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Abstract

Neural network, a powerful learning model, has archived amazing results. However,
the current Von Neumann computing system–based implementations of neural net-
works are suffering from memory wall and communication bottleneck problems ascrib-
ing to the Complementary Metal Oxide Semiconductor (CMOS) technology scaling
down and communication gap. Memristor, a two terminal nanosolid state nonvolatile
resistive switching, can provide energy-efficient neuromorphic computing with its syn-
aptic behavior. Crossbar architecture can be used to perform neural computations
because of its high density and parallel computation. Thus, neural networks based on
memristor crossbar will perform better in real world applications. In this chapter, the
design of different neural network architectures based on memristor is introduced,
including spiking neural networks, multilayer neural networks, convolution neural
networks, and recurrent neural networks. And the brief introduction, the architecture,
the computing circuits, and the training algorithm of each kind of neural networks are
presented by instances. The potential applications and the prospects of memristor-based
neural network system are discussed.

Keywords: memristors, neural networks, deep learning, neuromorphic computing, analog
computing

1. Introduction

Neural networks, composing multiple processing layers, have achieved amazing results, such
as AlphaGo, DNC and WaveNet. However conventional neural networks based on Von
Neumann systems have many challenges [1]. In Von Neumann computing system, the com-
puting process and external memory are separated by a shared bus between data and program
memory as shown in Figure 1, which is so called Von Neumann bottleneck. In Von Neumann
computing system, a single processor has to simulate many neurons and the synapses between
neurons. In addition, the bottleneck leads the energy-hungry data communication when
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updating the neurons states and retrieving the synapse states, and when simulates a large-
scale neural networks, the massages among processors will explode [2]. These defects make
the Von Neumann computing system based neural network power hungrier, low density, and
slow speed. In order to overcome these defects, a novel Nano device and computing architec-
ture need proposing. Memristor crossbar is considered to be the most promising candidate to
solve these problems [3]. Memristor crossbar is a high density, power efficiency computing-in-
memory architecture. Thus, this chapter presents different design paradigm of memristor-
based neural networks, including spiking neural networks (SNNs), multilayer neural networks
(MNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs).

2. Memristor neural networks

2.1. Memristor

Memristor was conceived by Leon Chua according to the symmetry of circuit theory in 1971
[4] and funded by HP lab in 2008 [5]. Memristor is a nano two-terminal nonvolatile device,
with a Lissajous’ IV curve. In mathematical, the model of memristor can be express as (take an
example of HP memristor) [6]

i tð Þ ¼ 1
RONw tð Þ þ ROFF 1�w tð Þð Þ v tð Þ (1)

i tð Þ ¼ G φ tð Þð Þv tð Þ (2)

Here, w(t) stands for the normalized position of the conduction front between the O2�

vacancy-rich and O2� vacancy-poor regions. The range of w(t) is from 0 to 1. G(φðtÞ) is the
conductance. The conductance of memristor can be continuous changing when applied control
pulse on the memristor. When the negative pulse is applied, the O2� vacancy moves to O2�

vacancy-rich region, which cause the conductance decrease, and vice versa. This result is
similar to the phenomenon in biological synapse, such that memristor can simulate the
dynamic of synapse.

Figure 1. Von Neumann computing system bottleneck.
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2.2. Memristor merits

Memristor as the forth device, comparing with conventional computing system such as CPU
and GPU, has many advantages. First, memristor is a two-terminal nonvolatile device,
resulting in the low power consumption [7]. Second, memristor is compatible with the CMOS,
and it can be integrated with higher density [4]. Third, the size of memristor is in nanoscale,
such that the switching speed fast [8]. These characteristics make memristor become a promis-
ing candidate for neuromorphic computing. In recent years, many researchers have performed
various experiments in neural network with memristor for synapse and neurons.

2.2.1. Memristor as synapse

Human brain can perform complex tasks such as unstructured data classification and image
recognition. In human brain, excitatory and inhibitory postsynaptic potentials are delivered
from presynaptic neuron to postsynaptic neuron through chemical and electrical signal at
synapses, driving the change of synaptic weight, as shown in Figure 2. The synaptic weight is
precisely adjusted by the ionic flow through the neurons. In neural networks, this mechanism
can be simulated by memristors. There are many samples that memristor used as synapse. In
this section, we use SNN as a sample to explain how memristor used as synapse.

As shown in Figure 3, a memristor acts as a synapse between two CMOSs neuron, which acts
as pre-/postsynaptic neurons, respectively. The input signal of presynaptic neurons reached
the postsynaptic neurons through the synapse. When a presynaptic spike is triggered before a
postsynaptic spike, equivalently there is a positive voltage applied on the memristor, and then
the synaptic weight is increased and vice versa, which is [6] explained as

Δt ¼ tpre � tpost (3)

Figure 2. Biological neuron and synapse.
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where tpreðtpostÞ is the pule weight the presynaptic neuron (postsynaptic neuron) spikes. Δt is
the difference between neurons spike time. That means, when Δt > 0, the synapse weight is
increased, and when Δt < 0, the synaptic weight is decreased.

2.2.2. Memristor as neuron

In biology, the membrane separates the inter-cell ions and enter-cell ions. Based on the electro-
chemical mechanism, the potential on the sides of membrane is balanced. When the excitatory
and inhibitory postsynaptic potentials are arrived, the signals through the dendrites of the
neurons and the balance will be destroyed. When the potential surpasses a threshold, the
neuron is fired. Emulating these neuronal mechanism, including maintaining the balance of
potential, the instantaneous mechanism, and the process of neurotransmission, is the key to
implement biological plausible neuromorphic computing system [9].

When a memristor is used to act as a neuron in neural networks, it is not essential that the
conductance of memristor implement continuous change, instead to achieve accumulative
behavior. When competent pulses applied, the neuron is fired. These pulses can change the
conductance state of memristor.

2.3. Memristor crossbar

Memristor crossbar consists of two perpendicular nanowire layers, which act as top electrode
and bottom electrode, respectively. The memristive material is laid between two nanowire
layers; as a result, memristor is formed at each crosspoint [11]. The schematic diagram of
memristor crossbar is shown in Figure 4.

Memristor crossbar is suitable for large-scale neural networks implementations. First, it is high
density, since crossbar can be vertical stack, and each crosspoint is a memristor. In addition,
memristor is nonvolatile, nanoscale and multistate. Second, it is low power consumption, since
the crossbar allow memory and computation integrating [10], and memristor is nonvolatile
device with a low operation voltage. These advantage of memristor crossbar such that this
architecture applied in a wide range of neural networks.

Figure 3. A paradigm of memristor based synapse.
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In neural networks, memristor crossbar has three operations such as read, write, and training.
In this section, we use a sample to illustrate how the memristor crossbar read, write and
training.

2.3.1. Read operation

In memristor crossbar, the conductance of a single memristor can be read individually. As
shown in Figure 5, we assume that we will read the mij memristor, which is the crosspoint of ith
top wires and jth bottomwires. The voltage V is applied on the ith top wire, and other top wires
and bottom wires are grounded. In this situation, only the mij memristor is applied the V bias,
the current i can be collected on the jth bottom wire. According to Ohm’s law, the conductance
of mij memristor M is caculated by M¼V/i [11].

2.3.2. Write operation

Similar to reading operation, the conductance of mij memristor can be written individually. We
assume that we will write the mij memristor. Different amplitude and duration of writing

Figure 4. Memristor crossbar.

Figure 5. Memristor crossbar readout.
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pulses will be directly applied on the target memristor. The ith top wire is applied voltage V,
and the jth bottom wire is grounded. Other top wires and bottom wires are applied voltage
V/2, then, only the mij memristor is applied the full voltage V, which is above the threshold and
can change the conductance of target memristor. The conductance of other memristors is not
changed because the voltage applied on them is 0 [12].

2.3.3. Training operation

Based on the read and write operation, the memristor neural networks are trained to imple-
ment practical neural networks. We use a single-layer neural network to explain the training
process of neural network. As shown in Figure 6, the relationship between input vectors U and
output vectors Y can be illustrated as [12]:

Yn ¼ Wn�m �Um (4)

Here, the weight matrix Wn�m represents the synaptic strengths between the two-neuron
groups, which are represented by the conductance of corresponding memristors. When we
train a memristor crossbar, we first assume we have a set of data. We input the training data,
the synaptic weight matrix W is updated repeatedly until the difference between the output y
and the target output y* become minimum. In each repetition, W is adjusted across the
gradient of the output error |y-y*| as [12]

Δwij ¼ μ
∂ðy� y�Þ2

∂wij

 !
(5)

Here, wij is the synaptic weight in theW connecting the neuron i and j, Δwij is the change of wij

during per update. μ is the training rate.

Figure 6. A single layer neural network [12].
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3. Design of memristor neural networks

This section discusses different memristor-based neural network design paradigm, including
spiking neural networks (SNN), multilayer neural networks (MNN), convolutional neural
networks (CNN), and recurrent neural networks (RNN). Each part of these neural networks
consists of five subsections, which are the concepts, the architecture, the algorithm, the circuits,
and the instance.

3.1. Spiking neural networks

3.1.1. SNN concept

Spiking neural network (SNN), a neural network of neurons interchange information
using spikes [13], is neural network based on individual spikes [14]. SNN is a brain-like
architecture. The signal in SNNs uses pulse coding rather than rate coding, and allows
multiplexing of information as frequency and amplitude. In some electronic SNNs, spikes
have the similar waveform shape than biological spikes, but normally in electronic systems
spikes are much simpler being represented by a square digital pulse [13]. In SNN, the
presence and timing of individual spikes are considered as the means of communication
and neural computation. The basic idea on biology is that the more intensive the input,
the earlier the spike transmission. Hence, a network of spiking neurons can be designed
with n input neurons Ni whose firing times are determined through some external
mechanism [14].

3.1.2. SNN architecture

In this section, we use a three-layer neural network to illustrate the structure of SNN. In this
structure, as shown in Figure 7, the multilayer SNNs are fully connected feedforward net-
works; all neurons between two adjacent layers are connected. All the input neurons and
output neurons are multiple spikes, i.e., spikes trains.

In this structure, neurons have a model. Spike response model describes the response of both
the sending and receiving neuron to a spike. In this model, the spikes of sending neuron
transmitted from presynaptic neurons via synapses to postsynaptic neurons. When all spikes
arrive, a postsynaptic potential is accumulated in receiving neuron. The internal state of
neuron is defined as the sum of postsynaptic potential induced by all the spikes and affected
by the weights for synapses that transmit these input spikes.

Suppose an input neuron has N input synapses. The ith synapse transmits Gi spikes. The arrival
time of each spike is denoted as ℊi ¼ t1i , t

2
i ……tgi . The time of the most recent output spike of

the neuron prior to the current time t (>0) is tðf rÞ. Then the internal state of the postsynaptic
neuron is expressed as
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u tð Þ ¼
XN
i¼1

X
t
gð Þ

i Eℊi

t
gð Þ

i > tðf rÞ

wiε t� t
gð Þ

i

� �
þ ηðt� tðf rÞÞ (6)

where wi is the weight for the ith synapse. The postsynaptic potential induced by one spike is
determined by the spike response function ε(t), expressed as

ε tð Þ ¼
t
τ
e1�

t
τ if t > 0

0 if t ≤ 0

(
(7)

In additional to the model of postsynaptic neuron, SNN has a model, too. For convenience, we
assume that the layers are numbered backwards starting from the output layer numbered as
layer 1 to the input layer. Every two neurons in adjacent layers connected by K synapses with

different transmit delays and weights. The delay of the kth synapse is denoted as dk.

We assume that there areNlþ1 neurons in layer lþ 1 and neuron i, belongs to the layer lþ 1, has
emitted a spike train composed of Fi spikes, the times of firing are denoted Fi ¼ ti, the time of the
ti spike which through the kth synapse arrive at postsynaptic neuron j which is in layer l is

ti þ dk. At time t, the internal state of the jth postsynaptic neuron in layer l can be expressed by

uj tð Þ ¼
XNlþ1

i¼1

XK
k¼1

X
t
fð Þ

i EF i

t
fð Þ

i þ dk > tðf rÞj þ Ra

wk
ijε t� t

jð Þ
i � dk

� �
þ ηðt� tðf rÞj Þ (8)

where wk
ij is the weight of the kth synapse between presynaptic neuron i and postsynaptic neuron

j; tðf rÞj is the time of the most recent output spike for neuron j prior to the current time t [15].

Figure 7. The architecture of SNNs.
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3.1.3. SNN algorithm

Spike-Timing Dependent Plasticity (STDP) is the synapse strength changing mechanism
according to the precise timing of individual pre- and/or postsynaptic spikes. As illustrate in
Section 2, the sign of the difference between the pre-/postsynaptic neurons times determines
the synaptic weight whether increased. STDP learning in biology is inherently asynchronous
and online which means that synaptic incremental update occurs while neurons and synapses
transmit spikes and perform computations. In experiment, the synaptic strength is a function
of relative timing between the arrival time of a presynaptic spike and the time of generation of
a postsynaptic spike as shown in Figure 8.

Although the data show stochasticity, we can infer an underlying interpolated function as
shown in Figure 9.

Figure 8. Experimentally measured STDP function on biological synapses [13].

Figure 9. Ideal STDP update function used in computational models of STDP synaptic learning [13].
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ξΔT ¼ aþe�ΔT=τþ if ΔT > 0

�a�eΔT=τ
�
if ΔT < 0

(
(9)

3.1.4. SNN circuits

SNN with three layers of neurons and two fully connected inter-layer meshes of memristors is
shown in Figure 10. The neuron layers are fabricated with CMOS devices, and the inter-layer
meshes of memristors are made with nanowires on the top of a CMOS substrate [16]. In
Figure 10, triangles represent the neuron soma, being the flat side its input(dendrites) and the
sharp side the output (axon). Dark rectangles are memristors, representing each one synaptic
junction. Each neuron controls the voltage at its input and output nodes.

In this SNN circuit, the CMOS-based spiking neurons work basically the same as conventional
integrate-and-fire neuron, and use proposed spike shape and specific spike back-propagation.
The total current of receiving neuron is given by Ohm’s Law by conductance, g, of connected
synapses and the voltage drop across the synapses. SNN training process needs building
external circuit. In external circuit, the input signals are prepared, and the output signal will
be measured in the external circuit.

3.1.5. SNN instances

Memristor behavior is more likely to a bidirectional exponentially grow with voltage, and
many mathematical formulations can be used to simulate it. Here, we use a voltage-controlled
device as a synapse, whose synaptic weight is represented by the conductance g of memristor.
The function of the device is “sinh-like” in the voltage Vmem. The nano device satisfied the
formulation as expressed follow

dg
dt

¼ AsinhðVmemÞ (10)

Figure 10. Memristor crossbar based SNNs paradigm [13].
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A and B are the parameters which depend upon the memristor material, thickness, size, and it
fabrication method.

In this section, we verify the STDP properties of the memristor-based synapses. Figure 11 is the
proposed spike shape, which is similar to the biological spikes. Figure 12 shows the STDP
curves produced by the proposed spike shape. In Figure 12, the vertical axis shows the average

Figure 11. Proposed spike shape used for processing and learning purposed [17].

Figure 12. Simulated curve using proposed spike shape [17].
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change of memristor conductance. The horizontal axis represents the difference between pre-
and postsynaptic spike timings Δt. Here, the default spike parameters are eV� ¼ 0:45V volt,
tþail ¼ 11 ms, t�ail ¼ 0:3 ms. The result are provided for memristors with Vth� ≈ � 0:5 V volt. The
value of parameters A and B are 2 and 4, respectively [18, 19].

3.2. Multilayer neural networks

3.2.1. MNN concepts

Multilayer neural networks, also known as multilayer perception, are the quintessential deep
networks. The advantage of MNN better than the single-layer perceptron overcomes the weak-
nesses that the perceptron cannot classify linearly indivisible data. To realize large scale learning
tasks, MNNs can perform impressively well and produce state-of-the-art results when massive
computational power is available [20, 21]. Learning in multilayer neural networks (MNNs) relies
on continuous updating of large matrices of synaptic weights by local rules [22, 23]. The BP
algorithm is a common algorithm in local learning, which is widely used in the training ofMNNs.

3.2.2. MNN architecture

In MNN architecture, neurons of upper and lower layers are fully connected, no neuron
connection exists between the same layer, and no cross layer connects to the neural network.
As a quintessential deep network, multilayer neural network consists of an input layer,
an output layer, and a hidden layer. MNN is the evolution of the single-layer perceptron.
Figure 13 is a double layer neural network.

The X1, X2 may represent the inputs single, W is the value of the weight between layers, Y is the
output value. For the two-layer neural network shown above, the input signal is represented as
x1,… xj, xn (N represents the number of input neurons), bi is represented for bias, so the result
of the signal from the input layer to the hidden layer is N11¼f(x1w11 þ x2w21 þ bÞ, and Y1¼f
(N11w11 þN12w21þb), in which f is an activation function.

3.2.3. MNN algorithm

In this section, we give a short sketch of the back-propagation technique [25, 23]. The actual
output value of the neural network is denoted by yj and the ideal tag value is denoted by tj,
and we can use the mean square error as an error function

Figure 13. Logic scheme of the implemented neural network with two inputs, two hidden and one output neurons [24].

Memristor and Memristive Neural Networks260



εMSE ¼
X

j
yj � tj
� �2

(11)

wij represents the weight between two layers of neurons, the neurons of the previous layer are
indexed with i, and the next layer of neurons is indexed with j. The derivation of the error can
be obtained by the following equation:

∂ε
∂wij

¼ ∂ε
∂yj

∂yj
∂zj

∂zj
∂wij

¼ _∈ yj
� �

_f zj
� �

xi ¼ δjxi (12)

where zj ¼
X

i
wijxi, yj ¼ f zj

� �
, δj ¼ _E yj

� �
_f zj

Moreover, it is assumed that the multilayer neural network uses sigmoid as a nonlinear
activation function. For Eq. (3) we get

∂∈
∂wðkÞ

ij

¼ xðk�1Þ
i δðKÞ

j (13)

where δðLÞj � δj ¼ yj � tj
� �

, x0i are input signals, and δLj �
X

i
w kð Þ

ji δ kð Þ
i

_f z k�1ð Þ
j

� �
.

3.2.4. MNN circuits

In this section, we enumerate an example of a memristor implementation of a two-layer neural
network. As shown in Figure 14.

In hybrid-circuit based neural networks [26–28], memristors are integrated into crossbar cir-
cuits to implement density-critical analog weights (i.e., synapses). In this scheme, each artificial
synapse is represented by memristors, so the weight of the synapse is equal to the conductance
of the memristor. For the multilayer neural network mentioned above, each weight is
represented by two memristors, so that the memristor crossbar can easily account for both
“excitatory” and “inhibitory” states of the synapses. The number of memristor in the hidden
layer is arranged in an 8 � 1 grid array as shown in Figure 14. The value of each weight
W ¼ Gþ � G�, where Gþ and G� is the effective conductance of each memristor. In the
simplest case, neuron output x is encoded by voltages V and synaptic weight w by memristor
conductance G. With virtually grounded neuron’s input, the current was given by Ohm’s law
using the potential of postsynaptic V and the corresponding conductance G.

The memristor crossbar combined with CMOS circuitry, which implements neuron function-
ality and other peripheral functions. The artificial neuron body (soma) was implemented in the
circuit by an op-amp based differential adder and a voltage divider with a MOSFET controlled
by the output of the summator [24]. This element executed the basic neuron functions in terms
of information processing—summation and threshold. The differential summator performing

y ¼
X

wixi function is required to separate different classes of input combinations, where y is

the output voltage of the summator, wi, xi – the ith input voltage and the corresponding weight
respectively.
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3.2.5. MNN instance

Conclusion all the experiments, we selected the image data of the MNIST data set to train and
test the two-layer neural network, with the batch size 100 to speed up calculations [28]. The
initial weights were selected randomly from the uniform distribution; in the experiment, the
learning rate is changed depending on the training set error, and the learning rate is only
constant at a level close to 0.0035.

3.3. Convolutional neural networks

3.3.1. CNN concepts

Convolutional neural network is taking inspiration from the study of biology neural science. A
classical architecture of convolutional neural network was first proposed by Lecun et al.
[29, 30]. As a kind of deep learning neural network, several powerful applications of CNNs
were reported including pattern recognition and classification, such as human face recogni-
tion [31], traffic sign recognition [32], and object recognition [33]. Recently, in the field of image
classification accuracy, convolution neural network (CNN) achieved a state-of-the art result,
which can classify more than a million images into 1000 different classes [29, 34, 35].

Figure 14. Circuit diagram of the ANN memristor-based hardware.
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Compared with traditional neural networks, such as fully connected NN, where each neuron
is connected to all neurons of the prelayer via a large number of synapses,convolutional neural
networks take advantages in weight sharing, which reduces the number of parameters need to
be trained [29]. CNNs are inspired from visual cortex structure, where neurons are sensitive to
small subregions of the input space, called receptive fields, exploiting the strong spatially local
correlation present in images [35]. CNNs, exploiting the spatial structure of input images, has
significantly fewer parameters than a fully connected network of a similar size are better suited
for visual document tasks than other NN topologies such as fully connected NNs [36].

Software implementations of artificial convolutional neural networks, which require power-
hungry CPU/GPU to perform convolution operations, are at the state of the art for pattern
recognition applications. While achieving high performance, CNN-based methods is based on
computationally expensive sums of multiplications, which is demand much more computation
and memory resources than traditional classification methods. This hinders their integration in
portable devices. As a result, most CNN-based algorithms and methods have to be processed
on servers with plenty of resources [37].

3.3.2. CNN architectures

The overall architecture of a typical CNN consists of two main parts, the feature extractor and
classifier [38, 39]. The feature extractor layers composed of two types of layers convolutional
layers and pooling layers. A series of convolution and pooling are stacked, followed by fully
connected layers (Figure 15).

In the feature extraction layers, each layer of the network receives an input from the immediate
previous layer [39, 40]. Convolution neural networks are often used to handle image
processing and recognition tasks. The image signal was processed by the input layer of the
convolutional neural network and then enters the convolution layer for the convolution oper-
ation. Convolution operation can be expressed as [37]

Figure 15. CNN block diagram.
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g x, y, z
� � ¼Xc�1

i¼0

Xc�1

j¼0

Xl
k¼1

f xþ i, yþ j, kð Þ � cz i, j, kð Þ ¼ f
! � cz! (14)

where the vector f
!
and g! respectively represent the input and output feature map in the form

of 3D matrix; Cz
!

is one convolution kernel with the size of C � C; and i is the channel number
of the convolution kernel and the input feature map.

This operation could extract different features of input images when using different
convolutional kernels [29]. The input image signal will have dot product operation with
kernel, and through the nonlinear transformation, the final output feature map. Then will
be the subsampling process. Nonlinear neuron will be operated attached after the convolu-
tion kernel. And then, pooling computation is operated after the nonlinear neurons in order
to reduce the data amount and keep the local invariance. A typical pooling unit computes the
maximum of a local patch of units in one feature map (or in a few feature maps) [41]. Fully
connected layers are the final layers of the CNN that all layers are fully connected by
weights [37]. A feed forward neural network is usually used as a classifier in this work
because it has been shown to provide the best performance compared to neural net-
works [42, 43].

3.3.3. CNN algorithm

In this section, the backpropagation learning algorithm for CNNs will be introduced [36]. The
input of a convolution layer is the previous layer’s feature maps, and the output feature map is
generated by a learnable kernels and the activation function, which may combine the kernel
convolutions with multiple input maps. In general, we have that

xlj ¼ f
X
i∈Mj

xl�1
i � klij þ blj

0@ 1A (15)

We can repeat the same computation for each map j in the convolutional layer, pairing it with
the corresponding map in the subsampling layer:

δlj ¼ βlþ1
j f , ulj

� �
∘ up δlþ1

j

� �� �
(16)

where up(�) denotes an up sampling operation that simply tiles each pixel in the input hori-
zontally and vertically n times in the output if the subsampling layer subsamples by a factor
of n. One possible way to implement this function efficiently is to use the Kronecker product,
upðxÞ � X⨂1n�n. Since the sensitivities of a given map are known, the bias gradient can be

immediately computed by simply summing over all the entries in δlj,
∂E
∂bj

¼
X

u, v ðδ
l
jÞuv.

Finally, the gradients of the kernel weights are computed using backpropagation. Then, the
gradient of a given weight is summed over all the connections that mention this weight
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∂E
∂klij

¼
X
u, v

δlj
� �

uv
ðPl�1

i Þuv (17)

∂E
∂klij

¼ rot180ðconv2 xl�1
i , rot180 δlj

� �
, ‘valid’

� �
Þ (18)

A subsampling layer produces down sampled versions of the input maps. If there are N
input maps, then there will be exactly N output maps, although the output maps will be

smaller. More formally, xlj ¼ f ðβljdown xl�1
j

� �
þ bljÞ, where down(�) represents a subsampling

function, which sum over each distinct n-by-n block in the input image so that the
output image is n-times smaller along both spatial dimensions. Each output map has multi-
plicative bias β and an additive bias b. Since every other sample in the image

δlj ¼ f , ðuljÞ ∘ conv2ðδlþ1
j , rot180 klþ1

j

� �
,
0
f ull

0 Þ can be thrown away, the gradients of b and β can be

computed. The additive bias is again just the sum over the elements of the sensitivity map
∂E
∂bj

¼
X

u, v δlj
� �

uv
. The multiplicative bias β will involve the original down-sampled map

generated by the current layer during the forward propagation. Therefore, the maps generated
during the forward propagation should be saved, to aviod recomputing them during

backpropagation. Defining dlj ¼ downðxl�1
j Þ, then the gradient of β can be represented as

∂E
∂βj

¼
X
u;v

ðδlj ∘ dljÞuv (19)

Meanwhile, it is better to provide an output map that involves a sum over several convolutions
of different input maps. Generally, the input maps combined to form a given output map are
typically chosen by hand. However, such combinations can be learned during training. Let αij

represents the weight given to input map i when forming output map j. Then output map j is
calculated by

xlj ¼ f
XNin

i¼1

αijðxl�1
i � Kl

iÞ þ blj

 !
(20)

where X
i

αij ¼ 1, and 0 ≤αij ≤ 1 (21)

By setting the αij variables equal to the softmax over a set of unconstrained weights cij, these
constraints can be enforced

αij ¼
expðcijÞX
k
expðckjÞ

(22)
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Since each set of weights cij for fixed j are independent of all other such sets for any other j, only
the updates of a single map need considering and the subscript j can be dropped. Each map is
updated in the same way, except with different j indices. The derivative of αk with respect to
the αi variables at layer is the derivative of the softmax function is given by

∂αk

∂ci
¼ δkiαi � αiαk (23)

where δ is used as the Kronecker delta.

Use δl represents the sensitivity map corresponding to an output map with inputs u. Again,
the convolution is the “valid” type so that the result will match the size of the sensitivity map.
Now, the gradients of the error function with respect to the underlying weights ci can be
computed by the chain rule

∂E
∂αi

¼ ∂E
∂ul

∂ul

∂αi
¼
X
u;v

ðδl ∘ xl�1
i � Kl

i

� �Þuv (24)

In addition, the sparseness constraints on the distribution of weights αi for a given map can also
been imposed by adding a regularization penalty Ω(α) to the final error function. Therefore,
some weights will be zero. That means, only a few input maps would contribute significantly to
a given output map, as opposed to all of them. The error for a single pattern can be written as

∂E
∂ci

¼
X
k

∂E
∂αk

∂αk

∂ci
¼ αið∂E∂αi

�
X
k

∂E
∂αk

αkÞ (25)

eEn ¼ En þ λ
X
i, j

jαijj (26)

This will find the contribution of the regularization term to the gradient for the weights ci. The
user defined parameter λ controls the trade-off between minimizing the fit of the network to
the training data, and ensures that the weights mentioned in the regularization term are small
according to the 1-norm. Again, only the weights αi for a given output map need considering
and the subscript j can be dropped. First, there is

∂Ω
∂αi

¼ λsignðαiÞ (27)

Combining this result with Eq. (24), the derivation of the contribution is

∂Ω
∂ci

¼
X
k

∂Ω
∂αk

∂αk

∂ci
¼ λðjαij � αi

X
k

jαkjÞ (28)

The final gradients for the weights ci when using the penalized error function Eq. (11) can be
computed using Eqs. (13) and (9)
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∂
fEn

∂ci
¼ ∂En

∂ci
þ ∂Ω

∂ci
(29)

3.3.4. CNN circuits

This part introduces the construction and operation of the memristor neural networks circuit.
First of all, we introduce how a single column within a memristor crossbar can be used to
perform a convolution operation. Pooling operation can be seen as a simpler conversation
operation [39]. The circuit diagram of each column for the convolution operation of the
memristor crossbar structure is shown in Figure 16.

Each crosspoint of the circuit was composed of memristors, which is represented for synapses.
The kernel (k) was represented by the conductivity value (G) in the crossbar circuit. Some extra
manipulation include converting kernel matrix into two parallel column to express the positive
and negative value of the kernel and converting kernel matrix to conductivity values (δ�) [39]
that fall within the bounded range of a memristor crossbar. The op-amp circuit is used to scale
the output voltage and implements the sigmoid activation function.

The convolution computation operation in memristor crossbar is the same as the matrix
convolution operation. That mainly is a result of the dot-production about the matrixes of
kernels and inputs. The first step is the multiplication of voltage (V) and conductance
(G ¼ x�1) [29], which is following ohm’s law (I ¼ V�G). Second, it will follow Kirchhoff’s
current law (KCL), which describes that the circuit flowing out the node will be equal to the
sum of current flowing into that node. Based on KCL, novel computation architecture for
implementing pot-product is implemented [29]. And then, the lower end of the op amp circuit
performs activation function. As a result, each neuron of hidden and output layers implements
f
P

iðGþ � G�ÞVi
� �

, where f is a kind of activation function. Figure 17 shows the flow chart of
the CNN image identification system.

where L is the number of layers of the CNN recognition system, the input layer (L ¼ 1) holds a
testing set of 500 MNIST images, whose size of data set is 28 � 28. L ¼ 2 is the first convolution
layer [39].

step 1. First convolution layer(l ¼ 2)

The signal size from the front input layer is 28 � 28. In this layer, an input image will be
convolved with six different 5 � 5 size kernels on the memristor crossbar. According with
the front description, each column is the kernel value of 5 � 5. And the 2D kernel was
broken into two arrays in the memristor crossbar to easily account for negative values in
the kernel arrays. The total number of a column in the crossbar structure is 2 � 25 þ 1, in
which “1” is the value of bias. Since we are using a memristor crossbar to perform the
convolution operations, we can generate all six of these output maps in parallel. So, the
crossbar circuit exist six parallel columns in a row. Therefore, this layer requires a 51 � 6
memristor crossbars.
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So far, we have got the memristor crossbar structure, which simulates the synapses and stores
the value of kernels in it. The circuit perform the first convolution operation is shown in
Figure 18.

Each image contains 784 pixel, but the image is applied 25 pixels at a time where each 25 pixel
section generates a single output value. After these convolution kernels applied, a data array
that has a size of 24 � 24 � 6 will be generated in the memristor crossbar and then will be
operated in the next layer. For each column in the memristor crossbar structure,memristor is
used to simulate synapses of neural networks. And, the circuit simulates neurons to produce

Figure 16. (a) A column circuit of MCNN circuit diagram that is capable of performing convolutional operation and (b) a
shorthand depiction for this circuit.
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the summation of all the product of inputs and kernels and operate activation function.
According to Ohm’s law and Kirchhoff’s law, every single output value in this time is the
input value and the kernel value of the inner product results. After the signal is input, the
memristor and op-amp circuits are output later. When all 6 24 � 24 sizes of feature map are
obtained, the first convolution operation was finished,the output is the input value of the next
neuron that will be applied in pooling operation process.

Step 2. First smoothing layer (l ¼ 3)

Following the first convolution layer, a smoothing operation is performed on the six generated
feature maps. Pooling operation can be seen as a simpler conversation operation, with all
kernel applied to each feature map is

Figure 17. Flowchart describing the CNN recognition system [39].
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K ¼ 0:25 0:25
0:25 0:25

� 	

Be similar with the convolution process, each column of the crossbar represents a kernel. So the
memristor numbers of a single column of the crossbar is 4 � 2 þ 1, and six column for with all
six feature maps be operated in parallel, Therefore this layer requires a 6 � (2 � 4 þ 1)
memristor crossbars. But different with the convolution layers, the conductivities
corresponding to negative elements in the kernel matrix in this layer are meaningless because
all components of the pooling kernel are positive. The following circuit is shown that has
pooling operation on the 6� 24� 24 size of feature map which the convolution layer is derived
(Figure 19).

In the pooling operation, six different feature maps obtained from the convolution layers
applied to every corresponding column respectively and obtain another sets of feature maps.

A subsampling operation is performed following each of the smoothing crossbars that reduce
the size of each feature map by a square factor of 2. This could be design in to place a single-bit
counter on the memory array where the data output from the smoothing operation is stored.
The memory address would only update for every other sample so all unwanted data would
be overwritten during the smoothing step.

Step 3. Second convolutional layer (l¼4)

Following the polling and subsample, operation is the second convolution operation. Different
with the first one, inputs of the second convolution layers are six feature maps with 12 � 12
size, and it exists 12 outputs instead of six in the front one. Because the different number and
size of input and output single, the structure of the second layer is distinctly different from the

Figure 18. Circuit used to perform the convolution operations for the second (l ¼ 2) in the CNN recognition system.
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one. The circuit design of the second convolution layer is shown in Figure 20. Each column
represents six different feature map convolution processes, and will be operated with 12
different kernels in parallel methods.

Step 4. Second smoothing layer(l ¼ 5)

Following the second convolution layer, another smoothing layer is following the second
convolution layer to further reduce the size of the data array. The circuit in this layer will be
identical to that displayed in Figure 7. With 12 feature maps will be operated, so required 12
parallel single column crossbars. After second layers of pool will produce 4� 4 of the size of 12
feature map, the input to the next layer, classification layer (l ¼ 6).

Step 5. Classification layer

Following the front feature extraction operations, a fully connected layer is used to classify the
feature maps. The classification layer is generally a single layer perceptron or multilayer neural
network.

The circuit used to complete this operation can be seen in Figure 21. The memristor crossbar used
in classification layer is to store a weight matrix, which is different with storing a set of convolu-
tion kernels arrays in convolution circuits. The crossbar consists of 192*2+1 rows which represent
192 inputs (one input for each of the 16 value in each of the 12 outputs maps), and 10 columns
which represent 10 outputs (one for each MNISTdigit). So the total numbers of memristors in this
layers is (192 þ 1) � 10.

Step 6. Digital storage layers

Following every convolution layer, a digital layer was placed at the output of each convolu-
tion. The digital storage layer reduces the amount of analog circuit error that is transmitted

Figure 19. The group of convolution circuits that is used to implement the smoothing operation.
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between layers. We chose to store an entire image between layers because any benefit gained
by a systematically reduced memory size would likely be outweighed by the complexity of a
data controller of this nature [44].

3.3.4.1. CNN instance

The CNN algorithm purely in simulation under these training conditions results in 92%
classification accuracy as shown in Figure 22. And, the simulation process is to test the
accuracy of the memristor based CNN recognition system described in the previous section.
When testing the simulated memristor crossbars, an accuracy of 91.8% was achieved.

3.4. Recurrent neural networks

3.4.1. RNN concept

Recurrent neural networks, or RNNs, are the main tool for handling sequential data, which
involve variable length inputs or outputs [40]. Compared with multilayer network, the weights
in an RNN are shared across different instances of the artificial neurons, each associated with

Figure 20. The circuit that is used to implement the second convolution layer.
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different time steps [40, 42]. And, others, in recurrent neural networks, lengths history
represented by neurons with recurrent connections, and history length is unlimited. Also
recurrent networks can learn to compress whole history in low dimensional space, while
feedforward networks compress (project) just single word recurrent networks have possibility
to form short term memory, so they can better deal with position invariance [45] RNN archi-
tecture.

The simplest architecture of RNNs is illustrated in Figure 23 [40]. The left of Figure 24
shows the ordinary recurrent network circuit with weight matrices U, V, W denoting three
different kind of connection (input-to-hidden, hidden-to-output, and hidden-to-hidden,

Figure 21. Circuit that is used to implement the classification layer of the CNN recognition system.

Figure 22. Error present when training the CNN algorithm is software [39].
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Figure 23. The architecture of recurrent neural networks.

Figure 24. General class of recurrent neural network circuit.
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respectively). Each circle indicates a whole vector of activations. The right of Figure 24 is a
time-unfolded flow graph, where each node is now associated with one particular time
instance.

3.4.2. A Hopfield neural network design

Memristor-based Hopfield networks (MHN), which is an ideal model for the case where the
memristor-based circuit network exhibits complex switching phenomena, and is frequently
encountered in the applications [46]. A Hopfield network consists of a set of interconnected
artificial neurons and synapses. In this case, a nine synapses Hopfield network is realized with
six memristors and three neurons. As shown in Figure 25, the artificial neuron has three inputs
and each input, Ni ¼ (i ¼ 1, 2, and 3), is connected to a synapse with synaptic weight of wi. The
output of the three-input binary artificial neuron is expressed as

y ¼ sign
X3
i¼1

wiNi � θ

 !
(30)

where y is the neuron’s threshold; and the sign function is defined as

sign Nð Þ ¼ 1 ifN ≥ 0
0 ifN < 0




An artificial neuron was constructed, as shown in Figure 26. An operational amplifier is used
to sum the inputs. The switches, S1, S2, and S3, are controlled by external signals to obtain
positive or negative synaptic weights. The synaptic weights corresponding to input N1, N2,
and N3 are w1 ¼ � M1

M1þR, W2 ¼ � M2
M2þR and W3 ¼ � M3

M3þR, respectively (M1, M2, and M3 are the

resistance of the memristors, respectively, and the resistance of R is fixed at 3 MΩ). In the
circuit shown in Figure 26, transmission gates B1, B2, and B3 reform signals without modifying
its polarity, inverters I1, I2 and I3 generate negative synaptic weights.

The architecture of a 3-bit MHN implemented with nine synapses is shown in Figure 27. The
synaptic weight from neuron i to neuron j is denoted as wi, j, which is mapped to resistance of
the corresponding memristor Mi, j,. Mi, j, and wi, j are represented by the resistance matrix,
respectively

Figure 25. Mathematical abstraction of the neuron model.
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M ¼
M11 M12 M13
M21 M22 M23
M31 M32 M33

24 35, W ¼
W11 W12 W13
W21 W22 W23
W31 W32 W33

24 35,
Due to the symmetry of Hopfield network, M12 ¼ M21, M23 ¼ M32, and M13 ¼ M31, the
implementation of the network only needs six memristors. The schematic of this circuit is
shown in Figure 28, and all the demonstration below is based on this circuit. The threshold
vector T ¼ (θ1,θ2,θ3) represents the threshold of the artificial neurons (neurons 1, 2, and 3),
and the state vector X ¼ (X1, X2, X3) represents the states of the three neurons, respectively. In
each updating cycle, new states of the neurons are updated by the following function

Figure 26. Circuit schematic of the designed 3-bit neuron.

Figure 27. Architecture of the 3-bit MHN consisting of nine memristors.
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X tþ 1ð Þ ¼ signðX tð Þ �W� TÞ (31)

where t represents the number of updating cycles and when t ¼ 0, X(0) represents initial states
vector. In one updating cycle, new states of the neurons are asynchronously updated from X1,
X2 to X3 in three stages, which are defined as stages a, b, and c, respectively [46].

4. Potential applications and prospects

Hardware implementation of deep neural networks is accomplished by using neuron-synapse
circuits and future devices can make deep neural networks (NNs) design and fabrication more
efficient. The full power of NNs has not yet been realized, but the release of commercial chips
implementing arbitrary neural networks, more efficient algorithms will no doubt be realized in
these domains where neural networks can improve the performance dramatically. Memristor-
based NNs promote and solve many A.I. problems such as machine translation, intelligent
question-and-answer, and game play, and in the future, memristor-based NNs can be used in
neuromorphic computation, brain-computer interface or computer-brain interface, cell phone
A.I. application, autopilot and environment monitor.

5. Conclusions

Different memristor-based neural network design paradigms are described. With regard to
neural network systems, the current neural network implementations are not sufficient but

Figure 28. Architecture of the MHN with symmetrical configuration consisting of six memristors.
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fortunately, memristor-based systems provide the potential solution. The basic concepts of
memristor-based implementation, such as memristor-based synapse, memristor-based neuron,
and memristor crossbar based neuromorphic computing engine, are discussed. The
memristor-based neural networks, including SNNs, MNNs, CNNs, and RNNs, are possible
and efficient and are expected to spur future development of A.I. It is expected that memristor-
based neural networks will take the lead.
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