
5

Using Crowding Distance to Improve 
 Multi-Objective PSO with Local Search 

Ching-Shih Tsou1, Shih-Chia Chang1 and Po-Wu Lai2

1Department of Business Administration, National Taipei College of Business 
2Department of Information Management, Shih Hsin University 

 Taiwan 

1. Introduction 

Biology inspired algorithms have been gaining popularity in recent decades and beyond. 
These methods are based on biological metaphor such as Darwinian evolution and swarm 
intelligence. One of the most recent algorithms in this category is the Particle Swarm 
Optimization (PSO). PSO is a population-based approach using a set of candidate solutions, 
called particles, which move within the search space. The trajectory followed by each 
particle is guided by its own experience as well as by its interaction with other particles. 
Specific methods of adjusting the trajectory are motivated by the observations in birds, 
fishes, or other organisms that move in swarms. 
Multi-objective optimization (MOO) is an important field to apply swarm intelligence meta-
heuristics because there is not only one solution for MOO ingeneral. The solution of a MOO 
problem is generally referred as a non-dominated solution, which is different from the 
optimal solution of single-objective optimization problem. A solution is said to be non-
dominated over another only if it has superior, at least no inferior, performance in all 
objectives. Hence, non-dominance means that the improvement of one objective could only 
be achieved at the expense of other objectives. This concept always gives not a single 
solution, but rather a set of solutions called the non-dominated set or non-dominated 
archive.
Generally speaking, there are two approaches to MOO: classical methods and evolutionary 
methods. Classical methods first convert separate objective functions into a single objective 
function by weighted sum method, utility function method, or goal programming method, 
and then solve them by traditional optimization techniques. Such modelling puts the 
original problem in an inadequate manner, using a surrogate variable with incomplete 
information. Subsequent optimization techniques also contradicts our intuition that single-
objective optimization is a degenerate case of MOO (Deb, 2001). The result of classical 
approach is a compromise solution whose non-dominance can not be guaranteed (Liu et al., 
2003). Lastly, but not the least, a single optimized solution could only be found in each 
simulation run of traditional optimization techniques such that it limits the choices available 
to the decision maker. Therefore, using a population of solutions to evolve towards several 
non-dominated solutions in each run makes evolutionary algorithms, such as swarm 
intelligence methods, popular in solving MOO problems.  

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria
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One of the successful applications of PSO to MOO problems, named Multi-Objective PSO 
(MOPSO), is the seminal work of Coello-Coello and Lechuga (2002). In a subsequent study 
done by them, MOPSO is not only a viable alternative to solve MOO problems, but also the 
only one, compared with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb 
et al., 2002), the Pareto Archive Evolutionary Strategy (PAES) (Knowles and Corne, 2000), 
and the micro-Genetic Algorithm (microGA) (Coello-Coello and Pulido, 2001) for MOO, can 
cover the full Pareto-optimal front of all the test functions therein.  
The goal of generating the non-dominated front is itself multi-objective. That is, designing a 
Pareto optimizer usually has two major goals – how to converge to the true Pareto-optimal 
front while achieving a well-distributed set of solutions (Zitzler et al., 2004). Tsou et al. 
(2006) proposed an improved MOPSO with local search and clustering procedure trying to 
attain to these goals. Although the best way to obtain a well-distributed set of solutions 
would be probably to use some clustering algorithm, this effort is usually computationally 
expensive (Kukkonen and Deb, 2006). This paper extends the research of Tsou et al. (2006), 
but the clustering algorithm is dropped out. A local search and flight mechanism based on 
crowding distance is incorporated into the MOPSO. The local search procedure intends to 
explore the less-crowded area in the current archive to possibly obtain more non-dominated 
solutions nearby. Besides this, the non-dominated solutions in the less-crowded area are 
used to guide the population fly over sparse area of the current archive. Such that a more 
uniform and diverse front might be formed by the optimizer. In a short, mechanisms based 
on the crowding distance not only implicitly maintain the diversity of the external archive, 
but also facilitate the convergence of MOPSO to the true Pareto-optimal front. Our approach 
seeks to reach a reasonable compromise between the computational simplicity and 
efficiency. Several test problems are employed to verify the performance of our approach.
The rest of this paper is organized as follows. Section 2 reviews the basic concept of MOO. 
MOPSO with a random line search is described in Section 3.1. Extensions based on 
crowding distance are presented in Section 3.2. Section 4 reports the experimental results 
against four test problems. Finally, conclusions and future research are drawn out in Section 
5.

2. Multi-objective Optimization 

Without loss of generality, a MOO problem (also known as a vector optimization problem) 
is the problem of simultaneously minimizing K  objectives ( )kf x , 1,2, ,k K= , of a vector 

x  in the feasible region Ω . That is, 

[ ]1 2Vector minimize ( ) ( ), ( ),..., ( )
T

Kf f f
∈Ω

=
x

f x x x x
 (1) 

, where [ ]1 2, ,...,
T

Dx x x=x is a D -dimensional vector and ( )kf x  ( 1,2,...,k K= ) are linear or 

nonlinear functions. A decision vector 1 2( , ,..., )Du u u=u  is said to strongly dominate 

1 2( , ,..., )Dv v v=v  (denoted by u v ) if and only if {1,2,..., }i K∀ ∈ , ( ) ( )i if f<u v . Less 

stringently, a decision vector u  weakly dominates v  (denoted by u v ) if and only if 

{1,2,..., }i K∀ ∈ , ( ) ( )i if f≤u v and {1,2,..., }i K∃ ∈ , ( ) ( )i if f<u v .
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Certainly, we are not interested in solutions dominated by other solutions. A set of decision 
vectors is said to be a non-dominated set if no member of the set is dominated by any other 
member. The true Pareto-optimal front is the non-dominated set of solutions which are not 
dominated by any feasible solution. One way to solving a MOO problem is to approximate 
the Pareto-optimal front by the non-dominated solutions generating from the solution 
algorithm.  

3. MOPSO with Local Search 

To speak of MOPSO, let us start with the PSO. In PSO, a population is initialized with 
random solutions, called “particles”. All particles have fitness values that are evaluated by 
the function to be optimized. Each particle flies through the problem space with a velocity, 
which is constantly updated by the particle’s own experience and the experience of the 
particle’s neighbors, to search for optima iterations by iterations. Compared to genetic 
algorithms, the advantages of PSO are that it is easy to implement and there are fewer 
parameters to adjust. 
In every iteration, the velocity of each particle is updated by two best values. The first one is 
the best solution it has achieved so far. This value is called pbest. Another best value tracked 
by the optimizer is the best value obtained so far by the neighbourhood of each particle. 
This best value is a local best and is called lbest. If the neighbourhood is defined as the whole 
population, each particle will move towards its best previous position and towards the best 
position ever been in the whole swarm, this version is called gbest model. In this paper, we 
use the global version of PSO. The velocity and position of each particle are updated by the 
following equations.  

( ) ( )
1 2( ) ( )

i new i old i i i
d d d dd dv v c RAND p x c RAND g xω= ⋅ + ⋅ ⋅ − + ⋅ ⋅ −  (2) 

( ) ( )i new i newi
dd dx x v= + , (3) 

where

( )i old
dv  is the old velocity of particle i  along dimension d ,

( )i new
dv  is the new velocity of particle i  along dimension d ,

ω is the inertia weight which is usually between 0.8 and 1.2, 

1c and
2c  are the learning factors (or acceleration coefficients), usually between 1 and 4, 

i
dx is the current position of particle i  along dimension d ,

i
dp is the personal best solution of particle i  along dimension d ,

dg is the global best solution the whole population ever been along dimension d , and 

RAND  is a random number between 0 and 1. 
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The difficulty in extending the PSO to MOO problems is how to select a global guide for 
each particle. Because there is not a single optimum in MOO, the non-dominated solutions 
found by MOPSO so far are all stored in an archive. Each particle can randomly select a non-
dominated solution from the archive as the global guide of its next flight. Although this 
selection method is simple, it can promote convergence (Alvarez-Benitez et al., 2005). The 
pseudo-code of MOPSO is shown in Fig. 1. 

MOPSO()

01: Initialize() 

02: iter ←  1 

03: while iter < MAXITER do 

04:      Flight() 

05:      CalculateObjVector() 

06:      UpdateNondominatedSet() 

07:      iter = iter + 1 

08: end while 

Figure 1. The pseudo-code of MOPSO 

3.1 Local search 

Local search plays a role in adding an exploitative component allows algorithms to make 
use of local information to guide the search towards better regions in the search space. This 
feature leads to faster convergence with less computational burden. One of the simplest 
local search algorithms is the random line search. It starts with calculating the maximum 
step length according to the parameter δ . For a non-dominated solution, improvement is 

sought coordinate by coordinate. The temporary D - dimensional vector, z , first holds the 
initial information of each particle. Next, two random numbers are generated to set moving 
direction and step length for each coordinate, respectively. If the vector z  observes a better 
non-dominated solution, the non-dominated set is updated and the local search for particle 

i  ends. The local search procedure (shown in Fig. 2) incorporated into the MOPSO is so 

called MOPSO-LS. 
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LocalSearch(δ )

01: { }( )max d d

d
L u lδ= ⋅ −

02: (10%S random  of A)=

03: for i = 1 to S

04: i=z x

05:      for d  = 1 to D  do 

06: 1 (0,1)RANDλ =

07: 2 (0,1)RANDλ =

08:            if 1λ  > 0.5 then 

09: 2

d dz z Lλ= +

10:            else 

11: 2

d dz z Lλ= −

12:            end if 

13:      end for 

14:      CalculateObjVector( z )

15:      if i
z x  or i

z x  then 

16:           UpdateNondominatedSet( z )

17: i =x z

18:      end if 

19: end for 

Figure 2. The pseudo-code of local search procedure 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 82

3.2 Enhancements from crowding distance 

The crowding distance of a non-dominated solution provides an estimate of the density of 
solutions surrounding it (Deb et al., 2002). It is calculated by the size of the largest cuboid 
enclosing each particle without including any other point. After normalizing the crowding 
distance for each non-dominated solution, we sort them in ascending order (Line 01 in Fig. 
4). As mentioned earlier, the selection of global guide is a critical step in MOPSO. It affects 
both the convergence to the true Pareto-optimal front and a well-distributed front. Instead 
of randomly choosing a global guide from the whole non-dominated archive, it is randomly 
selected from the top 10% less crowded area of the archive for each particle that is 
dominated by any solution located in this area. Global guides of other particles are 
randomly selected from the whole archive as usual. This is the flight procedure used in 
MOPSO-CDLS (Line 03 in Fig. 4). Raquel and Naval (2005) were the first ones to incorporate 
the crowding distance into the global best selection in MOPSO, however, each particle 
associated with its own global guide solely selected from the top 10% less crowded area of 
the archive. It is too restrictive for those particles far away from the less crowded area and 
could possibly perturb their happy flight. 

Flight()

01: SortArchiveByCrowdingDistance() 

02: for i  = 1 to m  do 

03:      if i
x  is dominated by the top 10% less crowded area in A

           then 

04: ( ) ( )
Gbest

i Random top 10% less crowded area in A=x

05:      else 

06: ( ) ( )
Gbest

i Random A=x

07:      end if 

08:      for d  = 1 to D  do 

09: 1 2( ) ( )i i i i i i

d d d d d dv v c RAND p x c RAND g xω← + ⋅ ⋅ − + ⋅ ⋅ −

10: i i i

d d dx x v← +

11:      end for 

12:      CalculateObjVector( i
x )

13:      UpdateNondominatedSet( i
x )

14: end for 

Figure 4. The pseudo-code of flight procedure 
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Besides the flight mechanism based on crowding distance, the local search procedure is also 
modified to only be executed on the non-dominated solutions in the top 10% less crowded 
area of the archive. That is, Line 02 in Fig. 2 is modified as 

10%S top  less crowded area of A= . It is expected that better solutions, at least non-

dominated, could be found by the random line search around the less crowded area. Dual 
effects of pushing further towards the true Pareto-optimal front as well as maintaining a 
diverse and well-distributed archive might be arisen.  

4. Experimental Results 

The well-known ZDT test problems (Zitzler et al., 2000) were used to validate the MOPSO-
CDLS. ZDT1 is an easy bi-objective problem and has a convex and continuous Pareto-
optimal front. ZDT2 has a non-convex but still continuous front. The front of ZDT3 is 
convex, however, it is discontinuous. In other words, it has several disconnected Pareto-
optimal front. The last test problem, ZDT4, is convex but has many local fronts. 
The population size for MOPSO-LC and MOPSO-CDLC are set to 25 with a step size 25 till 
75. The numbers of iterations are set to 30 with a step size 10 till 50. To compare all results in 
a quantitative way, we use the following performance measures: archive count A , set 

coverage metric ( , )C U V , spacing ( S ), and maximum spread ( D ) (Okabe et al., 2002). 

{ }|  :   
( , )

b V a U a b
C U V

V

∈ ∃ ∈
=  (4) 

, where ⋅  means the number of components in the set. 

( )
2

1

1
A

i

i

S d d
A =

= −
 (5) 

, where 

1

min
K

i j

i k k
j A j i

k

d f f
∈ ∧ ≠

=

= −  and d  is the mean value of the absolute distance measure  

1

A

i

i

d
d

A=

=
.

2

11
1

max min
A AK

i i

k k
ii

k

D f f
==

=

= −
 (6) 

Tables 1-4 are the results of four test problems for both algorithms. C and L in the 
parentheses of the first row stand for MOPSO-CDLS and MOPSO-LS, respectively. Some 
findings are explained in the following.  
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Iter. Pop. C(C,L) C(L,C) S(C) S(L) D(C) D(L) Count(C) Count(L) Time(C) Time(L) 

30 25 0.901639 0 0.170416 0.088285 1.417687 1.52305 61 55 0.89 0.843 

30 50 0.785714 0 0.029987 0.086507 1.414402 1.519982 70 55 1.078 0.969 

30 75 0.071429 0.114286 0.026999 0.033471 1.414214 1.414214 70 68 1.203 1.047 

40 25 0.125 0.138889 0.045418 0.044254 1.41424 1.414214 72 73 1.313 1.188 

40 50 0.811594 0 0.057449 0.064995 1.414903 1.519977 69 56 1.406 1.313 

40 75 0.830986 0 0.059604 0.077409 1.414214 1.519981 71 59 1.672 1.391 

50 25 0.876923 0 0.045133 0.08563 1.414563 1.519915 65 57 1.656 1.468 

50 50 0.104478 0.044776 0.04486 0.063149 1.414214 1.414214 67 68 1.937 1.671 

50 75 0.1 0.1125 0.046662 0.067414 1.414214 1.414214 80 72 2.125 1.797 

Table 1. Computational results of ZDT1 problem 

Iter. Pop. C(C,L) C(L,C) S(C) S(L) D(C) D(L) Count(C) Count(L) Time(C) Time(L) 

30 25 0.609756 0 0.074917 0.123052 1.414265 1.417507 41 34 0.921 0.843 

30 50 0.885714 0 0.13882 0.087169 1.414214 1.3933 35 34 0.985 0.906 

30 75 0.125 0.025 0.093266 0.116607 1.414214 1.414063 40 35 1.047 0.937 

40 25 0.939394 0 0.108248 0.14694 1.413647 1.373224 33 31 1.25 1.109 

40 50 0.228571 0.028571 0.123745 0.138773 1.414214 1.414332 35 34 1.344 1.25 

40 75 0.222222 0.027778 0.052225 0.10615 1.414212 1.414 36 37 0.688 0.594 

50 25 0.894737 0 0.05814 0.104946 1.412791 1.392065 38 36 1.593 1.453 

50 50 0.27027 0.027027 0.047095 0.110726 1.414142 1.414255 37 35 1.015 0.797 

50 75 0.228571 0 0.123088 0.138386 1.414227 1.414231 35 40 1.781 1.562 

Table 2. Computational results of ZDT2 problem 

Iter. Pop. C(C,L) C(L,C) S(C) S(L) D(C) D(L) Count(C) Count(L) Time(C) Time(L) 

30 25 0.473684 0 0.032093 0.291718 0.335081 1.864763 19 18 0.672 0.734 

30 50 0.410256 0.025641 0.093437 0.337072 1.95883 1.884636 39 36 0.922 0.812 

30 75 0.142857 0.119048 0.053984 0.107845 1.961352 1.927156 42 51 1.047 0.891 

40 25 0.5 0.033333 0.122377 0.53802 1.934344 1.947032 30 20 1.094 0.969 

40 50 0.2 0.228571 0.030287 0.159101 1.950184 1.94119 35 41 1.203 1.141 

40 75 0.163265 0.204082 0.006431 0.008037 1.95511 1.949345 49 47 1.328 1.235 

50 25 0.870968 0 0.37742 0.183748 1.953586 2.028031 31 27 1.438 1.313 

50 50 0.266667 0.088889 0.097678 0.169007 1.931062 1.955391 45 43 1.609 1.453 

50 75 0.148936 0.170213 0.16836 0.135811 1.958623 1.962591 47 53 1.688 1.531 

Table 3. Computational results of ZDT3 problem 

Iter. Pop. C(C,L) C(L,C) S(C) S(L) D(C) D(L) Count(C) Count(L) Time(C) Time(L) 

30 25 0.583333 0.027778 0.085428 0.120843 1.415008 1.431134 36 29 0.844 0.782

30 50 0.428571 0.071429 0.070559 0.070263 1.438755 1.429762 42 31 0.875 0.813

30 75 0.513514 0.162162 0.054137 0.11659 1.409016 1.430743 37 36 0.922 0.844

40 25 0.612903 0.032258 0.124403 0.212547 1.417124 1.453333 31 26 1.093 1.078

40 50 0.452381 0.214286 0.083199 0.076452 1.412184 1.410637 42 39 1.172 1.156

40 75 0.589286 0.142857 0.073391 0.101297 1.422002 1.416985 56 54 1.282 1.156

50 25 0.575758 0.212121 0.088226 0.082615 1.440936 1.437883 33 33 1.438 1.328

50 50 0.565217 0.173913 0.079993 0.097561 1.43185 1.429264 46 47 1.562 1.422

50 75 0.433333 0.1 0.037096 0.077393 1.42348 1.417994 60 59 1.656 1.516

Table 4. Computational results of ZDT4 problem 

1. In view of the set coverage metric in Tables 1-4, MOPSO-CDLS exhibit better results 
than MOPSO-LS even in more difficult problem such as ZDT3 and ZDT4. That is, the 
non-dominated solutions generated by MOPSO-CDLS are closer to the Pareto-optimal 
front than those by MOPSO-LS. 
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2. For the maximum spread in Tables 1-4, there is no significant difference for both 
algorithms. However, MOPSO-CDLS outperforms MOPSO-LS in the spacing metric. 
This implies MOPSO-CDLS can generate well-distributed front than MOPSO-LS. 

3. It is not surprising that particles flying towards sparse area and gathering local 
information around it make MOPSO-CDLS find more non-dominated solutions than 
MOPSO-LS on the average. 

4. Certainly, crowding distance calculation need additional time to execute. Although the 
execution time (in second) of MOPSO-CDLS is a little bit longer than that of MOPSO-LS 
in all tables, MOPSO-CDLS is still a reasonable simple and efficient algorithm for MOO. 

5. Conclusions 

It is well known that local search, even in its simplest form, prevents search algorithms from 
premature convergence and, therefore, possibly drives the solution closer to true Pareto-
optimal front. A local search procedure and a flight mechanism both based on crowding 
distance are incorporated into the MOPSO, so called MOPSO-CDLS, in this paper. 
Computational results against ZDT1-4 problems show that it did improve the MOPSO with 
random line search in all aspects except the execution time. Local search in less crowded 
area of the front not only reserves the exploitation capability, but also helps to achieve a 
well-distributed non-dominated set. Global guides randomly selected from the less crowded 
area help the particles dominated by the solutions in this area to explore more diverse 
solutions and in a hope to better approximate the true front.  
This study intends to highlight a direction of combining more intelligent local search 
algorithms into a Pareto optimization scheme. Mechanisms based on crowding distance 
employed here did not explicitly maintain the diversity of non-dominated solutions which is 
its original intention, but they indeed facilitate the possibilities of flying towards the Pareto-
optimal front and generating a well-distributed non-dominated set. Further researches 
include comparisons with other multi-objective evolutionary algorithms and 
accommodating constraints-handling mechanism in the Pareto optimizer. 
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