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1. Introduction

Our universe consists of substance. Atoms and molecules are basic components of material.
Each atom contains a nucleus which is spread in a small area of atom, and electrons. Also, a
nucleus contains Neutrons and protons. It is well known today that electrons in atom and
Neutrons and protons in the nucleus are interacting together through different forces. It is clear
today that the source of different interactions are composed of four basic forces of the universe,
namely gravitational, coulomb, strong and weak nuclear interactions.

In quantum mechanics, to study a particle, it is necessary to have knowledge about its
interaction with the surrounding media. The Schrödinger equation is a second-order differ‐
ential equation that is solved to obtain energy spectrum and wave functions of a particle in
quantum mechanics. For a many-body system such as atom or nucleus, it is not possible to
solve a set of Schrödinger equations to obtain energy spectrum and wave functions analyti‐
cally. Therefore in such situations, it is necessary to use an average potential which is a mean
potential of all interacting forces acting upon a single particle. Then the Schrödinger equation
is should be solve for a single particle. This procedure is called the mean field method [1, 2, 3].

To review this method consider a system consisting of N identical interacting particles. The
Hamiltonian of system composed of kinetic energy, T ,  and potential energy ,  V , is defined as
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where mN  is the mass of each particle, and ri denotes the coordinates of particle i. A summed
single particle potential energy, so far undefined, can be added and subtracted of the Hamil‐
tonian to obtain the following relation,
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is the mean field Hamiltonian of the system and
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is the mean residual interaction. It should be noted that the residual interaction is related to
the strength of the actual interaction and can be reduced if the mean field potential is close to
the actual potential of the system.

Actually, the mean field method is an approximation in which each particle of system moves
under an external field generated by the remaining N −1 particles. This mean potential, VMF ,  
can be considered as an average of all possible interactions of nucleons during the short time
interval ΔT ,  between the selected nucleon and its surrenders,
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It is important to know that the time average idea was considered only for clearance of the
subject and not applicable in practice unless one studies the thermo-dynamical behavior of
nucleus.

Therefore the idea of using mean field theory capable of reducing many particles interacting
system in to a system of non-interacting (quasi-particles) considered in an external field ,  VMF
which is the mean potential of possible forces of interaction. The mean field potential is
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considered such that the stationary Schrödinger equation is solved simply to obtain single
particle states and their related energy spectrum. These single-particle states are used to
construct the N  particle wave function as follows.

The corresponding N  -particle Schrödinger equation is used to obtain solutions of the mean-
field Hamiltonian HMF
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The wave function Ψ0(  r1, r2, ....rN ) can be separated by using the ansatz single particle wave
functions
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Substituting this ansatz in to the Schrödinger equation (6) yields N  identical one-particle
Schrödinger equations
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With the quasi-particle energy, εα, that is satisfies the following condition
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The wave function of the many- body system is thus an anti symmetric product of single-
particle wave functions which are one-particle wave functions of an external potential well. In
summary the mean field theory reduces the complicated many-body problem in to a simple
one-particle system.

The main idea in this approach is to determine the mean field potential or in particular, an
appropriate mean field potential in which the residual interactions between the quasi-particles
should be optimal. To do so, one may seek an optimal set {ϕα (r)} of one-quasi-particle states.
This is a Rayleigh-Ritz variational approximation in which the variation ϕα (r)→ϕα (r) + δϕα (r)
of the single-particle orbital is minimized
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As a starting point, one may construct an ansatz wave function. It is customary to use a product
of single particle wave functions as Eigen function of the system,
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It is an anti-symmetrized product ansatz wave function following the Hartree-Fock method
and is called the Slater determinant of the given single particle states
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Here Ψ0(  r1, r2, ....rN ) is an anti-symmetric wave function. Also C  is the normalization constant.
For instance, consider a three-particles system with its single-particle Eigen states labeled 1, 2,
and 3. Then the normalized anti-symmetric state, or the Slater determinant, is
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The energy E  of the system has to be varied under the constraint that the normalization of Ψ0

is preserved, i.e. Ψ0|Ψ0 =1. This leads to the constrained variational problem,
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which can be transformed in to an unconstrained one by minimizing the energy for normalized
wave function, Ψ0(  r1, r2, ....rN ). After performing the variation, the single-particle energy, εα ,
is can also be obtained.

One powerful method to address such uncertainties is the following Hartree consistent
equation [4,5],

( ) { }( ) ( ) ( )
2

2
( )  ,  

2
1,  2,  ...... ,  1,  2,  .....

H F i
N

r V r r
m

i N

a a a af f f f

a ¥

- Ñ + =

= =

h ò
(14)

This equation is like the Schrödinger equation except that the simple potential term, V (r), is
replaced with a function of unknown wave function,
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Here, the Hartree mean field potential, VH (F ),  is different from, VHF , Hartree-Fock mean field.

The differential equation (14) is nonlinear and therefore, much more difficult to solve than the
regular Schrödinger equation. The solution can only be carried using consistent iteration
method. In this procedure, one can start using a complete set of guessed single-particle states
{ϕi0  (r)},  i =1, ....N  to calculate the initial potential term, VH (F )

(0) . In the next step, the equation
for a complete set of new wave functions {ϕα(1)  (r)}  α =1, .....∞ is solved to obtain Eigen energies
εα

(1). The procedure is then repeated with new Eigen function ϕα(1)  (r) to obtain the new potential
,  VH (F )

(1) . This approach can be depicted through the following schematic diagram,

( ) ( )
( ) ( )

( ) ( )
(1)

0 10

 
1 (1) ( )

( )

  ,   

 ...   ,  .
i

i H F

nn
H F

r V

V

a

f

a a a

f

f

® ®

® ® ®

ò

ò ò
(15)

This procedure is repeated to achieve self-consistency for wave functions (or Eigen energies).
This means that after each loop the resultant wave function or Eigen energies compared with
the starting wave function or Eigen energies and when their difference becomes less than a
given preset limit, i.e.

( 1) ( )  ,n n preset limita af f- - <

the procedure is repeated, otherwise, it will be automatically terminated. Where the ...
denotes the norm.

The results of each run, contain a self-consistent mean field, VH (F )(r), the Eigen state, ϕα (r),
and its associated Eigen energies ,  εα, are all simultaneously generated. We may also note that
for a finite potential-well, there will be, in addition to the bound states, an infinite number of
unbound states.

In our discussions, the generated mean-field potential is a central one, that is only a function
of  r . Central mean field potentials describe only systems with spherical symmetry such as
spherical nuclei or atoms. This is because of natural real forces that are conservative and satisfy
the conservation of energy.

In some convenient way to avoid self-consistency loops, a phenomenological potential like a
simple square well with finite depth, simple harmonic oscillator well and complicated Woods-
Saxon with considerable parameters that can be determined using the fit of potential with
experimental data, is introduced.
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2. Applications of mean-field theory in nuclear physics

Over the years after Rutherford's valuable experiments that suggest nuclei for atom, many
theoretical and experimental attempts have been done to obtain knowledge about the stability
of nuclei. It is clear today that a nucleus of mass number A, Neutron number N  and proton
number (atomic number) Z , consists of A strongly interacting nucleons (protons and neutrons
in the nucleus without considering their different properties called nucleon.). In addition to
the strong nuclear force that is responsible for nuclear stability, the protons also sense the
attractive coulomb potential because of their charge. In regular nuclear physics, the protons
and neutrons are considered the point particles without any internal structure. This is an
excellent approximation when the aim is to study nuclear structure at low energies. In such
approach, the nuclear forces are considered a central attractive force with proper specifications
like independence of charge and low range. Note that in advance models of nuclear physics
such as the Yukawa Meson exchange model, it is believed that nucleons constructed quarks
and interact together through the meson exchange mechanism in the base of the particle
physics lows. The lightest nucleus is Deuterium with one neutron and one proton. The
interaction of nucleons in the nucleus can be studied both theoretically and practically using
simple Deuteron nucleus. This two-nucleon system is described by two-body interaction
matrix elements, without a detailed account of the methods used to obtain them. On the other
hand, the A - nucleons nucleus in quantum mechanics using the Schrödinger equation is not
a solvable problem analytically at least for  A>10. Therefore, one has to look for a reasonable
approximate method to solve this many-body problem consisting of strongly interacting
nucleons. A powerful approximation is to convert such many-body system in to a non-
interacting system of quasi-particles using a suitable external mean field potential. The
remaining interactions, called residual interaction, can be treated as a perturbation potential
in the base of perturbation approximation. As discussed earlier, the transformation of system
of particles in to quasi-particles is not simple, and its success depends on the nuclear system
under consideration.

As mentioned above, a conventional approach is to select a particular type of mean field
potential to avoid the steps leading to self-consistency. The selected mean field potential and
considered remaining residual interactions as approximations produce the preciseness of the
obtained results. The simplest custom potential is the three-dimensional harmonic oscillator
potential well

2 2 2
1 1

1V (r) = -V  + kr  = -V  + 
2HO m rw (16)

where V1 and k  are the parameters to be fitted to the practical data for best result. A common,
more realistic choice is the Woods–Saxon potential [6]
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where V0, R and a are the nuclear potential depth, the nuclear radius, and the surface diffuse‐
ness, respectively. They are parameterized as follows,
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The + and – signs are considered for protons and neutrons, respectively. In the case when there
is no distinction between protons and neutrons a suitable average value of V0 = 57MeV  can be
used for nucleons.

The Woods–Saxon potential, vWS , is a suitable choice for the mean field potential however it
is a complicated function of, r ,  and it is not an analytically solvable one. To overcome this
problem, it is possible to select the proper three- dimensional oscillator potential with energy
quantum, ℏω and depth, V1. The energy difference of levels, ℏω, and depth, V1, can be obtained
with a best fit to the Woods–Saxon potential, vWS , as a function of, V0, R and a as the nuclear
potential depth, nuclear radius, and surface diffuseness of the Woods–Saxon potential,
respectively. The wave functions and energy spectrum of equivalent harmonic oscillator
potential agreed well with the Woods–Saxon potential ones especially near the bottom of the
wells in low energies. The difference of these potentials increases when the potential ap‐
proaches zero. Actually the major difference of these potentials is that the harmonic oscillator
potential varies more sharply than the Woods–Saxon one near the surface of the nucleus.

2.1. The spin–orbit interaction

Sometimes in 1949, Meyer and independently, Haxel, Jensen, and Swees showed that if in
addition to mean field central potential, VMF ,   a non-central potential is included in the
Schrödinger equation, all closed shell nucleon numbers can be obtained successfully. These
numbers 2, 8, 20, 28, 50, 82, and 126 are called magic numbers because the origin of these
numbers was not known at that time. The Woods-Saxon or its equivalent harmonic oscillator
central potential is not able to reproduce experimentally observed precise data of the single-
particle structure energies of the nucleus using the mean field approach.

The non-central potential due to the interaction between the spin of nucleons with the angular
momentum of orbital that nucleons located on it, is called spin-orbit interaction. As a result of
spin-orbit interaction [7, 8], the nuclear energy level for a given l  (except for l =0) is split in to
two sublevels. The sublevels are characterized by total angular momentum numbers equal to
(l + 1

2 ) and (l − 1
2 ) corresponding to whether the spin is parallel or anti-parallel to the orbital

angular momentum. Each sublevel with spin j accommodates ( 2 j + 1 ) neutrons or protons.
The same interaction with a different structure is observed in atoms with a different sign as in
the nucleus.

Consider that the harmonic oscillator central potential is produced only for the first three
observed magic numbers 2, 8, and 20. To obtain the remaining numbers 28, 50, 82 and 126, it
is necessary to add a spin-orbit interaction potential to the Schrödinger equation.
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The origin of the spin–orbit interaction is not the same in atoms and nucleus. The atomic spin–
orbit force is due to a well-known electromagnetic interaction, and the scale of energy
separation is in the order of milli-electronvolts, while the energy difference of sublevels
separated because of the nuclear spin-orbit interaction is in the order of million electronvolts
and its origin is not well understood yet. In most cases, this force is considered phenomeno‐
logically. For the spin–orbit term, we use [9]
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The second pair of parentheses guarantees that the derivative does not operate on the wave
function when substituted in the radial Schrödinger equation. The r dependence of this
interaction arises from its central nature.

The derivative part of this potential is often neglected for simplicity and vLS (r) is replaced by
a constant; however, to obtain precise results, the radial part should be considered. We have

0  0.44 0.LSv V=

To obtain the strength of the spin-orbit part, we use
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In addition to the mean field plus spin–orbit interaction, protons in nuclei interact together via
the coulomb force, which is defined by the following relation, considering nuclei as a sphere
with a constant charge density [10]
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To obtain the energy spectrum and wave functions for neutrons, one needs to solve the radial
Schrödinger equation for the Woods-Saxon and spin-orbit potentials. Such second-order
differential equation cannot be solved analytically. To solve this complicated differential
equation, it is necessary to introduce some new variables and use reasonable approximations.
By introducing new variable [11] y = 1

1 + exp
(r − R )
a

, the Woods–Saxon potential reduces to its

simple form VWS = V0y while the spin-orbit term changes to V LS =
(y − y 2)

R0 + aln( 1
y − 1) . For orbits with

small l , the Taylor expansion of the 1
r  near r = rm, is reasonable. According to the definition of

variable y we have, f (y) ≡ 1

1 + exp
(r − R )
a

 hence by expanding f (y)  around ym ≡
1

1 + exp
(rm − R0)

a

 with

0< ym<1, since 0< y <1, y 3 and the higher terms are negligible, the radial part of the spin-orbit
term can be approximated using [12],
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where C0, C1, and C2 are dimensionless coefficients and evaluated as
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Likewise, the Taylor expansion is applicable for 1
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This type of expansion has been widely used for differential equations resulting from the
Schrödinger equation with different potentials [12].

By means of these expansions, the spin-orbit term transforms into

( )VLS C0  C1y  C2y2 ,= + +

and the centrifugal term is obtained

Vc.f= D0+D1y+D2( y2).

By using these expansions, the spin-orbit term transforms into V LS  ∝ (Co +  C1y +  C2y
2) and

the centrifugal term is changed to the favorable type  VCF  ∝ (Do +  D1y +  D2y
2). The substi‐

tution of V LS   and VCF   as a function of variable y into the Schrödinger equation transforms this
equation in to the following analytically solvable differential equation
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This equation can be transformed into the following simple form,
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Equation (20) can be transformed into the well-known form of hypergeometric differential
equation or, alternatively Nikiforo-Avorono (NU) type [13]. The obtained results using the NU
method are
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where Γ is the well-known gamma function, and C is the normalization constant. λ, μ, and η'

are defined as follows
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Note that λ is valid only for the β 2 >ε 2 + γ 2 condition. In a special case where l=0, the solution
reduces to its simple form. Also, the energy eigenvalues are obtained as a function of z
satisfying the following relation
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and
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Finally,

( )2
0 1E V Z= -

The results obtained in this special case are in agreement with the results obtained using other
methods [14].

3. Conclusions

In this chapter we briefly discussed the idea of mean field theory as an improvable approxi‐
mation method for many-body problems of identical particles like atoms and nucleus that
cannot be solved analytically. We have shown that for a system of A - nucleons nucleus by
considering a suitable potential using this model, one is able to obtain energy spectrum and
wave equations. However, the obtained results cannot reproduce the measured nuclear
spectroscopy, but one may hope to become successful by considering an accurate potential in
the Schrödinger equation.
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