
5

Using Crowding Distance to Improve
 Multi-Objective PSO with Local Search

Ching-Shih Tsou1, Shih-Chia Chang1 and Po-Wu Lai2

1Department of Business Administration, National Taipei College of Business
2Department of Information Management, Shih Hsin University

 Taiwan

1. Introduction

Biology inspired algorithms have been gaining popularity in recent decades and beyond.
These methods are based on biological metaphor such as Darwinian evolution and swarm
intelligence. One of the most recent algorithms in this category is the Particle Swarm
Optimization (PSO). PSO is a population-based approach using a set of candidate solutions,
called particles, which move within the search space. The trajectory followed by each
particle is guided by its own experience as well as by its interaction with other particles.
Specific methods of adjusting the trajectory are motivated by the observations in birds,
fishes, or other organisms that move in swarms.
Multi-objective optimization (MOO) is an important field to apply swarm intelligence meta-
heuristics because there is not only one solution for MOO ingeneral. The solution of a MOO
problem is generally referred as a non-dominated solution, which is different from the
optimal solution of single-objective optimization problem. A solution is said to be non-
dominated over another only if it has superior, at least no inferior, performance in all
objectives. Hence, non-dominance means that the improvement of one objective could only
be achieved at the expense of other objectives. This concept always gives not a single
solution, but rather a set of solutions called the non-dominated set or non-dominated
archive.
Generally speaking, there are two approaches to MOO: classical methods and evolutionary
methods. Classical methods first convert separate objective functions into a single objective
function by weighted sum method, utility function method, or goal programming method,
and then solve them by traditional optimization techniques. Such modelling puts the
original problem in an inadequate manner, using a surrogate variable with incomplete
information. Subsequent optimization techniques also contradicts our intuition that single-
objective optimization is a degenerate case of MOO (Deb, 2001). The result of classical
approach is a compromise solution whose non-dominance can not be guaranteed (Liu et al.,
2003). Lastly, but not the least, a single optimized solution could only be found in each
simulation run of traditional optimization techniques such that it limits the choices available
to the decision maker. Therefore, using a population of solutions to evolve towards several
non-dominated solutions in each run makes evolutionary algorithms, such as swarm
intelligence methods, popular in solving MOO problems.

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 78

One of the successful applications of PSO to MOO problems, named Multi-Objective PSO
(MOPSO), is the seminal work of Coello-Coello and Lechuga (2002). In a subsequent study
done by them, MOPSO is not only a viable alternative to solve MOO problems, but also the
only one, compared with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb
et al., 2002), the Pareto Archive Evolutionary Strategy (PAES) (Knowles and Corne, 2000),
and the micro-Genetic Algorithm (microGA) (Coello-Coello and Pulido, 2001) for MOO, can
cover the full Pareto-optimal front of all the test functions therein.
The goal of generating the non-dominated front is itself multi-objective. That is, designing a
Pareto optimizer usually has two major goals – how to converge to the true Pareto-optimal
front while achieving a well-distributed set of solutions (Zitzler et al., 2004). Tsou et al.
(2006) proposed an improved MOPSO with local search and clustering procedure trying to
attain to these goals. Although the best way to obtain a well-distributed set of solutions
would be probably to use some clustering algorithm, this effort is usually computationally
expensive (Kukkonen and Deb, 2006). This paper extends the research of Tsou et al. (2006),
but the clustering algorithm is dropped out. A local search and flight mechanism based on
crowding distance is incorporated into the MOPSO. The local search procedure intends to
explore the less-crowded area in the current archive to possibly obtain more non-dominated
solutions nearby. Besides this, the non-dominated solutions in the less-crowded area are
used to guide the population fly over sparse area of the current archive. Such that a more
uniform and diverse front might be formed by the optimizer. In a short, mechanisms based
on the crowding distance not only implicitly maintain the diversity of the external archive,
but also facilitate the convergence of MOPSO to the true Pareto-optimal front. Our approach
seeks to reach a reasonable compromise between the computational simplicity and
efficiency. Several test problems are employed to verify the performance of our approach.
The rest of this paper is organized as follows. Section 2 reviews the basic concept of MOO.
MOPSO with a random line search is described in Section 3.1. Extensions based on
crowding distance are presented in Section 3.2. Section 4 reports the experimental results
against four test problems. Finally, conclusions and future research are drawn out in Section
5.

2. Multi-objective Optimization

Without loss of generality, a MOO problem (also known as a vector optimization problem)
is the problem of simultaneously minimizing K objectives ()kf x , 1,2, ,k K= , of a vector

x in the feasible region Ω . That is,

[]1 2Vector minimize () (), (),..., ()
T

Kf f f
∈Ω

=
x

f x x x x
 (1)

, where []1 2, ,...,
T

Dx x x=x is a D -dimensional vector and ()kf x (1,2,...,k K=) are linear or

nonlinear functions. A decision vector 1 2(, ,...,)Du u u=u is said to strongly dominate

1 2(, ,...,)Dv v v=v (denoted by u v) if and only if {1,2,..., }i K∀ ∈ , () ()i if f<u v . Less

stringently, a decision vector u weakly dominates v (denoted by u v) if and only if

{1,2,..., }i K∀ ∈ , () ()i if f≤u v and {1,2,..., }i K∃ ∈ , () ()i if f<u v .

Using Crowding Distance to Improve Multi-Objective PSO with Local Search 79

Certainly, we are not interested in solutions dominated by other solutions. A set of decision
vectors is said to be a non-dominated set if no member of the set is dominated by any other
member. The true Pareto-optimal front is the non-dominated set of solutions which are not
dominated by any feasible solution. One way to solving a MOO problem is to approximate
the Pareto-optimal front by the non-dominated solutions generating from the solution
algorithm.

3. MOPSO with Local Search

To speak of MOPSO, let us start with the PSO. In PSO, a population is initialized with
random solutions, called “particles”. All particles have fitness values that are evaluated by
the function to be optimized. Each particle flies through the problem space with a velocity,
which is constantly updated by the particle’s own experience and the experience of the
particle’s neighbors, to search for optima iterations by iterations. Compared to genetic
algorithms, the advantages of PSO are that it is easy to implement and there are fewer
parameters to adjust.
In every iteration, the velocity of each particle is updated by two best values. The first one is
the best solution it has achieved so far. This value is called pbest. Another best value tracked
by the optimizer is the best value obtained so far by the neighbourhood of each particle.
This best value is a local best and is called lbest. If the neighbourhood is defined as the whole
population, each particle will move towards its best previous position and towards the best
position ever been in the whole swarm, this version is called gbest model. In this paper, we
use the global version of PSO. The velocity and position of each particle are updated by the
following equations.

() ()
1 2() ()

i new i old i i i
d d d dd dv v c RAND p x c RAND g xω= ⋅ + ⋅ ⋅ − + ⋅ ⋅ − (2)

() ()i new i newi
dd dx x v= + , (3)

where

()i old
dv is the old velocity of particle i along dimension d ,

()i new
dv is the new velocity of particle i along dimension d ,

ω is the inertia weight which is usually between 0.8 and 1.2,

1c and
2c are the learning factors (or acceleration coefficients), usually between 1 and 4,

i
dx is the current position of particle i along dimension d ,

i
dp is the personal best solution of particle i along dimension d ,

dg is the global best solution the whole population ever been along dimension d , and

RAND is a random number between 0 and 1.

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 80

The difficulty in extending the PSO to MOO problems is how to select a global guide for
each particle. Because there is not a single optimum in MOO, the non-dominated solutions
found by MOPSO so far are all stored in an archive. Each particle can randomly select a non-
dominated solution from the archive as the global guide of its next flight. Although this
selection method is simple, it can promote convergence (Alvarez-Benitez et al., 2005). The
pseudo-code of MOPSO is shown in Fig. 1.

MOPSO()

01: Initialize()

02: iter ← 1

03: while iter < MAXITER do

04: Flight()

05: CalculateObjVector()

06: UpdateNondominatedSet()

07: iter = iter + 1

08: end while

Figure 1. The pseudo-code of MOPSO

3.1 Local search

Local search plays a role in adding an exploitative component allows algorithms to make
use of local information to guide the search towards better regions in the search space. This
feature leads to faster convergence with less computational burden. One of the simplest
local search algorithms is the random line search. It starts with calculating the maximum
step length according to the parameter δ . For a non-dominated solution, improvement is

sought coordinate by coordinate. The temporary D - dimensional vector, z , first holds the
initial information of each particle. Next, two random numbers are generated to set moving
direction and step length for each coordinate, respectively. If the vector z observes a better
non-dominated solution, the non-dominated set is updated and the local search for particle

i ends. The local search procedure (shown in Fig. 2) incorporated into the MOPSO is so

called MOPSO-LS.

Using Crowding Distance to Improve Multi-Objective PSO with Local Search 81

LocalSearch(δ)

01: { }()max d d

d
L u lδ= ⋅ −

02: (10%S random of A)=

03: for i = 1 to S

04: i=z x

05: for d = 1 to D do

06: 1 (0,1)RANDλ =

07: 2 (0,1)RANDλ =

08: if 1λ > 0.5 then

09: 2

d dz z Lλ= +

10: else

11: 2

d dz z Lλ= −

12: end if

13: end for

14: CalculateObjVector(z)

15: if i
z x or i

z x then

16: UpdateNondominatedSet(z)

17: i =x z

18: end if

19: end for

Figure 2. The pseudo-code of local search procedure

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 82

3.2 Enhancements from crowding distance

The crowding distance of a non-dominated solution provides an estimate of the density of
solutions surrounding it (Deb et al., 2002). It is calculated by the size of the largest cuboid
enclosing each particle without including any other point. After normalizing the crowding
distance for each non-dominated solution, we sort them in ascending order (Line 01 in Fig.
4). As mentioned earlier, the selection of global guide is a critical step in MOPSO. It affects
both the convergence to the true Pareto-optimal front and a well-distributed front. Instead
of randomly choosing a global guide from the whole non-dominated archive, it is randomly
selected from the top 10% less crowded area of the archive for each particle that is
dominated by any solution located in this area. Global guides of other particles are
randomly selected from the whole archive as usual. This is the flight procedure used in
MOPSO-CDLS (Line 03 in Fig. 4). Raquel and Naval (2005) were the first ones to incorporate
the crowding distance into the global best selection in MOPSO, however, each particle
associated with its own global guide solely selected from the top 10% less crowded area of
the archive. It is too restrictive for those particles far away from the less crowded area and
could possibly perturb their happy flight.

Flight()

01: SortArchiveByCrowdingDistance()

02: for i = 1 to m do

03: if i
x is dominated by the top 10% less crowded area in A

 then

04: () ()
Gbest

i Random top 10% less crowded area in A=x

05: else

06: () ()
Gbest

i Random A=x

07: end if

08: for d = 1 to D do

09: 1 2() ()i i i i i i

d d d d d dv v c RAND p x c RAND g xω← + ⋅ ⋅ − + ⋅ ⋅ −

10: i i i

d d dx x v← +

11: end for

12: CalculateObjVector(i
x)

13: UpdateNondominatedSet(i
x)

14: end for

Figure 4. The pseudo-code of flight procedure

Using Crowding Distance to Improve Multi-Objective PSO with Local Search 83

Besides the flight mechanism based on crowding distance, the local search procedure is also
modified to only be executed on the non-dominated solutions in the top 10% less crowded
area of the archive. That is, Line 02 in Fig. 2 is modified as

10%S top less crowded area of A= . It is expected that better solutions, at least non-

dominated, could be found by the random line search around the less crowded area. Dual
effects of pushing further towards the true Pareto-optimal front as well as maintaining a
diverse and well-distributed archive might be arisen.

4. Experimental Results

The well-known ZDT test problems (Zitzler et al., 2000) were used to validate the MOPSO-
CDLS. ZDT1 is an easy bi-objective problem and has a convex and continuous Pareto-
optimal front. ZDT2 has a non-convex but still continuous front. The front of ZDT3 is
convex, however, it is discontinuous. In other words, it has several disconnected Pareto-
optimal front. The last test problem, ZDT4, is convex but has many local fronts.
The population size for MOPSO-LC and MOPSO-CDLC are set to 25 with a step size 25 till
75. The numbers of iterations are set to 30 with a step size 10 till 50. To compare all results in
a quantitative way, we use the following performance measures: archive count A , set

coverage metric (,)C U V , spacing (S), and maximum spread (D) (Okabe et al., 2002).

{ }| :
(,)

b V a U a b
C U V

V

∈ ∃ ∈
= (4)

, where ⋅ means the number of components in the set.

()
2

1

1
A

i

i

S d d
A =

= −
 (5)

, where

1

min
K

i j

i k k
j A j i

k

d f f
∈ ∧ ≠

=

= − and d is the mean value of the absolute distance measure

1

A

i

i

d
d

A=

=
.

2

11
1

max min
A AK

i i

k k
ii

k

D f f
==

=

= −
 (6)

Tables 1-4 are the results of four test problems for both algorithms. C and L in the
parentheses of the first row stand for MOPSO-CDLS and MOPSO-LS, respectively. Some
findings are explained in the following.

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 84

Iter. Pop. C(C,L) C(L,C) S(C) S(L) D(C) D(L) Count(C) Count(L) Time(C) Time(L)

30 25 0.901639 0 0.170416 0.088285 1.417687 1.52305 61 55 0.89 0.843

30 50 0.785714 0 0.029987 0.086507 1.414402 1.519982 70 55 1.078 0.969

30 75 0.071429 0.114286 0.026999 0.033471 1.414214 1.414214 70 68 1.203 1.047

40 25 0.125 0.138889 0.045418 0.044254 1.41424 1.414214 72 73 1.313 1.188

40 50 0.811594 0 0.057449 0.064995 1.414903 1.519977 69 56 1.406 1.313

40 75 0.830986 0 0.059604 0.077409 1.414214 1.519981 71 59 1.672 1.391

50 25 0.876923 0 0.045133 0.08563 1.414563 1.519915 65 57 1.656 1.468

50 50 0.104478 0.044776 0.04486 0.063149 1.414214 1.414214 67 68 1.937 1.671

50 75 0.1 0.1125 0.046662 0.067414 1.414214 1.414214 80 72 2.125 1.797

Table 1. Computational results of ZDT1 problem

Iter. Pop. C(C,L) C(L,C) S(C) S(L) D(C) D(L) Count(C) Count(L) Time(C) Time(L)

30 25 0.609756 0 0.074917 0.123052 1.414265 1.417507 41 34 0.921 0.843

30 50 0.885714 0 0.13882 0.087169 1.414214 1.3933 35 34 0.985 0.906

30 75 0.125 0.025 0.093266 0.116607 1.414214 1.414063 40 35 1.047 0.937

40 25 0.939394 0 0.108248 0.14694 1.413647 1.373224 33 31 1.25 1.109

40 50 0.228571 0.028571 0.123745 0.138773 1.414214 1.414332 35 34 1.344 1.25

40 75 0.222222 0.027778 0.052225 0.10615 1.414212 1.414 36 37 0.688 0.594

50 25 0.894737 0 0.05814 0.104946 1.412791 1.392065 38 36 1.593 1.453

50 50 0.27027 0.027027 0.047095 0.110726 1.414142 1.414255 37 35 1.015 0.797

50 75 0.228571 0 0.123088 0.138386 1.414227 1.414231 35 40 1.781 1.562

Table 2. Computational results of ZDT2 problem

Iter. Pop. C(C,L) C(L,C) S(C) S(L) D(C) D(L) Count(C) Count(L) Time(C) Time(L)

30 25 0.473684 0 0.032093 0.291718 0.335081 1.864763 19 18 0.672 0.734

30 50 0.410256 0.025641 0.093437 0.337072 1.95883 1.884636 39 36 0.922 0.812

30 75 0.142857 0.119048 0.053984 0.107845 1.961352 1.927156 42 51 1.047 0.891

40 25 0.5 0.033333 0.122377 0.53802 1.934344 1.947032 30 20 1.094 0.969

40 50 0.2 0.228571 0.030287 0.159101 1.950184 1.94119 35 41 1.203 1.141

40 75 0.163265 0.204082 0.006431 0.008037 1.95511 1.949345 49 47 1.328 1.235

50 25 0.870968 0 0.37742 0.183748 1.953586 2.028031 31 27 1.438 1.313

50 50 0.266667 0.088889 0.097678 0.169007 1.931062 1.955391 45 43 1.609 1.453

50 75 0.148936 0.170213 0.16836 0.135811 1.958623 1.962591 47 53 1.688 1.531

Table 3. Computational results of ZDT3 problem

Iter. Pop. C(C,L) C(L,C) S(C) S(L) D(C) D(L) Count(C) Count(L) Time(C) Time(L)

30 25 0.583333 0.027778 0.085428 0.120843 1.415008 1.431134 36 29 0.844 0.782

30 50 0.428571 0.071429 0.070559 0.070263 1.438755 1.429762 42 31 0.875 0.813

30 75 0.513514 0.162162 0.054137 0.11659 1.409016 1.430743 37 36 0.922 0.844

40 25 0.612903 0.032258 0.124403 0.212547 1.417124 1.453333 31 26 1.093 1.078

40 50 0.452381 0.214286 0.083199 0.076452 1.412184 1.410637 42 39 1.172 1.156

40 75 0.589286 0.142857 0.073391 0.101297 1.422002 1.416985 56 54 1.282 1.156

50 25 0.575758 0.212121 0.088226 0.082615 1.440936 1.437883 33 33 1.438 1.328

50 50 0.565217 0.173913 0.079993 0.097561 1.43185 1.429264 46 47 1.562 1.422

50 75 0.433333 0.1 0.037096 0.077393 1.42348 1.417994 60 59 1.656 1.516

Table 4. Computational results of ZDT4 problem

1. In view of the set coverage metric in Tables 1-4, MOPSO-CDLS exhibit better results
than MOPSO-LS even in more difficult problem such as ZDT3 and ZDT4. That is, the
non-dominated solutions generated by MOPSO-CDLS are closer to the Pareto-optimal
front than those by MOPSO-LS.

Using Crowding Distance to Improve Multi-Objective PSO with Local Search 85

2. For the maximum spread in Tables 1-4, there is no significant difference for both
algorithms. However, MOPSO-CDLS outperforms MOPSO-LS in the spacing metric.
This implies MOPSO-CDLS can generate well-distributed front than MOPSO-LS.

3. It is not surprising that particles flying towards sparse area and gathering local
information around it make MOPSO-CDLS find more non-dominated solutions than
MOPSO-LS on the average.

4. Certainly, crowding distance calculation need additional time to execute. Although the
execution time (in second) of MOPSO-CDLS is a little bit longer than that of MOPSO-LS
in all tables, MOPSO-CDLS is still a reasonable simple and efficient algorithm for MOO.

5. Conclusions

It is well known that local search, even in its simplest form, prevents search algorithms from
premature convergence and, therefore, possibly drives the solution closer to true Pareto-
optimal front. A local search procedure and a flight mechanism both based on crowding
distance are incorporated into the MOPSO, so called MOPSO-CDLS, in this paper.
Computational results against ZDT1-4 problems show that it did improve the MOPSO with
random line search in all aspects except the execution time. Local search in less crowded
area of the front not only reserves the exploitation capability, but also helps to achieve a
well-distributed non-dominated set. Global guides randomly selected from the less crowded
area help the particles dominated by the solutions in this area to explore more diverse
solutions and in a hope to better approximate the true front.
This study intends to highlight a direction of combining more intelligent local search
algorithms into a Pareto optimization scheme. Mechanisms based on crowding distance
employed here did not explicitly maintain the diversity of non-dominated solutions which is
its original intention, but they indeed facilitate the possibilities of flying towards the Pareto-
optimal front and generating a well-distributed non-dominated set. Further researches
include comparisons with other multi-objective evolutionary algorithms and
accommodating constraints-handling mechanism in the Pareto optimizer.

6. References

Alvarez-Benitez, J.E., Everson, R.M. & Fieldsend, J.E. (2005). A MOPSO algorithm based
exclusively on Pareto dominance concepts. Lecture Notes in Computer Science, 3410,
459-473.

Coello Coello, C.A. and Lechuga, M.S. (2002), MOPSO: A proposal for multiple objective
particle swarm optimization, Proceedings of the 2002 IEEE Congress on Evolutionary
Computation, pp. 12-17, Honolulu, U.S.A., May 2002, IEEE Press, New Jersey.

Coello Coello, C.A. & Pulido, G.T. (2001), Multiobjective optimization using a micro-genetic
algorithm, Proceedings of the 2001 Conference on Genetic and Evolutionary Computation
Conference, pp. 274-282, San Francisco, CA, July 2001, IEEE Press, New Jersey.

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms, John Wiley &
Sons, New York.

Deb, K.; Pratap, A.; Agarwal S. & Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, Vol. 6,
182-197.

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 86

Knowles, J.D. & Corne, D.W. (2000). Approximating the nondominated front using the
Pareto archived evolution strategy. Evolutionary Computation Journal, Vol. 8, 149-
172.

Kukkonen, S. And Deb, K. (2006). Improved pruning of non-dominated solutions based on
crowding distance for bi-objective optimization problems, Proceedings of the 2006
IEEE Congress on Evolutionary Computation, pp.1179-1186, Vancouver, Canada, July
2006, IEEE Press, New Jersey.

Liu, G.P.; Yang, J.B. & Whidborne, J.F. (2003). Multiobjective Optimisation and Control,
Research Studies Press, Hertfordshire.

Okabe, T.; Jin, Y. & Sendhoff, B. (2003). A critical survey of performance indices for multi-
objective optimization, Proceedings of the 2003 IEEE Congress on Evolutionary
Computation, pp. 878-885, December 2003, IEEE Press, New Jersey.

Raquel, C.R. & Naval, P.C. Jr. (2005). An effective use of crowing distance in multiobjective
particle swarm optimization, Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation, pp. 257-264, Washington D.C., U.S.A., June 2005, ACM
Press, New York.

Tsou, C.-S.; Fang, H.-H.; Chang, H.-H. & Kao, C.-H. (2006). An improved particle swarm
Pareto optimizer with local search and clustering. Lecture Notes in Computer Science,
4247, 400-406.

Zitzler, E.; Deb, K. & Thiele, L. (2000). Comparison of multiobjective evolutionary
algorithms : empirical results. Evolutionary Computation Journal, Vol. 8, No. 2, 125-
148.

Zitzler, E.; Laumanns, M. & Bleuler, S. (2004). A tutorial on evolutionary multiobjective
optimization, in Gandibleux, X.; Sevaux, M.; Sörensen, K. & T’kindt, V. (Ed.),
Metaheuristics for Multiobjective Optimisation, Springer, Heidelberg, pp. 3-37.

Swarm Intelligence, Focus on Ant and Particle Swarm Optimization
Edited by FelixT.S.Chan and Manoj KumarTiwari

ISBN 978-3-902613-09-7
Hard cover, 532 pages
Publisher I-Tech Education and Publishing
Published online 01, December, 2007
Published in print edition December, 2007

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

In the era globalisation the emerging technologies are governing engineering industries to a multifaceted state.
The escalating complexity has demanded researchers to find the possible ways of easing the solution of the
problems. This has motivated the researchers to grasp ideas from the nature and implant it in the engineering
sciences. This way of thinking led to emergence of many biologically inspired algorithms that have proven to
be efficient in handling the computationally complex problems with competence such as Genetic Algorithm
(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), etc. Motivated by the capability of
the biologically inspired algorithms the present book on "Swarm Intelligence: Focus on Ant and Particle Swarm
Optimization" aims to present recent developments and applications concerning optimization with swarm
intelligence techniques. The papers selected for this book comprise a cross-section of topics that reflect a
variety of perspectives and disciplinary backgrounds. In addition to the introduction of new concepts of swarm
intelligence, this book also presented some selected representative case studies covering power plant
maintenance scheduling; geotechnical engineering; design and machining tolerances; layout problems;
manufacturing process plan; job-shop scheduling; structural design; environmental dispatching problems;
wireless communication; water distribution systems; multi-plant supply chain; fault diagnosis of airplane
engines; and process scheduling. I believe these 27 chapters presented in this book adequately reflect these
topics.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ching-Shih Tsou, Shih-Chia Chang and Po-Wu Lai (2007). Using Crowding Distance to Improve Multi-
Objective PSO with Local Search, Swarm Intelligence, Focus on Ant and Particle Swarm Optimization,
FelixT.S.Chan and Manoj KumarTiwari (Ed.), ISBN: 978-3-902613-09-7, InTech, Available from:
http://www.intechopen.com/books/swarm_intelligence_focus_on_ant_and_particle_swarm_optimization/using_
crowding_distance_to_improve_multi-objective_pso_with_local_search

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the
Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,
distribution and reproduction for non-commercial purposes, provided the original is properly cited
and derivative works building on this content are distributed under the same license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

