On the other hand, it has been found that there is a relationship between the 
magnetic configuration and the gradient of magnetic intensities, in addition to the arrange-
ment of magnetic fields that can influence the solution, the adsorbent material and both [113].

The evaluation of different magnetic systems can be designed from computer simulations which 
can quantify and visually inspect the trajectories of the field lines, the gradient of magnetic inten-
sities and the spatial distribution profiles of the magnetic flux density [84, 118–120], in such a way 
that it is possible to be certain that the adsorption system will be affected by the magnetic field.

Considering all the information presented in this chapter, it is possible to affirm that the mag-
netic field is a viable tool within the adsorption processes for the removal of heavy metals in 
an efficient and environmentally friendly way; however, there are different parameters that 
are essential to take into account to achieve the expected results. The mechanism under which 
the magnetic field acts on the adsorbate-adsorbent system is quite complex and depends on 
several variables within the system.
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