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Abstract

The key aim of the proposed chapter is to provide readers a brief description for the
most important parts of the field of circulating tumor cells (CTCs): the core techni‐
ques, including negative and positive selection‐based CTC isolation, and the differen‐
ces between them. Most importantly, we will also review the clinical applications and
important findings in clinical  trials.  The evidence‐based review will  not  only help
clinicians use CTCs to predict recurrence and foresee the disease‐related outcomes but
also to inspire the researchers in this field to conduct further investigations.
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1. Introduction of circulating tumor cells (CTCs)

1.1. Brief history of CTC researches

Circulating tumor cells (CTCs) are cells shedding from primary tumor(s) into the adjacent
vasculature and are floating around in the circulation throughout the human body. The cells,
as seeds for the subsequent initiation of distant site metastases, are responsible for the cancer‐
related deaths [1]. For the first time, CTCs were described via the observation in the blood of
cancer patient by Dr. Thomas Ramsden Ashworth, who postulated that “cells identical with
those of the cancer itself being seen in the blood may tend to throw some light upon the mode
of origin of multiple tumors existing in the same person” in 1869 [2]. In 1906, Goldmann
reported that visible venous invasion by cancer in approximately 20% of 500 necropsies and
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microscopic invasion of vasculature in nearly 10% [3]. In very early 1900s, several reports of
observation of free cancer cells by morphology have been discussed in patients with melano‐
ma, gastric cancer [4–6], and lung cancer [7]. However, long being in the technical limitation
on isolation of these rare cells in circulation, the realization of CTCs isolated from living cancer
patients and analysis of their clinical impacts began since 1930s [8–10]. One of the first systemic
surveys in 40 living cancer patients was done by Pool and Dunlop in 1934 [11]. In this period,
morphology and cytochemical characteristics remained the most important method to identify
“abnormal”  or  “atypical”  cells.  Tumor  cell  embolization  was  observed  [12]  and  widely
accepted to be one of the major mechanisms for dissemination of cancer [13, 14]. Since 1986
with the development of polymerase chain reaction (PCR), investigators began to utilize these
nucleic acid‐based detection methods to help identify CTCs, including circulating tumor
mutated DNA and mRNAs [15–23]. In early 2000s, semi‐automated devices appeared and
facilitate the advances of CTC testing in clinical study enrolling healthy subjects and pa‐
tients with various types of cancer [24–26], given the fact that numerous previous methods
were  relatively  operator‐dependent  and often  lacked of  validated sensitivity,  specificity,
coefficient of variation and reproducibility [22, 27–31]. In 2004, CellSearch™ (Veridex, Janssen
Diagnostics, USA) got approval from United States (US) Food and Drug Administration (FDA)
for testing in patients with breast, colorectal, and prostate cancer [32, 33]. Since 2012, a rapid
exploration of number of CTC isolation devices having nearly fully automated design emerged
[34–40].

Recently, CTC studies are focusing on devices harboring high sensitivity, high specificity,
reduced sample requirement, label‐free isolation, and the ability to catch living CTCs for in‐
vitro culture. Owing to the less invasive nature than conventional cancer tissue biopsy, CTCs,
as serum circulating tumor DNA (ctDNA) and microRNA (miRNA), are termed to be “liquid
biopsies.”

1.2. Natures of CTCs

It has been a long time after CTCs were noticed and efficiently captured by many methods;
however, little is known about the behavior of CTCs [41]. Investigators have observed some
phenomenon about what CTCs look like, how CTCs shed, migrate, live, defense human
immune system, and initiate distant metastases.

First, CTCs were believed to be larger than normal blood cells, which contributed the devel‐
opment size‐based isolation strategy. Marrinucci et al. [42] supported that the fact of CTCs
being larger than white blood cells and having high nuclear to cytoplasmic ratios with
voluminous cytoplasm. In addition, the morphology of CTCs is highly similar to that of cells
from original biopsied cancer tissues. Numerous devices were developed on the basis of this
characteristics and collect cells with larger size (often >15 μm), including dielectrophoresis
(DEP) [43, 44], optically induced dielectrophorestic (ODEP) [45] force‐dependent devices, and
filter‐based systems [46–61]. However, other investigators found that the size of real CTCs
could be greatly differed from cell lines [62], and might even vary interindividually and
intraindividually [63, 64]. The size criteria of CTC definition remain in debate.
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Second, CTCs exist in almost all staged cancer and could be detected in the course of the disease
[27]. In 1995, Hansen et al. analyzed the blood samples drawn from surgical fields during 61
oncologic surgeries and 93.4% samples found tumor cells [65], which suggest one of the
possible routes of early dissemination of cancer cells. In 2000, Yamashita et al. found that
signals of CTCs (carcinoembryonic antigen messenger RNA, CEA mRNA) from preopera‐
tively negative to postsurgically positive might suggest a specific type of surgery could
contribute to the cancer cell dissemination [66]. Similar results were reported by other
investigators to support the findings in various types of cancer (but breast cancer mainly) [67–
73]. Although CTCs were found in early‐stage cancer patients, the cells do not result in
metastasis all the times. The clearance of human immune systems and inadequate “soil” of
distant organs are one of the plausible explanations. To look on the bright side, CTCs in very
early stage cancer could help early diagnosis of cancer and prevent overwhelming dissemi‐
nation and cancer death [74].

Third, CTCs would form cell clusters, clumps, or circulating tumor microemboli (CTM) and
were found to highly correlate to cancer progression [75–79] and resistance to systemic
anticancer therapies [78, 80], which was established on the basis of many animal model and
preclinical reports [81–85]. Recently, Sarioglu et al. [86] designed a Cluster‐Chip for efficient
capture of CTC clusters and enable the detailed characterization of the biological properties
and role of CTC clusters in metastasis [86]. Studies of cancer metastasis have emphasized the
novel concept of “seed and soil” as a key determinant of metastatic propensity [87]. This model
matches the importance of mutated genetic drivers within tumor cells conferring proliferative
and invasive properties, with that of the microenvironment of the distant organ or “niche,”
which may facilitate metastasis occurrence. However, the physical characteristics of single
CTCs and CTC clusters may also contribute to metastatic propensity, especially as they impact
the ability of epithelial tumor cells to survive the loss of cell adherence and shear forces in the
blood stream, i.e., different survival signals among the cancer cell “seeds” may be important.
For instance, in a mouse endogenous pancreatic cancer model, noncanonical Wnt signaling is
elevated within CTCs, where it appears to suppress anoikis [88], while in a subcutaneous
tumor xenograft model, the admixture of tumor and stromal cells within microemboli may
contribute to stromal‐derived survival signals [77, 89, 90].

Fourth, CTCs could also be detected in cancer patients who underwent curative surgery,
indicating minimal residual disease in the circulation [91–99] and suggesting the correlation
to disease recurrence in the following months [92, 95, 100, 101]. van Dalum et al. [99] found
that the presence of CTC in blood drawn pre and one and two years after surgery, but not
postsurgery is associated with shorter Relapse-free survival (RFS) and OS for stages I–III breast
cancer, which could partially answer the question of how frequent and how long oncologists
should follow patients’ CTCs up and the timing of CTC testing after curative surgery. This
phenomenon indicates that postsurgical adjuvant therapy might be required in specific
population on the basis of CTC testing which remains uncertain to date.

Fifth, the captured CTCs according to their method of isolation, sometimes are alive for in‐
vitro culture [48, 61, 102, 103] and might play a very important role to continuously obtain
primary cancer cell lines in the near future. Furthermore, CTC‐derived cell lines and xenografts
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might reveal new therapeutic targets and can be used for drug screening [104, 105]. The
phenomenon is the main difference of CTCs from ctDNA possibly being released from dead
cancer cells. In addition, living CTCs can also colonize their tumors of origin, in a process that
is call “tumor self‐seeding.” Kim et al. [106] successfully revealed the self‐seeding phenomenon
in breast cancer, colon cancer, and melanoma tumors in mice model, which was predominantly
mediated by CTCs with aggressive features, including those with bone, lung, or brain
metastatic tropism. The cancer‐derived cytokines IL‐6 and IL‐8 acted as CTC attractants and
the markers MMP1/collagenase‐1 and the actin cytoskeleton component fascin‐1 as mediators
of CTC infiltration into mammary tumors. The important findings of tumor self‐seeding
phenomenon could explain the relationships between tumor size, anaplasia, vascularity and
prognosis, and local recurrence seeded by disseminated cells following ostensibly complete
tumor excision.

Sixth, CTCs could represent a merged status of a whole tumor mass, including static and active
parts with expression of specific functional markers [107–110] and could serve as a multifunc‐
tional biomarker [108, 111]. Functional analyses on CTCs might provide the possibility to
identify the biological characteristics of metastatic cancer cells, including the identification of
metastasis‐initiating cells [104].

1.3. CTCs in cancer progression

1.3.1. Cancer migration, invasion, epithelial‐mesenchymal transition (EMT), mesenchymal‐epithelial
transition (MET) and cancer stem cells (CSCs)

As mentioned above, Hansen et al. [65] found that CTCs exist in the 93% blood samples drawn
from surgical fields. That correlated to one of the two common routes of cancer migration:
hematologic and lymphatic spreading. In clinical aspect, tumor migration and invasion means
tumor growth or progression and can be analyzed via the time from disease‐free status to
recurrence or time from baseline to enlargement of tumor size. Early in 1999, Palmieri et al.
have found a significant correlation among clinical stages, tumor progression, and presence
of circulating cancer‐associated antigens in stages I–III melanoma patients [112]. In other
cancer types, investigators widely agreed with the observation that the higher CTCs signals
indicate to higher cancer stage and recurrence rate, suggesting larger number of CTCs might
promote cancer progression [113–117]. However, not only CTC count but also the specific
properties of cancer cells matter. Two of them have been widely reported are epithelial‐
mesenchymal transitions (EMTs) or stem‐like properties of CTCs [118].

In many animal species, EMTs normally occur during critical phases of embryonic develop‐
ment. The formation of mesenchymal cells (nonepithelial) that are loosely embedded in an
extracellular matrix from a primitive epithelium is an important feature of most metazoans
[119]. During this transition, mesenchymal cells acquire a morphology that is appropriate for
migration in an extracellular environment and settlement in areas that are involved in organ
formation, which involves interactions between epithelial and mesenchymal cells. Mesenchy‐
mal cells can also participate in the formation of epithelial organs through mesenchymal‐
epithelial transition (MET) [119]. CTCs may also undergo phenotypic EMT changes, which
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allow them to travel to the site of metastasis formation without getting affected by conventional
treatment [118, 120, 121]. The acquired molecular changes by CTCs undergoing EMT that
facilitates cancer progression and resistance to conventional therapies [122, 123]. EMT markers,
including vimentin, twist, ZEB1, ZEB2, snail, slug, and N‐cadherin in CTCs, primary HCC
tumors and adjacent nontumoral liver tissues were evaluated by Li et al. [123] and the twist
and vimentin expression levels in CTCs could be promising biomarkers for evaluating
metastasis and prognosis in liver cancer patients. Most importantly, CTCs would abandon
their epithelial properties (EpCAM) [88, 124] and escape from CTC capture by positive
selection strategy (will discuss below) and become one of the main downsides of the strategy
of CTC isolation. Several investigators have noticed that phenomenon and suggested that there
is an urgent need for optimizing CTCs detection methods through the inclusion of EMT
markers [120, 125–129]. Deeper understanding of those processes is of fundamental impor‐
tance for the development of new strategies of early cancer detection and effective cancer
treatment approaches that will be translated into clinical practice [122].

Stemness features of CTCs, sometimes termed as circulating cancer stem cells (CSCs), have
also been getting noticed as EMT of CTCs in recent years. The CSC hypothesis claims that a
small subset of cells within a tumor has the ability of both tumor initiation and sustaining
tumor growth [130–132]. These cells with expression of stemness markers are capable of
forming floating spheres in serum‐free medium, a property associated with stem cells and are
able to differentiate into an aberrant cell phenotype constituting tumor heterogeneity [133].
Among all the possible molecular markers of stemness feature, CD133, CD44, ICAM‐1, and
CXCR4 are common used antibodies for labeling the subpopulation from other CTCs and
actually technically available [134–136]. These are not the only markers to identify CSCs and
depend on cancer types. Sun et al. [137] found that stem cell‐like phenotypes (labeled with
CD133 and ABCG2) in EpCAM‐positive CTCs, and a preoperative CTC of more than 2
cells/7.5 ml blood is a novel predictor for tumor recurrence in HCC patients after surgery,
especially in patient subgroups with AFP levels of less than 400 ng/ml or low tumor recurrence
risk. Many other studies in various types of cancer have come across with the similar conclu‐
sions, including breast, colorectal, gastric, liver, and NSCLC, etc. [120, 123, 138–145].

Therefore, the subpopulation of CTCs, CSCs, and CTC with EMT features is probably the one
of the key determinants of future CTC and cancer metastasis investigations.

1.4. The impact of CTCs on multidrug resistance

In 2011, Gradilone et al. reported an interesting study aiming to test the hypothesis that drug‐
resistant CTCs might have predictive value in metastatic breast cancer (MBC) and possibly
retain stem‐like properties [146]. As the study presented, the extraction of mRNA from CTCs
for multiple drug resistance proteins (MRPs) analysis are most commonly used protocol. They
also found the expression status of MRP1 and MRP2 in CTCs was found to correlate to response
to anthracyclines (doxorubicin or epirubicin) [147]. In 2013, Nadal et al. found an interesting
phenomenon that a relative enrichment of cytokeratin CK(+)/CD133(+) CTCs in triple negative
and HER2‐amplified tumors was found. While CK(+)/CTCs decreases after chemotherapy
when analyzing the whole population, CK(+)/CD133(+) CTCs were enriched in posttreatment
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samples in nonluminal BC subtypes. These findings suggest the potential role of CD133 as a
promising marker of chemoresistance in nonluminal BC patients [148]. Similar results were
also reported in recent years and the authors have come across with the same conclusion that
multiple drug resistance profiling (MRPs mainly, sometimes with CD133 [148], ALDH1 [149],
and ERCC1 [150]) of CTCs could predict the responses to given chemotherapies [146, 148, 150–
152].

One direct proof of CTC exhibiting drug resistance comes from a study in 2014. Pavese et al.
observed that CTC and DTC cell lines, established from mice bearing human prostate cancer
orthotopic implants, exhibit increased cellular invasion in vitro, increased metastasis in mice,
and express increased EMT biomarkers. In addition, CTC cell lines are selectively resistant to
growth inhibition by mitoxantrone‐like agents. The findings are important and suggested that
CTC formation is accompanied by phenotypic progression without obligate reversion. Their
increased metastatic potential, selective therapeutic resistance, and differential expression of
potential therapeutic targets provide a rational basis to test further interventions [153].

Therefore, developing an in‐vitro chemosensitivity test on CTCs is not impossible though it
required large‐scale clinical trials to test and validate. Yu et al. applied pharmacogenomic
(PGx) modeling testing on CTCs, while PGx testing was used on cancer tissue to predict the
efficacy of chemotherapeutic agents in preclinical cancer models, and reported the feasibility
in 2014. In the report, clinical benefit was seen for study participants treated with chemother‐
apy regimens predicted to be effective versus chemotherapy regimens predicted to be
ineffective with regard to progression‐free (10.4 months versus 3.6 months; P < 0.0001; HR,
0.14) and overall survival (17.2 months versus 8.3 months; P < 0.0249; HR, 0.29) [151]. In another
study, thymidylate synthase expression in CTCs could possibly serve as a new tool to predict
5‐fluorouracil resistance in metastatic colorectal cancer patients [152]. Other than conventional
imaging studies evaluating two‐dimensional tumor size every 8–12 weeks for routine tumor
assessment during anticancer therapy, CTCs could possibly serve as a rapid responding
biomarker to real‐time change of cancer cells, including the early response or resistance to
given therapeutic drugs [154–156].

2. The strategies for CTC isolation and enumeration

There are hundreds of methods/protocols reported to be able to efficiently detect or isolate
CTCs. In a simple way to discuss here, we have several common strategies of CTC isolation
could be worthy of development in the future. The first one is label‐free isolation strategy,
including size‐based, physical properties‐based, morphology‐based isolation strategy; the
second one is positive selection strategy, including positively identification of cancer‐specific
markers on nucleus or cell surface, or specific DNA mutation(s), mRNA(s) overexpression;
and the third one is negative selection strategy, consisting of depletion of red and white blood
cells by any means. Finally, the fourth one is combination of two or more strategies mentioned
above.
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2.1. Label‐free isolation strategy

Several novel studies using size as a key criterion of CTC identification were reported [157–
160]. Early in 2004, ISET system was used for a well‐designed clinical trial evaluating 44
patients with primary liver cancer and without metastases, 30 patients with chronic active
hepatitis, 39 with liver cirrhosis, and 38 healthy individuals, and all participants were followed
up for a mean period of 1 year. Both the presence (P = 0.01) and number (P = 0.02) of CTCs and
microemboli were significantly associated with a shorter overall survival. Beta‐catenin
mutations could be found in 3 of 60 CTCs which might be suggesting their impact on the
initiation of cancer cells invasion [161]. Similar positive findings by size‐based CTC isolation
were reported in melanoma [162–164], gastric cancer [76, 165], prostate cancer [166, 167], lung
cancer [168–170], pancreatic cancer [103], liver cancer [127], sarcoma [171], and breast cancer
[172]. Separation by physical properties, i.e., gravity, density gradients, using microfluidic
technology [45, 46, 56, 60, 173–186], or microfiltration [53, 172, 187, 188] were also reported to
be able to capture CTCs efficiently.

By means of label‐free isolation, combined molecular analysis could be easily performed after
CTC isolation owing to no chemicals exposure and less procedures done during isolation. For
instance, Zheng et al. [189] reported a novel device designed based on membrane microfilter
device to isolate CTCs and then send them to PCR‐based genomic analysis by performing on‐
membrane electrolysis with embedded electrodes reaching each of the individual 16,000
filtering pores. Immunocytochemistry and FISH assays following label‐free isolation were
reported to be successfully performed directly on the filter system [157, 176, 190, 191].
Interestingly, some investigators compared the isolation efficiency of ISET and CellSearch™
systems [76, 93] and one team concluded that a combination of ISET plus CellSearch™ would
have better performance in CTC detection in NCSCL patients than ISET or CellSearch™ alone
[93].

There are several disadvantages of physical methods should be noticed. First, the isolation
process based on physical properties can cause the deformation and damage of CTCs by filter
pores [192]. Second, larger size cells could not always be cancer cells and the isolated popula‐
tion often mixed up with megakaryocytes, which are very common to see in the circulation of
cancer patients just underwent chemotherapy. Third, small‐size CTCs would be inevitably
missed by this isolation strategy.

2.2. Positive versus negative selection‐based CTC isolation

2.2.1. Positive selection methods

Positive selection strategy is the most commonly used method of CTC isolation in the literature.
CellSearch™ is the most evidenced and the only one device having class III approval from US
FDA since 2004; therefore, hundreds of clinical trials chose to apply the device for CTC testing
for validation [114, 193–204], mainly in patients with breast, colorectal, and prostate cancer.
Other representative positive selection platforms are magnetic‐activated cell sorting system
(MACS) and Isoflux. The main process of positive selection is to label targets cells by anti‐CK
(AE1/AE3) antibody with ferric beads and immunofluorescence dye. The approximate
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sensitivity of detection is 10-7 (CTCs/hematologic cells). Another system, MACS used 50–100
nm‐sized ferric beads. However, lower sensitivity and lower recovery rate of CTCs were
observed. The device was firstly introduced in 1998 [205] and then CTCs obtained by the
system could correlated with breast cancer stages [206] and could correlate with progression‐
free survival in colorectal cancer patients [207]. These systems are all based on immunomag‐
netic beads technology for CTC isolation and have long been limited by relatively low
efficiency of antibody conjugation due to tumor heterogeneity [192]. This limitation further
causes the difficulty of molecular analysis [208]. Fortunately, the technique of single CTC
isolation and analysis has been much more mature in recent years [166, 209, 210]. However,
fewer sampling (CTCs) could greatly contribute to the bias for prediction of target population
behavior (the whole tumors in the body). Another downside of positive selection strategy was
the limitation of EpCAM‐dependent nature. Hyun et al. [124] demonstrated that EMT‐induced
breast cancer cells maintained in prolonged mammosphere culture conditions possess
increased EMT markers and cancer stem cell markers, as well as reduced cell mass and size
by quantitative phase microscopy. In addition, EpCAM expression is dramatically decreased
in these cells. Moreover, CTCs isolated from breast cancer patients using a label‐free micro‐
fluidic flow fractionation device had differing expression patterns of EpCAM, indicating that
affinity approaches reliant on EpCAM expression may underestimate CTC number and
potentially miss critical subpopulations.

In addition to conventional immunomagnetic bead separation methods, density separation
and flow cytometry or cell sorting systems have been postulated to be potential tools of CTC
isolation and identification considering their high sensitivity and purity since 1998 [27]. This
method could be seen as a combination of negative selection strategy and a positive confir‐
mation with surface markers, such as EpCAM or cytokeratins. Later in 2011, leukapheresis
and fluorescence‐activated cell sorting (FACS) elutriation were also reported to be effective
for large volume blood process for CTC isolation with molecular analysis [211]. Recently, many
microscale on‐chip sorting systems were developed considering the high purity of isolation
for CTC culture or tumor related genetic analysis. In 2014, Kim et al. have postulated an on‐
chip multi‐imaging flow cytometry system to obtain morphometric parameters of cell clusters
such as cell number, perimeter, total cross‐sectional area, number of nuclei, and size of clusters
as “imaging biomarkers,” with simultaneous acquisition and analysis of both bright‐field and
fluorescent images at 200 frames per second [212]. Moreover, laser scanning cytometry is also
a novel innovation developed to help identify CTCs [213, 214]. These methods, are mainly
based on flow cytometry and sorting techniques, which could possibly yield an extremely high
purity of CTCs (more than 80%). However, one of the drawbacks of the cytometric systems is
operator‐dependent and multiple quality and internal controls are often required when setting
a criterion of CTC identification. Another downside of conventional sorting systems is cell
damage and decreased viability after sorting process.

Recently, by the advances of nanotechnology, nanoplates [215], nanowires [216], for positively
trapping of CTCs are becoming hot devices with theoretically higher sensitive capturing
efficiency than conventional ones. These techniques are often developed by biomedical
engineers who are good at medicine, biology and engineering; however, the devices seem to
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be still in proof‐on‐concept phase. Hopefully, these new devices would facilitate the
development of easy hands‐on CTC testing and validation in clinical trials in the near future.
In brief, positive selection methods hold the greatest clinical application to date.

2.2.2. Negative selection methods

Negative selection methods are developed on the basis of the disadvantages of positive
selection methods‐losing non‐EpCAM or CK‐expressing CTCs and relatively poor recovery
rate. The principle of negative selection strategy is to remove all the cells other than CTCs as
its first step. Owing to the sequence of isolation has changed, in the negative depletion
processing, the cancer information was preserved as possible, which makes the phenomenon
that the number of CTCs isolated by a negative method would generally (but not always) larger
than those by a positive one. In addition, by the CD45 depletion procedures, CTCs without
expression of epithelial markers could be isolated though further clarification of the clinical
significance of these cell populations is required [217]. The nature of the isolation strategy
increased the sensitivity, recovery rate of CTCs but decrease the specificity with inevitable
“background noises.”

In the developing history of the negative selection methods, Naume et al. [29, 218] have
proposed to use CD45 (a common antigen of leukocytes) coated beads to remove white blood
cells from tumor cells and red blood cells depleted by lysis buffer or density separation
processing for CTC isolation. Based on the concepts, Balasubramanian et al. [219] also
successfully demonstrated positive staining images for cytokeratin‐positive CTC identification
after negative selection processes in 32 cancer blood samples. Among all the negative selection
systems, one of the representative systems is epithelial immunospot (EPISPOT) [220–224]. By
the procedures, CTCs in the blood sample are enriched by anti‐CD45 immunomagnetic beads.
The isolated CTCs are then cultured in tissue culture plates precoated with antibodies which
capture cathepsin D, MUC1, or CK19 protein [225]. After the incubation period, cells are
washed out and the released protein spots are detected by the incubation with a fluorochrome‐
conjugated antibody and counted. Each spot corresponds to one viable CTC. The device
focused on the expression of CK19‐expressing cells, which were found to be detectable in up
to 65 and 70% of colorectal cancer and breast cancer patients, respectively, and correlated with
status of metastasis and poor survival in breast cancer [226, 227]. However, a single sample
processing in EPISPOT system requires three days for analysis, which prohibits of its clinical
use considering the time‐consuming problem.

Nevertheless, the background cells in a negatively isolated sample are often mixed with
numerous white blood cells and red blood cells if the process is not well‐performed, thus
prohibit the following molecular analyses. For this disadvantages of conventional negative
selection method, a better depletion process for red and white blood cells depletion are
warranted. Another device developed by Wu et al. [228], CanPatrol™ CTC enrichment, they
reported a recovery rate more than 80%. Interestingly, FISH assay could be successfully
performed for ALK gene rearrangement from CTC samples; however, further validation in
prospective clinical trials was still required.
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Similarly, Lin et al. [229–231] postulated a protocol and a device (PowerMag) to perform red
blood cell lysis and immunomagnetic beads conjugation for CD45‐positve cells and identify
EpCAM‐positive cells (defined as CTCs) from the blood samples. The protocol was proven to
effectively isolate CTCs from patients with colorectal, head and neck cancer and thyroid cancer.
Furthermore, the CTCs isolated by this negative selection method are further proven to be
alive and are capable of being cultivated for at least several weeks [229].

2.3. Other methodologies

In addition to pure positive and negative or label‐free methods, some investigators proposed
their prototypes for CTC isolation. For example, Qin et al. [50] performed CTC isolation by the
size and deformability based separation from castrate resistant prostate cancer patients using
resettable cell traps. Compared with CellSearch™, the method could capture more than 10
times of CTCs for subsequent analyses. Basically, it is a label‐free method and could be rapidly
processed.

Synchrotron X‐ray microimaging techniques, high‐resolution images of individual flowing
tumor cells, and nanotechnology were also proposed to help identification of CTCs. Positively
charged gold nanoparticles (AuNPs) which were inappropriate for incorporation into human
red blood cells were selectively incorporated into tumor cells to enhance the image contrast,
which was reported by Jung et al. [232]. This new technology for in vivo imaging of CTCs
would contribute to improve cancer diagnosis and cancer therapy prognosis. Moreover, new
chemical materials using a refined carbon‐coated pure iron‐based immunomagnetic nanopar‐
ticle‐enriched assay, and nested‐RT‐PCR was also reported to successfully isolate CTCs
efficiently.

Furthermore, not only for general population of CTCs, Hosseini et al. [233] postulated an
integrated nano‐electromechanical chip (NELMEC) to isolate CTCs and CTCs with EMT
features from white blood cells. These new technologies hold great promising on automation,
which might greatly ameliorate current problems in CTC field.

2.3.1. Comparison of different strategies

In comparison between positive selection strategy and negative selection methods, the former
is most commonly used CTC isolation platform and widely validated by prospective clinical
trials. Several articles of meta‐analysis confirmed the clinical impacts of CTCs obtained by
CellSearch™ [107, 234–237]. However, it is relatively costly and device‐dependent.
Interestingly, some investigators compared the ISET and CellSearch™ systems for their
performance on CTC isolation [76, 93] and one team concluded that a combination of ISET plus
CellSearch™ would have better performance in CTC detection in NCSCL patients than ISET
or CellSearch™ alone [93]. That intriguing conclusion supports the combination method in the
following eras; however, a long processing time of combined platforms also causes cell damage
or loss which is a problem the combined systems should be noticed.

In comparison between positive selection method and label‐free strategy, Konigsberg et al.
[238] compared the efficiency of CTC isolation of MACS (positive selection system) with
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OncoQuick (label‐free system) and found EpCAM‐negative CTCs cannot be detected by
EpCAM‐dependent enrichment methods. EpCAM‐independent enrichment technologies
seem to be superior to detect the entire CTC population.

Enrichment
strategy

System Detection markers Pros Cons

Positive
selection

CellSearch EpCAM, CKs, CD45,
DAPI

FDA cleared; reliable;
reproducible; visual
identification; clinical
relevance in metastatic
breast, colorectal and
prostate cancer; semi‐
automated processing;
capable of detecting smaller
CTCs; standardized kits

EpCAM‐positivity dependent,
expensive; cells losing
EpCAM could not be
detected; limited number of
markers

CTC chip EpCAM, CKs, CD45,
DAPI

High detection rate; visual
identification

EpCAM‐positivity dependent,
cells losing EpCAM could not
be detected; require clinical
trial validation

Ariol system EpCAM, CKs, CD45,
DAPI

High detection rate (versus
CellSearch)

EpCAM‐positivity dependent

Laser‐scanning cytometer Automated microscopic
procedure; high detection
rate

EpCAM‐positivity dependent

Adna test EpCAM, MUC1,
mucin‐1, HER2

High sensitivity; rapid
processing

No morphology confirmation;
EpCAM and MUC1‐positivity
dependent

Negative
selection

EPISPOT
assay

CD45, CK19, mucin‐1,
cathepsin‐D

Can detect viable CTCs Lack of enough clinical trials
for validation

PowerMag CD45 depletion for 4
repeated times, EpCAM,
Hoechst

Clinically validated in
several cancer types; viable
CTCs

Background noise, subjective
judgment of CTCs, labor‐
intensive; limited markers can
be used for a sample

Negative +
flow
cytometry,
FACS

CD45, EpCAM, CKs,
CD133, CD44, Syto62

High sensitivity for multiple
markers, high purity of
isolation

Controls, cell aggregations,
laser compensation, operator‐
dependent

Label‐free
(size)

CTC‐filtering
devices;

Size, CKs, Her2/neu,
ALDH1, CD44, CD24

Rapid processing;
multiplexed imaging and
genetic analysis

Limited by size of CTCs
variation

ISET Size, CKs, EGFR, VE‐
cadherin, ki67

Rapid processing; non‐
antigen dependent; able to
isolate CTM; cell illustrated
by IHC staining, able to

Size‐dependent (may miss
cells less than 8 μm); require
more clinical validation trials;
manual processing
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Enrichment
strategy

System Detection markers Pros Cons

perform FISH, DNA/RNA
analysis

DEP force Size, surface electricity,
viability

Rapid processing, can
isolate single cell very
precisely

Low throughput; time‐
consuming

ODEP force Size, surface electricity,
viability

Rapid processing, can
isolate single cell very
precisely; can differ viable
from dead cells

Relatively low throughput

Tracheal
carina‐
inspired
bifurcated
(TRAB)
microfilter
system

Size High recovery rate,
acceptable purity; viable
isolation

Require clinical trial
validation

Label‐free
(gradient)

Ficoll + RT‐PCR CK‐19, HER2, h‐MAM,
CEA, maspin, GABA A,
B726P

High sensitivity No morphology confirmation;
not really capture CTCs

Ficoll + RT
‐qPCR

CK‐19, BST1, PTPRC High sensitivity;
quantification

No morphology confirmation;
not really capture CTCs

OncoQuick CCNE2, DKFZp762E1312,
EMP2

High sensitivity;
quantification

No morphology confirmation;
not really capture CTCs

MAL2, PPIC and
SLC6A8, hMAM, and
EpCAM

High sensitivity;
quantification

No morphology confirmation;
not really capture CTCs

Table 1. Overview of analytical methodologies for the detection and molecular characterization of CTCs.

Another report addressed the differences between positive and label‐free method was reported
by Qin et al. [50]. They designed a micropore filtration platform (using resettable cell traps) to
perform CTC isolation by the characteristic of CTCs (size and deformability) from patients
with castrate resistant prostate cancer. Compared with CellSearch™, the method could capture
CTCs 10 times more than CellSearch™ can achieve. The method was also proven to be able to
perform subsequent molecular analyses.

Interestingly, some investigators compared the isolation efficiency of ISET and CellSearch™
systems [76, 93] and one team concluded that a combination of ISET plus CellSearch™ would
have better performance in CTC detection in NCSCL patients than ISET or CellSearch™ alone
[93].

One question which is often and needed to be asked is that how to choose a best platform for
upcoming studies and trials. Before answering the question, the readers/investigators should
fully understand the differences, pros and cons among these methods. Then you should choose
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a platform wisely according to future directions of investigations (i.e., clinical trial, CTC
culture, patient‐derived xerograft model from CTCs) (i.e., genetic analysis, single cell, physical
properties) and the requirements of the study materials (i.e., cells with high purity, with high
cell numbers, viability, expression with specific marker, etc.). Table 1 demonstrated the brief
comparison among novel platforms. In our opinion, for genetic analysis and future personal‐
ized medicine, we need a large number of CTCs captured for cultivate, whole genome or
transcriptome sequencing and avoid sampling errors by hyper‐selection of few cells to
represent the whole populations of cancer. Therefore, negative selection as first step is
currently most suitable strategy among all the methods.

3. The main elements in negative selection plus microfluidic CTCs
isolation

3.1. Immunomagnetic beads‐based methods

The method is in fact derived from conventional cytological diagnostics for bone marrow and
hematologic malignancies. However, when investigators attempted to apply this method to
CTC filed, they faced a big problem—the CTCs were so rare to identify in thousands of blood
smear slides. Therefore, an alternative method was to exam samples after series of centrifu‐
gation, density separation (i.e., in buffy coat or peripheral blood mononuclear cells, PBMC
layer), and red blood cells removal. The vast majority of the following detection techniques of
CTCs in these prepared samples has long been based on sensitive immunocytochemical (ICC)
analysis using antibodies against different epithelial antigens [29, 31, 239–242]. Whether
positive selection or negative selection procedures using immunomagnetic beads before ICC
analysis are both helpful and critical for efficient CTC identification [29, 31]. Zigeuner et al. [31]
found that immunomagnetic cell enrichment significantly improves the sensitivity of detection
of CTCs cells added to mononuclear cells compared to immunocytochemistry method.

Although the exact procedures of immunomagnetic beads separation protocol was variable
with the beads and antibiotics but they have general principles and we would take the
procedures of Dynabeads as an example (modified from Naume et al.’s work in 1997 [29]). The
main procedures are preparation of beads, incubation with samples and beads, using a
magnetic field or column (depends on chosen systems) for target cells isolation by washing
out other cells which did not conjugated with beads. If the target cells are those we do not want
to analyze, the procedure is defined to be a negative selection. Conversely, if the cells are the
targets in the study, it is a positive selection.

3.1.1. Preparation of the magnetic beads

Rat antimouse (RAM) IgGl‐coated M280 Dynabeads coupled to BerEP4 mAb (Product No.
112.07), M450 Dynabeads coated with an anti‐CD45 mAb that recognizes all isoforms of CD45
(Product No. 111.19), and Neodynium Magnetic Particle Concentrators were sup plied by
Dynal (Oslo, Norway). Coating of the M280 Dynabeads with antiepithelial mAb was per‐
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formed according to the manufacturer’s instructions. Briefly, the RAM M280 Dynabeads were
incubated with either BerEP4, 9189, or MOC31 mAbs at a concentration of 1/u.g/107 beads for
30 min at 4°C under gentle rotation, followed by three magnet washes in PBS/0.1% HSA and
then stored at 4°C. Before use, the Dynabeads were washed once with separation medium.

3.1.2. Positive immunomagnetic separation technique

A total of 1 × 107 peripheral blood mononuclear cells (PBMNC) were resuspended in cold
separation medium to a concentration of 2 ×107 MNC/ml (0.5 ml volume) and incubated with
RAM IgGl M280 Dynabeads coated with either BerEP4 317G5, or MOC31 mAb. The bead
concentration varied from 2.5 to 40 × 106 b/ml, as described in individual experiments. The
bead/cell suspension was incubated under gentle rotation for 30 min at 4°C. The sample was
then diluted to 3 ml and placed against a magnet for 7 min to recover the rosetted cells, followed
by two additional washes as follows. The supernatant was removed, and the rosetted cells
were resuspended in 3 ml separation medium, followed by treatment with the magnet (7 min).
To facilitate ICC TC detection, the positive LMS product was finally resuspended to contain
5–7 × 106 beads/ml, and 0.5 ml aliquots were centrifuged onto each cytospin slide for further
immunocytochemical analysis.

3.1.3. Negative immunomagnetic separation technique

A total of 1 × 107 peripheral blood mononuclear cells (PBMNC) were resuspended in cold
separation medium to a concentration of 2 × 107 MNC/ml (0.5 ml volume) and incubated with
anti‐CD45‐conjugated M450 Dynabeads at a bead/cell ratio of 2.5:1, 5:1, or 10:1. The bead/cell
suspension was incubated under gentle rotation for 45 min. The solution was then diluted to
about 30 ml, and the magnet was applied for 5 min, with initial rotation of the tubes onto the
magnet to reduce trapping of tumor cells. The supernatant was collected and centrifuged at
450g for 10 min, counted, and resuspended in 10% FBS in PBS to 1 × 106 cells/ml. Then, cytospins
containing 5 × 105 cells were prepared. All the slides were air‐dried overnight and stained by
immunocytochemistry.

3.2. Microfluidic‐based methods for the high purity CTC isolation

In novel era of huge advances of microfluidic devices as mentioned in the section of “Label‐
free isolation strategy” [45, 46, 56, 60, 173–186]. In fact, the vast majority of microfluidic devices
were designed based on EpCAM‐ or CK‐identifying mechanism, which is positive selection
method. The CTC‐Chip [25, 243], and the herringbone chip [244, 245] have been proven
effective to isolate CTCs with both high CTC purity (50–62%) [25, 245] and high recovery rate
(90–95%) [244, 245]. There are several microfluidic devices designed to use positive selection
strategy for proof‐of‐concept purpose [34, 57, 59, 124, 184, 210, 246–269] and for specific cancer
in clinical trials, (e.g., breast [270, 271], pancreas [272, 273], ovarian [274], prostate [275],
esophageal cancer [270], gastric [271], colorectal cancer [276], cancer of unknown primary
[277]) and for mutational analysis [278]. Moreover, combined preparation using positive,
negative, or label‐free selection methods with microfluidic devices for better performance is
also feasible and have been reported [93].
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However, there are several drawbacks or limitations of microfluidic devices reported [267].
First of all, reports in literature, however, have revealed that EpCAM or CKs are not expressed
in all cancer cells (e.g., sarcoma, melanoma, or CTCs bearing EMT), and therefore some kinds
of CTCs cannot be targeted via the positive selection‐based microfluidic device [279]. Secondly,
several microfluidic chips could identify with microtubes or micropoles with or without
EpCAM conjugation. It seems to be difficult to release captured CTCs from the chips. The
efficiency of identification will not be equal to recovered cells for further molecular or genetic
analysis. Thirdly, almost more than 80% of microfluidic devices are still in proof‐of‐concepts
phase and comes from a single team or laboratory. It might be because that the advances of
new innovation always come up faster than validation reports. However, we do need well‐
designed and well‐conducted prospective clinical studies to critically elucidate the clinical
impacts of the microfluidic devices. The investigators could consider to learn from the
developing history of CellSearch™ system.

3.3. Perspective for future of CTC technology: combinations of several methods

Our perspectives for future CTC isolation is mainly combined methodologies instead of
conventional ones based on a single isolation strategy.

Yamamoto et al. [49] displayed a combination of size‐based filtration plus a magnetic column
method for CTC isolation. The combined use of the column and filter decreased the required
time for the spiked cancer cell capture, and the recovery rate of the spiked cancer cells from
blood was significantly higher using the combination process (80.7%) than that using the filter
alone (64.7%). Moreover, the recovered CTCs are more abundant by the combination process.
Another combination was ISET and CellSearch™ systems [76, 93] and the combination had
better performance in CTC detection in non‐small cell lung cancer (NCSCL) patients than ISET
or CellSearch™ alone [93]. Furthermore, density separation plus flow cytometry or cell sorting
systems have been postulated to be potential tools of CTC isolation and identification consid‐
ering their high sensitivity and purity since 1998 [27]. This method could be seen as a combi‐
nation of negative selection strategy and a positive confirmation with surface markers, such
as EpCAM or cytokeratins. Later in 2011, leukapheresis plus fluorescence‐activated cell sorting
(FACS) elutriation were also reported to be effective for large volume blood process for CTC
isolation with molecular analysis [211]. These studies illustrated the possibility and better
efficacy the combination can achieve, therefore, in our opinion, to find a suitable combination
of CTC isolation protocols considering the balance of efficiency, time, sample and costs is very
important in the future CTC field.

Intriguingly, several liquid biopsies, as aforementioned, could be combined to be tested in a
single sample and at the same time. To realize the goals and minimize the blood sample
required, Chudziak et al. [248] reported a novel device, Parsortix system, could negatively
select CTCs and perform cfDNA analysis simultaneously. The system recovered more CTCs
than CellSearch™ system in the comparison.
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4. The applications of CTC testing in clinical cancer researches

As aforementioned, CTC testing are designed to help the diagnosis, early detection and
monitoring for response and disease status of cancer patients. Clinical trials to evaluate and
validate are inevitable during the developing of any CTC testing. Here, we introduce several
important clinical validated studies for the clinical impacts of CTC testing in different cancer
types.

4.1. Breast cancer

One meta‐analysis reported by Liao et al. [107], 14 studies with 2336 patients were enrolled
and found that presence of CTCs in peripheral blood was significantly associated with the size
of tumor [OR 0.68, 95% confidence interval (CI) (0.54, 0.87), P = 0.002], tumor grade [OR 0.71,
95% CI (0.55, 0.91), P = 0.006], estrogen receptor (ER) status [OR 0.72, 95% CI (0.57, 0.91), P =
0.007], and progesterone receptor (PR) of tumor status [OR 0.78, 95% CI (0.61, 0.98), P = 0.04].
In addition, the presence of CTCs is highly correlated with tumor size, tumor grade, ER, and
PR status in patients with breast cancer. Although the analysis did not consider the method of
isolation which might be one of the downsides and biases of the analysis, the results suggested
a trend of physical (tumor size), functional (tumor grade) and status of drugable targets (ER,
PR status), which are very useful clinically.

In Zhao et al. [234] performed a meta‐analysis collecting 24 trials with 4013 breast cancer
patients and 1333 controls. Poor overall survival was found to be associated with the positive
CTC detection (HR = 3.00 [95% CI 2.29–3.94], P < 0.0001) and recurrence‐free survival as well
(HR = 2.67 [95% CI 2.09–3.42], P < 0.0001). CTC‐positive breast cancers were significantly
associated with high histological grade (HR = 1.21 [95% CI 1.09–1.35], P < 0.0001), tumor size
(>2 cm) (HR = 1.12 [95% CI 1.02–1.22], P = 0.01), and nodal status (≥1) (HR = 1.10 [95% CI 1.00–
1.21], P = 0.037). The studies, different to that of Liao et al. [107], mentioned about prognostic
values of CTC testing. However, the two reports did not mention about the isolation methods
and might neglect the biases from CTC number is highly correlated to the method of isolation.

For the purpose of technical standardization, Janni et al. [235] conducted a pooled analysis of
individual data from 3173 patients with nonmetastatic (stages I–III) breast cancer from five
breast cancer institutions. The prevalence and numbers of CTCs were assessed at the time of
primary diagnosis with the FDA‐cleared CellSearch System. Results confirmed that ≥1 CTC(s)
were detected in 20.2% of the patients and CTC‐positive patients had larger tumors, increased
lymph node involvement, and a higher histologic tumor grade than did CTC‐negative patients
(all P < 0.002). Multivariate Cox regressions confirmed that the presence of CTCs was an
independent prognostic factor for disease‐free survival [HR, 1.82; 95% confidence interval (CI),
1.47–2.26], distant disease‐free survival (HR, 1.89; 95% CI, 1.49–2.40), breast cancer‐specific
survival (HR, 2.04; 95% CI, 1.52–2.75), and overall survival (HR, 1.97; 95% CI, 1.51–2.59). The
study addressed the clinical impacts of CellSearch™ system in breast cancer patients and it
has confirmed the positive results from a large pooled database.
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For a subset in breast cancers, Rack et al. [91] addressed the role of CTCs isolated by Cell‐
Search™ in a prospective trial enrolling 2026 early average‐to‐high risk breast cancer patients
and found an independent prognostic relevance of CTCs both before and after adjuvant
chemotherapy. The study successfully proved the prognostic role of CTCs in adjuvant settings.
The next direction of future studies should be designed to answer the question that whether
if extended adjuvant therapy is needed and whether if the extended therapy did reduce the
risk of recurrence or not.

For the role of CTCs in a novel and specific therapy in breast cancer, Paoletti et al. [280] reported
that heterogeneous mechanisms of resistance to fulvestrant, including estrogen receptor alpha
gene (ESR1) mutation. CTC enumeration, phenotyping, and genotyping might identify
patients who would benefit from fulvestrant dose escalation versus switching to alternative
therapies. The CTCs could possibly help find the resistance genes during the therapy and warn
the clinicians to change therapy in time before the tumor already gets progression.

In triple negative breast cancer (TNBC) who lacks of drugable targets (hormone therapy) in
breast cancer, Hall et al. (2015) enrolled 44 TNBC patients using CellSearch™ for CTC testing
and found that ≥1 CTC in each sample was identified in 30% of patients completing neoadju‐
vant chemotherapy (NACT). Multivariate analysis demonstrated that detection of ≥1 CTC
predicted decreased RFS (log‐rank P = 0.03, HR 5.25, 95% CI 1.34–20.56) and OS (log‐rank P =
0.03, HR 7.04, 95% CI 1.26–39.35). The results suggested a modification of clinical management
for TNBC patients with positive CTC detection after NACT, including extension of NACT or
adding another anti‐cancer therapy before tumor recurs.

4.2. Lung cancer

In a meta‐analysis reported in 2013, pooled results from a total of 20 studies, comprising 1576
nonsmall cell lung cancer (NSCLC) patients showed that CTCs were associated with lymph
node metastasis (OR = 2.06; 95% CI: 1.18–3.62; Z = 2.20; P = 0.027) and tumor stage (OR = 1.95;
95% CI: 1.08–3.54; Z = 2.53; P = 0.011). CTCs were significantly associated with shorter overall
survival (relative risk [RR] = 2.19; 95% CI: 1.53–3.12; Z = 4.32; P < 0.0001) and progression‐free/
disease‐free survival (RR = 2.14; 95% CI: 1.36–3.38; Z = 3.28; P < 0.0001) [281]. Another study
reported the ability to recurrence prediction after curative surgery is positive [282].

For small cell lung cancer, a relatively aggressive subtype with poor prognosis population, a
total of seven papers covering 440 SCLC patients were combined in the final analysis. The
meta‐analysis revealed that CTCs were significantly associated with shorter overall survival
(HR = 1.9; 95% CI: 1.19–3.04; Z = 2.67; P < 0.0001) and progression‐free survival (HR = 2.6; 95%
CI: 1.9–3.54; Z = 6.04; P < 0.0001) [283].

Interestingly, in a molecular era nowadays, cancer therapy often relies on genetic or molecular
information from cancer tissues, CTCs as well. Das et al. [105] checked the status of ERCC1
expression on captured and found that low expression of ERCC1 on CTCs correlates with
progression‐free survival (PFS) in patients with metastatic NSCLC receiving platinum‐based
therapy. ERCC1 expression was conventionally checked on NSCLC cancer tissue to predict
the response to platinum therapy, which has been the first line standard chemotherapy in
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patients without active EGFR mutation responding to tyrosine kinase inhibitors (TKIs). The
impacts of the study suggested that analysis of ERCC1 expression on CTCs in lung cancer
patients could predict the chemotherapy responses. It is a predictive role could possible direct
therapy in the future if the findings were confirmed in another large‐scale phase III clinical
trials. In addition. Yanagita et al. [284] evaluated CTCs and cfDNA in EGFR‐mutant NSCLC
patients treated with erlotinib until progression. Among the enrolled 60 patients, rebiopsy was
performed in 35/44 patients (80%), with paired CTC/cfDNA analysis in 41/44 samples at
baseline and 36/44 samples at progression. T790M was identified in 23/35 (66%) of tissue
biopsies and 9/39 (23%) of cfDNA samples. At diagnosis, high levels of cfDNA but not high
levels of CTCs correlated with progression‐free survival. Therefore, cfDNA and CTCs are
complementary, noninvasive assays for evaluation of acquired resistance to first‐line EGFR
TKIs. Recently, ALK rearrangement on CTCs are successfully performed and compared with
cancer tissues [51, 285]. Chromosome instability and ROS‐1 rearrangement on CTCs were also
proved to be successful [51]. Immune cells analysis, tumor‐associated macrophages (TAMs)
accompanied with CTCs analysis were also proven to be possible and CTCs are competent to
specifically manipulate TAMs to increase cancer invasiveness, angiogenesis, immunosup‐
pression and possibly lipid catabolism in lung cancer patients [286]. These studies pointed to
the driven mutation detection and would directly benefit to NSCLC patients under targeted
therapies.

4.3. Gastrointestinal tract cancer

In 2014, a meta‐analysis comprised 26 studies with peripheral blood samples of 1950 cases for
final analysis. The pooled results showed that gastric cancer (GC) patients with detectable
CTCs (including circulating miRNAs) had a tendency to experience shortened RFS (HR = 2.91,
95% CI [1.84–4.61], I2 = 52.18%). As for patient deaths, we found a similar association of CTC
(including circulating miRNAs) presence with worse OS (HR = 1.78, 95% CI [1.49–2.12], I2 =
30.71%, n = 30). Additionally, subgroup analyses indicated strong prognostic powers of CTCs,
irrespective of geographical, methodological, detection time and sample size differences of the
studies [287]. In addition, the role of EMT status on CTCs correlates with poor treatment
outcomes was also revealed. CTCs expressing CD44 were also found to be prognostic and
indicated to malignant behaviors of gastric cancer [288].

For pancreatic cancer, a prospective study addressing the role of CTCs, CTMs in 63 pancreatic
ductal adenocarcinoma (PDAC) patients before treatment using anti‐EpCAM (epithelial cell
adhesion molecule)‐conjugated supported lipid bilayer‐coated microfluidic chips. CTM was
an independent prognostic factor of overall survival (OS) and progression free survival (PFS).
Patients were stratified into unfavorable and favorable CTM groups on the basis of CTM more
or less than 30 per 2 ml blood, respectively. Patients with baseline unfavorable CTM, compared
with patients with favorable CTM, had shorter PFS (2.7 versus 12.1 months; P < 0.0001) and
OS (6.4 versus 19.8 months; P < 0.0001). Differences persisted if we stratified patients into early
and advanced diseases. The number of CTM before treatment was an independent predictor
of PFS and OS after adjustment for clinically significant factors. Therefore, in conclusion, the
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number of CTM, instead of CTCs, before treatment is an independent predictor of PFS and OS
in patients with PDAC [272].

In molecular analysis to predict treatment response, Abdallah et al. [152] found that thymi‐
dylate synthase expression in circulating tumor cells can be useful tool as a 5‐FU resistance
predictor biomarker in patients with colorectal cancer while other studies elucidate the
prognostic and predictive roles of CTCs [198, 289–291]. Recently, KRAS and BRAF were
successfully detected on CTCs by high‐resolution melt (HRM) and allele‐specific PCR (ASPCR)
and KRAS‐codon 12/13‐ and BRAF‐codon 600‐specific assays. Comparing tumor tissues and
CTCs mutation status using HRM, Mohamed Suhaimi et al. [292] reported that a 84.1%
concordance in KRAS genotype (P = 0.000129) and a 90.9% (P = 0.174) concordance in BRAF
genotype. Another report utilized ISET system plus PCR for KRAS codons 12 and 13 mutation
with a 71% concordance between cancer tissue and CTCs from colorectal cancer patients [293].
In gastrointestinal stroma tumor, Li et al. [294] conducted a trial to elucidate the role of CTCs
expressing ANO1(DOG1) in GIST. ANO1s were more frequently detected in unresectable
patients. Tumor size, mitotic count, and risk level were associated with ANO1 detection in
resectable GIST patients. The presence of ANO1 significantly correlated with poor disease‐free
survival (15.3 versus 19.6 months, P = 0.038). Most patients turned ANO1‐negative after
surgery and inversely, all 21 patients with recurrence turned ANO1‐positive with high ANO1
expression levels. Moreover, in the neoadjuvant setting, decline of ANO1 expression level
correlated with the response of imatinib. In the near future, these results would possibly
promote the genetic analysis on mutation‐driven cancer therapies although they have not
become routine screen tools in CRC patients to date.

4.4. Head and neck cancer

Grobe et al. [92] used CellSearch™ for CTC isolation in 80 oral cavity cancer patients and found
that 12.5% patients harbored CTCs in peripheral blood, whereas in 20.0% patients DTCs in
bone marrow could be detected. Significant correlations could be found for CTCs and tumor
size (P = 0.04), nodal status and DTCs (P = 0.02), and distant metastasis with CTCs (P = 0.004)
and DTCs (P = 0.005). Univariate and multivariate analyses revealed that CTCs and DTCs were
significant and independent predictors of recurrence‐free survival (P < 0.001) as well as in other
findings in HNSCC, including the ability of prediction 6‐month death [231]. In 2015, Oliveira‐
Costa et al. reported that immunohistochemistry was performed in cancer tissues and in CTCs
by immunofluorescence and Nanostring. Correlation was shown between PD‐L1 and tumor
size and lymph node metastasis, HOXB9 and tumor size, BLNK and perineural invasion, and
between ZNF813 and perineural invasion. PD‐L1 positivity was an independent prognostic
factor in this cohort (P = 0.044, HH = 0.426) in OSCC patients [295]. The results could possibly
apply to current immune‐oncology studies.

Wu et al. [296] reported a meta‐analysis conducted a computerized retrieval of literatures.
Twenty‐two retrieved studies were eligible for systematic review, of which nine conformed
for the diagnostic test meta‐analysis and five for the prognostic analysis. Subgroup analysis
showed 24.6% pooled sensitivity and 100% pooled specificity of detections by using positive
selection strategy, which moreover presented low heterogeneity. The presence of CTC was
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significantly associated with shorter disease free survival (DFS, HR 4.62, 95% CI 2.51–8.52).
The presence of CTC indicates a worse DFS.

4.5. Liver cancer

Early in 2004, Vona et al. have reported that the presence (P = 0.01) and number (P = 0.02) of
CTCs and microemboli (CTMs) were significantly associated with a shorter survival [161]. Fan
et al. [297] reported a meta‐analysis consisting of 23 trials and found that CTC positivity was
significantly associated with RFS (HR 3.03, 95% CI: [1.89–4.86]; P < 0.00001) and overall survival
(OS) (HR 2.45, 95% CI: [1.73–3.48]; P < 0.00001). CTC positivity were also significantly associ‐
ated with TNM Stage (RR 1.30, 95% CI: [1.02–1.65]; P = 0.03), Tumor size (RR 1.36, 95% CI:
[1.09–1.69]; P = 0.006), Vascular invasion (RR 1.99, 95% CI: [1.43–2.77]; P < 0.0001), Portal vein
tumor thrombus (RR 1.73, 95% CI: [1.42–2.11]; P = 0.0001), Serum alpha‐fetoprotein (AFP) level
(RR 2.05; P = 0.01) [297]. Sun et al. found that Stem cell‐like phenotypes are observed in EpCAM
+ CTCs, and a preoperative CTCs of ≥2 is a novel predictor for tumor recurrence in hepatocel‐
lular carcinoma (HCC) patients after surgery, especially in patient subgroups with AFP levels
of ≤400 ng/ml or low tumor recurrence risk. EpCAM+ CTCs could serve as a real‐time
parameter for monitoring treatment response and a therapeutic target in HCC recurrence
[137]. The prognostic value of overall survival of CTCs in HCC patients has been also revealed
[298].

4.6. Genitourinary tract cancer

Rink et al. (2012) found that using CellSearch™, CTC were detected in 23 of 100 patients (23%)
with nonmetastatic urothelial carcinoma of urinary bladder. CTC‐positive patients had
significantly higher risks of disease recurrence and cancer‐specific and overall mortality (P
values ≤ 0.001). After adjusting for effects of standard clinicopathologic features, CTC posi‐
tivity remained an independent predictor for all end points (hazard ratios: 4.6, 5.2, and 3.5,
respectively; P values ≤ 0.003). HER2 positivity was found in 3 of 22 patients (14%). There was
concordance between CTC, primary tumors, and lymph node metastases in all CTC‐positive
cases (100%).

4.7. Skin cancer and melanoma

Conventionally, melanoma cells lack of cytokeratin or EpCAM expression and CTCs by
definition are very difficult to identify. However, investigators broke through the strait by
combination with CTCs plus cfDNA. Salvianti et al. [299] enrolled 84 melanoma patients and
68 healthy controls for CTC and cell‐free DNA (cfDNA) testing to assess the diagnostic
performance of a tumor‐related methylated cfDNA marker in melanoma patients and to
compare this parameter with the presence of CTCs. The percentage of cases with methylated
RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in
situ, invasive and metastatic) than in healthy subjects (P < 0.001). The concentration of
RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles
was significantly higher in melanoma patients than in controls. When the CTCs plus RASSF1A
cfDNA are jointly considered, a higher sensitivity of the detection of positive cases in invasive
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and metastatic melanomas could be obtained. A similar finding was obtained to suggest
combine cfDNA (GNAQ/GNA11 mutations) and CTCs to identify uveal melanoma patients
with poor prognosis [300]. In another reports, a phase III trial of adjuvant immunotherapy
after complete resection of stage IV melanoma, quantitative real‐time reverse‐transcriptase
polymerase chain reaction (qPCR) for expression of CTC‐specific MART‐1, MAGE‐A3, and
PAX3 mRNA biomarkers were found to be not associated with known prognostic factors or
treatment arm. In multivariate analysis, pretreatment CTC (>0 versus 0 biomarker) status was
significantly associated with disease‐free survival (DFS; HR 1.64, P = 0.002) and overall survival
(OS; HR 1.53, P = 0.028). Serial CTC (>0 versus 0 biomarker) status was also significantly
associated with DFS (HR 1.91, P = 0.02) and OS (HR 2.57, P = 0.012) [301]. The report suggested
CTCT could be a new risk factor other than any conventional known factors, which might
change the staging systems if the evidence gets solid and validated.

4.8. Other cancers

For ovarian cancer, Romero‐Laorden et al. [302] performed a meta‐analysis enrolling 14
studies. Results showed the presence of CTCs and DTCs is associated with adverse clinicopa‐
thological characteristics and poor clinical outcomes in ovarian cancer patients. They noticed
that different CTC number obtained by different devices could not be compared. Using size‐
based isolation strategy (MetaCell®) in 118 ovarian cancer patients, CTCs might have add‐on
values on current staging system and the cells could be cultivated after isolation [303, 304].
Furthermore, in another meta‐analysis, eight studies of 1184 ovarian cancer patients were
included in the final analysis. In the PB group, it showed that patients with positive CTCs had
significantly shorter overall survival (OS) and disease‐free survival (DFS) than patients with
negative CTCs (HR, 2.09; CI, 1.13–3.88 and HR, 1.72; CI, 1.32–2.25, respectively). The same
result was shown with DTCs in the BM group (HR, 1.61; CI, 1.27–2.04 and HR, 1.44; CI, 1.15–
1.80, respectively) [305].

For carcinoma of unknown primary (CUP), Matthew et al. [306] used a real‐time, single‐cell
multiplex immunophenotyping of CTCs to inform diagnosis of tissue of origin in CUP patients.
CellSearch™ plus multiplexed Q‐dot or DyLight conjugated antibodies were used for cyto‐
keratin 7 (CK7), cytokeratin 20 (CK20), thyroid transcription factor 1 (TTF‐1), estrogen receptor
(ER), or prostate‐specific antigen (PSA) expression. The feasibility of staining multiple markers
in CTCs presented in this work suggested CTCs could possibly have a non‐inferior role as that
of cancer tissues in diagnostics.

5. Unanswered questions in the field of CTCs, technically and clinically

The unanswered question is that the optimal protocol or device has not been found or
validated. Many investigators have clearly realized that the number of CTCs cannot easily
compare with that counted by another system, but some are not. Recently, Fina et al. [307]
compared two CTC isolation methods in a clinical trial. AdnaTest EMT‐1/ and EMT‐2/Stem
CellSelect/Detect kits, and ScreenCell Cyto devices were both performed for all samples.
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Higher CTC detection rates were obtained with the AdnaTest approach when using for CTC‐
enrichment antibodies against ERBB2 and EGFR in addition to MUC1 and the classical
epithelial surface marker EPCAM (13% versus 48%). When the physical properties of tumor
cells were exploited, CTCs were detected at higher percentages than with positive‐selection‐
based methods. The results supported that different approaches for CTC detection probably
identify distinct tumor cell subpopulations. Technical standardization before clinical validity
would be the most urgent issue we have to solve.

6. Concluding remarks

We suggest the investigators to combine different isolation methods to achieve the most
optimal performance of CTC isolation and clinical trials for solid validation. The cooperation
among medical oncologists and biomedical engineers are critically important for the future
advances in CTC field. Genetic or molecular analysis, such as PCR for epigenetics or mutation
of specific gene(s) or next‐generation sequencing for whole genome, whole exon, or chosen
targeted genes will be the major directions for personalized cancer therapies. The advances of
microfluidic devices will quickly solve the conventional problems of time‐consuming, sample‐
consuming, operator‐dependent, and marker‐dependent limitations.
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