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1. Introduction 

There have been many researches about humanoid robot motion control, for example, 

walking pattern generation (Huang et al, 2001) (Kajita et al, 2002, 2003), walking control 

(Choi et al, 2006) (Grizzle et al, 2003) (Hirai et al, 1998) (Kajita et al, 2001) (Kim & Oh, 2004), 

(Lohmeier et al, 2004) (Park, 2001) (Takanishi et al, 1990) (Westervelt et al, 2003), running 

control (Nagasaki et al, 2004, 2005), balancing control (Kajita et al, 2001) and whole body 

coordination (Choi et al, 2007) (Kajita et al, 2003) (Sentis & Khatib, 2005) (Goswami & 

Kallem, 2004) (Harada et al, 2003) (Sugihara & Nakamura, 2002). Especially, the whole body 

coordination algorithm with good performance becomes a core part in the development of 

humanoid robot because it is able to offer the enhanced stability and flexibility to the 

humanoid motion planning. In this chapter, we explain the kinematic resolution method of 

CoM Jacobian with embedded motion which was suggested in (Choi et al, 2007), actually, 

which offers the ability of balancing to humanoid robot. For example, if humanoid robot 

stretches two arms forward, then the position of CoM(center of mass) of humanoid robot 

moves forward and its ZMP(zero moment point) swings back and forth. In this case, the 

proposed kinematic resolution method of CoM Jacobian with embedded motion offers the 

joint configurations of supporting limb(s) calculated automatically to maintain the position 

of CoM fixed at one point. 

Also, a design of balancing controller with good performance becomes another important 
part in development of humanoid robot. In balancing control, the ZMP control is the most 
important factor in implementing stable bipedal robot motions. If the ZMP is located in the 
region of supporting sole, then the robot will not fall down during motions. In order to 
compensate the error between the desired and actual ZMP, various ZMP control methods 
have been suggested; for example, direct/indirect ZMP control methods (Choi et al, 2004) 
(Kajita et al, 2003) and the impedance control (Park, 2001). Despite many references to 
bipedal balancing control methods, research on the stability of bipedal balancing controllers 
is still lacking. The exponential stability of periodic walking motion was partially proved for 
a planar bipedal robot in (Grizzle et al, 2003) (Westervelt et al, 2003). Also, the ISS 
(disturbance input-to-state stability) of the indirect ZMP controller was proved for the 
simplified bipedal robot model in (Choi et al, 2004, 2007). In this chapter, we will explain the 
balancing control method and its ISS proof which were suggested in (Choi et al, 2007). The O
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suggested method offers the stable balancing control as well as the function of whole body 
coordination to humanoid robot. Also, the suggested control method includes both the 
CoM/ZMP trajectory tracking control and CoM/ZMP set-point regulation control based on 
the kinematic resolution of CoM Jacobian with embedded task motions. Due to the 
modeling uncertainties and the complexity of the full dynamics of a bipedal walking robot, 
we will represent the dynamic walking robot as a simple rolling sphere model on a 
constraint surface. And then the ISS is proved for the simplified model of bipedal robot.  
This chapter is organized as follows: section 2 introduces a simplified model for bipedal 
walking robot, section 3 explains the kinematic resolution method of CoM Jacobian with an 
embedded task motion, section 4 suggests the balancing controller for humanoid robot and 
proves its ISS for the simplified bipedal robot model, section 5 shows the experimental 
results about the stable balancing functions obtained by using the kinematic resolution 
method of CoM Jacobian with embedded motion, and section 6 concludes the chapter. 

2. Rolling sphere model 

The bipedal walking mechanism is an essential part of humanoid robot. Since humanoid 
legs have high degrees of freedom for human-like motion, it is difficult to use their full 
dynamics to design controller and to analyze stability. Therefore, we will simplify the 
walking related dynamics of bipedal robot as the equation of motion of a point mass 
concentrated on the position of CoM as shown in Fig. 1. 

Body Center 

Frame

CoM

X
Y

Z

World Coorinate 

Frame

ZMP
 

Fig. 1. Humanoid Robot 

First, let us assume that the motion of CoM is constrained on the surface, = zz c , then the 

rolling sphere model with the concentrated point mass m  can be obtained as the simplified 

model for bipedal robot as shown in Fig. 2. In Fig. 2, the motion of the rolling sphere on a 

massless plate is described by the position of CoM, = [ , , ]Tx y zc c c c , and the ZMP is described 

by the position on the ground, = [ , ,0]Tx yp p p .  
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Fig. 2. Rolling Sphere Model for Humanoid Robot 

Second, the equations of motion of the rolling sphere (mass =m) in Fig. 2 are expressed on 

the plane = zz c  by:  

 =x y y zmgc mc cτ − $$  (1) 

 =
y x x z

mgc mc cτ − + $$    (2) 

=
z x y y x

mc c mc cτ − +$$ $$
 

where g  is the acceleration of gravity, zc  is a height constant of constraint plane and iτ  is 

the moment about i-th coordinate axis, for = , ,i x y z . Now, if we introduce the conventional 

definition of ZMP as following forms to Eq. (1) and (2): 

y

xp
mg

τ= −
 

x
y

p
mg

τ=
 

then ZMP equations can be obtained as two differential equations:  
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= z
x x x

c
p c c

g
− $$

 
(3)

 

 

= .z
y y y

c
p c c

g
− $$

  
(4)

 

Actually, above equations can be easily obtained by finding the position of zero moment on 
the ground in Fig. 2 like these:  

= ( ) ( ) = 0p y y y z
y

M mg p c mc c− − −∑ $$
  

= ( ) ( ) = 0.
p x x x z
x

M mg p c mc c− +∑ $$
 

Also, the state space realization of ZMP equations (3) and (4) can be written as:  

2 2

0 1 0
= ,

0

i i

i

i n i n

c cd
p

c cdt ω ω
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦$ $

 

for = ,i x y , where /n zg cω =  means the natural radian frequency of the simplified biped 

walking robot system. These state space equations describe the relation between the 

dynamics of CoM and the ZMP. Above equations will be used to prove the stability of the 

balancing controller in the following sections. 

3. Kinematic resolution method for balancing 

In this section, we will explain the kinematic resolution method of CoM Jacobian with 

embedded motion, ultimately for humanoid balancing. Let a robot has n limbs and the first 

limb be the base limb, for example, n=4 for humanoid robot except the neck. The base limb 

can be any limb but it should be on the ground to support the body. Each limb of a robot is 

hereafter considered as an independent limb. In general, i-th limb has the following relation:  

=o o

i i ix J q$ $
 

for = 1,2, ,i nA , where 6o

ix ∈ℜ$  is the velocity of the end point of i-th limb, 
n
i

iq ∈ℜ$  is the 

joint velocity of i-th limb, 
6 no i

iJ
×∈ℜ  is the usual Jacobian matrix of i-th limb, and in  means 

the number of active links of i-th limb, at least, 6in ≥  for the limb related with leg. The 

leading superscript o implies that the elements are represented on the body center 

coordinate system shown in Fig. 1 and Fig. 2, which is fixed on a humanoid robot.  

3.1 Compatibility condition 
In our case, the body center is floating, and thus the end point motion of i-th limb about the 

world coordinate system is written as follows:  

 
1= o

i i o o i ix X x X J q− +$ $ $
  

(5)
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where 6= [ ; ]T T T

o o ox r ω ∈ℜ$ $  is the velocity of the body center represented on the world 

coordinate system, and  

6 63

3 3

[ ]
=

0

o

o i

i

I R r
X

I

×⎡ ⎤× ∈ℜ⎢ ⎥⎣ ⎦  

is a (6 6)×  matrix which relates the body center velocity and the i-th limb velocity. 3I  and 

3
0  are an (3 3)×  identity and zero matrix, respectively. o

o iR r  is the position vector from the 

body center to the end point of the i-th limb represented on the world coordinate frame. 

[( ) ]⋅ ×  is a skew-symmetric matrix for the cross product. The transformation matrix o
X  is  

3 6 6

3

0
=

0

o

o

o

R
X

R

×⎡ ⎤∈ℜ⎢ ⎥⎣ ⎦  

where 3 3

oR
×∈ℜ  is the orientation of the body center represented on the world coordinate 

frame, and hereafter, we will use the relation o

i o iJ X J= . Also, the concrete proof of Eq. (5) is 

in appendix 9.1. 

All the limbs in a robot should have the same body center velocity, in other words, from Eq. 

(5), we can see that all the limbs should satisfy the compatibility condition that the body 

center velocity is the same, and thus, i-th limb and j-th limb should satisfy the following 

relation:  

 
( ) = ( ).
i i i i j j j j

X x J q X x J q− −$ $ $ $
  

(6)
 

From Eq. (6), the joint velocity of any limb can be represented by the joint velocity of the 

base limb and Cartesian motions of limbs. Actually, the base limb should be chosen to be the 

support leg in single support phase or one of both legs in double support phase. Let us 

express the base limb with the subscript 1, then the joint velocity of i-th limb is expressed as:  

 1 1 1 1= ( ),i i i i iq J x J X x J q+ +− −$ $ $ $
  

(7)
 

for = 2, ,i nA , where iJ
+  means the Moore-Penrose pseudoinverse of iJ  and  

1 3 1

1 1

3 3

[ ( ) ]
= .

0

o o

o i

i i

I R r r
X X X

I

− ⎡ ⎤− ×= ⎢ ⎥⎣ ⎦  

Note that if a limb is a redundant system, any null space optimization scheme can be added 

in Eq. (7). With the compatibility condition of Eq. (6), the inverse kinematics of humanoid 

robot can be solved by using the information of base limb like Eq. (7), not by using the 

information of body center like Eq. (5).  

3.2 CoM Jacobian with fully specified embedded motions 
Now, let us rewrite the conventional CoM Jacobian suggested in (Sugihara & Nakamura, 

2002) as follows:  
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 =1

= ( ) .
n

o

o o o o c i
i

i

c r c r R J qω+ × − +∑$ $ $
  

(8)
 

 

where n is the number of limbs, c is the position vector of CoM represented on the world 

coordinate system, namely, = [ , , ]Tx y zc c c c , 
3 no i

c
i

J
×∈ℜ  means CoM Jacobian matrix of i-th 

limb represented on the body center coordinate frame, and hereafter, we will use the 

relation o

c o c
i i

J R J= . Also, the concrete proof of Eq. (8) is in appendix 9.2. 

 

 

Fig. 3. Position of CoM of the k-th link in i-th limb 

Remark 1 The CoM Jacobian matrix of i-th limb represented on the body center frame is expressed by  

 

,

,

=1

,

n oi
i ko

c i k
i

k i

c
J

q
μ ∂= ∂∑

  
(9)

 

where 3

,

o

i kc ∈ℜ  means the position vector of center of mass of k-th link in i-th limb represented on 

the body center frame as shown in Fig. 3 and the mass influence coefficient of k-th link in i-th limb is 
defined as follow:  

 

,

,

,

=1 =1

,
i k

i k nn i

i k

i k

m

m

μ =∑∑
 

(10)

 

where 
,i k

m  is the mass of k-th link in i-th limb. Also, the systematic derivation of CoM Jacobian 

matrix of Eq. (9) is in appendix 9.3.  
The motion of body center frame can be obtained by using Eq. (5) for the base limb as 
follows:  

{ }1 1 1 1=ox X x J q−$ $ $
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113 1

1

13 3 1

[ ]
= ,

0

o
v

o o

o

Jr rI R r
q

JI ωω ω
⎧ ⎫⎡ ⎤⎡ ⎤×⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥−⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎪ ⎪⎣ ⎦⎩ ⎭

$ $
$

 

(11)

 

where 
1
vJ  and 

1
Jω  are the linear and angular velocity part of the base limb Jacobian 1J  

expressed on the world coordinate frame, respectively. Now, if Eq. (7) is applied to Eq. (8) 
for all limbs except the base limb with subscript 1, the CoM motion is rearranged as follows:  

 
1 1 1 1 1 1

1
=2 =2

= ( ) ( ) .
n n

o o o c c i i i c i i
i i

i i

c r c r J q J J x X x J J X J qω + ++ × − + + − +∑ ∑$ $ $ $ $ $
 

(12)

 
 

Here, if Eq. (11) is applied to Eq. (12), then the CoM motion is only related with the motion 
of base limb:  

 
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1
=2 =2

= ( )
n n

c v c c c i i i c i i
i i

i i

c r r J q r J q J q J J x X x J J X J qωω + ++ × − + × + + − +∑ ∑$ $ $ $ $ $ $ $
 

(13)

 
 

where 1 1=
c
r c r− . Also, if the base limb has the face contact with the ground (the end-point 

of base limb represented on world coordinate frame is fixed, 1 = 0x$ , namely, 1 = 0r$ , 1 = 0ω ), 

then Eq. (13) is simplified as follows:  

1 1 1 1 1 1 1
1 1 1

=2 =2

= .
n n

c i i v c c c i i
i i

i i

c J J x J q r J q J q J J X J qω+ +− − + × + +∑ ∑$ $ $ $ $ $
 

Finally, 1
3 n×  CoM Jacobian matrix with embedded motions can be rewritten like usual 

kinematic Jacobian of base limb:  

 fsem fsem 1
=  ,c J q$ $

  
(14)

 

where  

 
fsem

=2

,
n

c i i
i

i

c c J J x
+= −∑$ $ $

  

(15)

 

fsem 1 1 1
1 1 1

=2

.
n

v c c c i i
i

i

J J r J J J J X Jω += − + × + +∑
 

Here, if the CoM Jacobian is augmented with the orientation Jacobian of body center 

(
1

1
=o J qωω − ) and all desired Cartesian motions are embedded in Eq. (15), then the desired 

joint configurations of base limb (support limb) are resolved as follows:  

 

fsem fsem,

1,

,1

= ,
d

d

o d

J c
q

Jω ω
+⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦

$
$

  

(16)

 

where the subscript d means the desired motion and  
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fsem, ,

=2

= .
n

d d c i i d
i

i

c c J J x
+−∑$ $ $

  

(17)

 

All given desired limb motions, 
,i d

x$  are embedded in the relation of CoM Jacobian, thus the 

effect of the CoM movement generated by the given limb motion is compensated by the 

base limb. The CoM motion with fully specified embedded motions, fsem,d
c$ , consists of two 

relations: a given desired CoM motion(the first term) and the relative effect of other 

limbs(the second term). The CoM Jacobian with fully specified embedded motions, fsemJ  

also consists of three relations: the effect of the body center(the first and the second term), 

the effect of the base limb(the third term), and the effect of other limbs(the last term). 

The CoM Jacobian with fully specified embedded motions fsemJ  is a 1(3 )n×  matrix where 1n  

is the dimension of the base limb, which is smaller than that of the original CoM Jacobian, 

thus the calculation time can be reduced. After solving Eq. (16), the desired joint motion of 

the base limb is obtained. The resulting base limb motion makes a humanoid robot balanced 

automatically during the movement of the all other limbs. With the desired joint motion of 

base limb, the desired joint motions of all other limbs can be obtained by Eq. (7) as follow:  

, , 1 1 1,= ( ),i d i i d i dq J x X J q
+ +$ $ $

 

for = 2, ,i nA . The resulting motion follows the given desired motions, regardless of 

balancing motion by base limb. In other words, the suggested kinematic resolution method 

of CoM Jacobian with embedded motion offers the WBC(whole body coordination) function 

to the humanoid robot automatically.  

3.3 CoM Jacobian with partially specified embedded motion 
In some cases, the desired motion of any limb is specified in the joint configuration space. 

For example, let us consider that the walking motions (for the leg limbs of i=1,2) are 

partially specified in Cartesian space and the other limb motions (for i=3,4) in joint space, 

then the kinematic resolution method of Eq. (14) in the previous section should be slightly 

modified as follows:  

 

psem psem,

1,

,1

= ,
d

d

o d

J c
q

Jω ω
+⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦

$
$

  

(18)

 

 2, 2 2, 21 1 1,= ( )d d dq J x X J q
+ +$ $ $

  

(19)

 

where the CoM desired motion and CoM Jacobian with partially specified embedded 
motion are expressed by, respectively,  

 
psem, 2 2, ,

2
=3

,
n

d d c d c i d
i

i

c c J J x J q
+= − −∑$ $ $ $

  

(20)

 

psem 1 2 21 1
1 1 1 2

.v c c cJ J r J J J J X Jω += − + × + +
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The walking motion is generally specified as the Cartesian desired motions for dual legs but 
the motions of other limbs can be specified as either joint or Cartesian desired motion. Also, 
if we are to implement the robot dancing expressed by desired joint motions, then the 
desired dancing arm motions as well as desired CoM motion are embedded in the suggested 
resolution method and then the motion of base limb (support leg) are automatically 
generated with the function of auto-balancing. This is main advantage of the proposed 
method.  

4. Design of balancing controller 

Since a humanoid robot is an electro-mechanical system including many electric motors, 
gears and link mechanisms, there are many disturbances in implementing the desired 
motions of CoM and ZMP for a real bipedal robot system. To show the robustness of the 
controller to be suggested against disturbances, we apply the following stability theory to a 
bipedal robot control system. The control system is said to be disturbance input-to-state 
stable (ISS) (Choi & Chung, 2004), if there exists a smooth positive definite radially 

unbounded function ( , )V e t , a class K ∞  function 1γ  and a class K  function 2γ  such that 

the following dissipativity inequality is satisfied:  

 1 2(| |) (| |),V eγ γ ε≤ − +$
  

(21)
 

where V$  represents the total derivative for Lyapunov function, e is the error state vector 

and ε  is disturbance input vector. In this section, we propose the balancing 

(posture/walking) controller for bipedal robot systems as shown in Fig. 4.  
 

 

Fig. 4. Balancing Controller for Humanoid Robot 

In this figure, first, the ZMP Planer and CoM Planer generate the desired trajectories 
satisfying the following differential equation:  

 
2

, , ,= 1/       = , .i d i d n i dp c c for i x yω− $$
  

(22)
 

Second, the simplified model for the real bipedal walking robot has the following dynamics:  
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 i i i
c u ε= +$

  
(23)

 

21/       = ,i i n ip c c for i x yω= − $$
 

where i
ε  is the disturbance input produced by actual control error, i

u  is the control input, 

i
c  and i

p  are the actual positions of CoM and ZMP measured from the real bipedal robot, 

respectively. Actually, the real bipedal robot offers the ZMP information from force/torque 
sensors attached to the ankles of humanoid and the CoM information from the encoder data 
attached to the motor driving axes, respectively, as shown in Fig. 4. Here, we assume that 
the disturbance produced by control error is bounded and its differentiation is also 

bounded, namely, | |<
i

aε  and | |<
i

bε$  with any positive constants a and b. Also, we should 

notice that the control error always exists in real robot systems and its magnitude depends 
on the performance of embedded local joint servos. The following theorem proves the 
stability of the balancing controller to be suggested for the simplified bipedal robot model. 
Theorem 1 Let us define the ZMP and CoM error for the simplified bipedal robot control system 
(23) as follows:  

, ,p i i d i
e p p= −

 

, ,
     = , .

c i i d i
e c c for i x y= −

 

If the balancing control input i
u  in Fig. 4 has the following form:  

 , , , ,= d

i i p i p i c i c iu c k e k e− +$
  

(24)
 

under the following gain conditions:  

 

2 2
2

, ,>       0 < < n
c i n p i

n

k and k
ω βω γω
⎛ ⎞− −⎜ ⎟⎝ ⎠   

(25)

 

with any positive constants satisfying the following conditions:  

2 2

<       < ,n
n

n

and
ω ββ ω γ ω

−
 

then the balancing controller gives the disturbance input( ,
i i
ε ε$ )-to-state( , ,,

p i c i
e e ) stability (ISS) to a 

simplified bipedal robot, where, the ,p i
k  is the proportional gain of ZMP controller and ,c i

k  is that of 

CoM controller in Fig. 4.   
Proof.  First, we get the error dynamics from Eq. (22) and (23) as follows:  

 
2

, , ,= ( ).c i n c i p ie e eω −$$
  

(26)
 

Second, another error dynamics is obtained by using Eq. (23) and (24) as follows:  

 , , , , ,= ,
p i p i c i c i c i i

k e e k e ε+ +$
  

(27)
 

also, this equation can be rearranged for c
e$ :  
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 , , , , ,= .
c i p i p i c i c i i
e k e k e ε− −$

  
(28)

 

Third, by differentiating the equation (27) and by using equations (26) and (28), we get the 
following:  

 

( ), , , , ,

2

, , , , , , , , , ,

22 2

, ,,

, , ,

, , ,

= 1/

= / ( ) / ( ) (1/ )

1
= ( ).

p i p i c i c i c i i

n p i c i p i c i p i p i p i c i c i i p i i

n p i c in c i

c i p i i c i i

p i p i p i

e k e k e

k e e k k k e k e k

k kk
e e k

k k k

ε
ω ε ε

ωω ε ε

+ +
− + − − +

⎛ ⎞ ⎛ ⎞−− − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

$$ $$ $

$

$
 

(29)

 

Fourth, let us consider the following Lyapunov function:  

 

2 2 2 2 2

, , , , , ,

1
( , ) ( ) ,

2
c i p i c i n c i p i p iV e e k e k eω⎡ ⎤= − +⎣ ⎦

  

(30)

 

where ( , )
c p

V e e
 
is the positive definite function for

 ,
> 0

p i
k

 
and

 ,
>

c i n
k ω , except

 ,
= 0

c i
e

 
and

 
,

= 0
p i
e . Now, let us differentiate the above Lyapunov function 

 

 

2 2 2

, , , , , ,

2 2 2 2 2 2 2

, , , , , , , , , , , , , ,

2 2 2 2 2 2 2 2 2

, , , , , , , , , ,

= ( )

= ( ) ( ) ( )

= ( ) ( ) ( )

c i n c i c i p i p i p i

c i c i n c i p i n p i c i p i c i n c i i p i p i i p i c i p i i

c i c i n c i p i n p i c i p i c i n c i c i

V k e e k e e

k k e k k k e k e k e k k e

k k e k k k e k e e

ω
ω ω ω ε ε ε
ω ω ω α α

− +
− − − − − − + −
− − − − + − −

$ $ $

$
2

2

2

2 2

2 2 2 2 2 2

, , , , , , ,2 2

2 2 2 2 2 2 2 2

, , , , , , ,

2

2 2

, , ,

1 1

2 4

1 1 1 1

2 4 2 4

= ( )( ) [ ( ) ]

1
( )

2

i i

p i p i p i i i p i c i p i p i i i

c i c i n c i p i n p i c i p i

c i n c i i p i

k e e k k e e

k k e k k k e

k e k

ε εα α
β β ε ε γ γ ε εβ β γ γ
α ω ω γ β
ω α ε βα

⎛ ⎞+ +⎜ ⎟⎜ ⎟⎝ ⎠
⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟+ − − + + − + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

− − − − − + −
− − + −

$ $

2 2

, , , ,

2 2

, , ,, 2 2

2 2 2

1 1

2 2

( )

4 4 4

p i i p i c i p i i

p i c i p ic i n

i i

e k k e

k k kk

ε γ εβ γ
ω ε εα γ β

− − +
⎡ ⎤−+ + +⎢ ⎥⎢ ⎥⎣ ⎦

$

$
 

Therefore,  

 

2 2 2 2 2 2 2 2

, , , , , , ,

2 2

, , ,, 2 2

2 2 2

( )( ) [ ( ) ]

( )

4 4 4

c i c i n c i p i n p i c i p i

p i c i p ic i n

i i

V k k e k k k e

k k kk

α ω ω γ β
ω ε εα γ β

≤ − − − − − + −
⎡ ⎤−+ + +⎢ ⎥⎢ ⎥⎣ ⎦

$

$
  

(31)

 

where 2

,c ie  term is negative definite with any positive constant satisfying <
n

α ω  and 2

,p ie  

term is negative definite under the given conditions (25). Here, since the inequality (31) 
follows the ISS property (21), we concludes that the proposed balancing controller gives the 
disturbance input( ,

i i
ε ε$ )-to-state(

, ,
,

p i c i
e e ) stability (ISS) to the simplified control system 

model of bipedal robot.                                                                                                               K  
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The balancing control input i
u  suggested in above Theorem 1 is applied to the term d

c$  in 

Eq. (17) or Eq. (20). In other words, two equations (17) and (20) should be modified to 

include the balancing controller (24) to compensate the CoM/ZMP errors as follows:  

 
fsem, ,

=2

= ( )
n

d d p p c c c i i d
i

i

c c k e k e J J x
+− + −∑$ $ $

  

(32)

 

 
psem, 2 2, ,

2
=3

= ( )
n

d d p p c c c d c i d
i

i

c c k e k e J J x J q
+− + − −∑$ $ $ $

  

(33)

 

where kp and c
k  imply the diagonal matrices with the corresponding kp,i and kc,i elements, 

respectively, and ep and c
e  imply the corresponding vectors with ep,i and ec,i elements, 

respectively. Also, in order to obtain the desired joint driving velocity, the kinematic 

resolution method of Eq. (16) or Eq. (18) suggested in previous section should be applied to 

the real bipedal robot. 

Remark 2 Note that the ZMP controller in above theorem has the negative feedback differently from 
the conventional controller. Also, for practical use, the gain conditions of balancing controller can be 

simply rewritten without arbitrary positive constants β  and γ  as follows:  

, ,
>       0 < <     = , ,

c i n p i n
k and k for i x yω ω

 
because the stability proof is very conservative in above theorem.  
The suggested balancing control method can be divided as the kinematic resolution and 

closed-loop kinematic control of CoM Jacobian with embedded motion. First, the proposed 

kinematic resolution method has main advantage such that it offers the whole body 

coordination function such as balance control to humanoid robot automatically. Second, the 

proposed closed-loop kinematic control method offers the stability and robustness to 

humanoid motion control system against unknown disturbances. For arbitrary given arm 

motions such as dancing, the partially specified embedded CoM motion term psem,d
c$  is 

automatically changed with the desired arm motions ( 3,d
q$  and 

4,d
q$ ) in Eq. (33), and then 

both desired leg motions ( 1,d
q$  and 

2,d
q$ ) are generated by using the equations (18) and (19). 

Like this, the suggested kinematic resolution method offers the whole body coordination 

function such as balance control to humanoid robot automatically.  

5. Experimental results 

In this section, we show the performance of proposed kinematic resolution method and the 

robustness of balancing controller through experiments for humanoid robot `Mahru I' 

developed by KIST. Its Denavit-Hartenberg parameters for kinematics and centroid/mass 

data for CoM kinematics are in Table 1. These data are utilized to resolve the CoM Jacobian 

with embedded motions kinematically. 

First, in order to show the automatic balancing (or the function of WBC) by the kinematic 
resolution method developed in section 3, we implemented the dancing motion of 
humanoid robot. The desired dancing arm motions shown in Fig. 5 are applied to the dual  
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Left Leg α  (rad) a (m) d (m) θ  (rad) Centroid( , ,
x y z

σ σ σ )(m) Mass(kg) 

LL0 0 0.09 -0.146 /2π  (0.0,0.031,-0.0338) 2.067 

1 /2π  0 0 0 (0.0295,0.0,-0.0015) 1.8206 

2 /2π  0 0 /2π−  (0.2249,0.0187,-0.0156) 3.3586 

3 0 0.31 0 0 (0.1451,0.0285,-0.0026) 2.2238 

4 0 0.31 0 0 (0.0,-0.0257,-0.0143) 2.6922 

5 /2π−  0 0 0 (0.0951,0.0047,0.0083) 1.9091 

6 0 0.103 0 0 x x 

Right Leg       

RL0 0 -0.09 -0.146 /2π  (0.0,0.031,-0.0338) 2.067 

1 /2π  0 0 0 (-0.0295,0.0,-0.0015) 1.8206 

2 /2π  0 0 /2π−  (0.2249,0.0187,0.0156) 3.3586 

3 0 0.31 0 0 (0.1451,0.0285,0.0026) 2.2238 

4 0 0.31 0 0 (0.0,-0.0257,0.0143) 2.6922 

5 /2π−  0 0 0 (0.0951,-0.0047,0.0083) 1.9091 

6 0 0.103 0 0 x x 

Left Arm       

LA0 0 0 0 0 (0.0278,0.0,-0.051) 0.823 

1 /2π−  0 -0.061 /2π−  (0.062,0.000125,-0.0085) 1.437 

2 /2π  0 -0.0055 /2π  (0.00798,-0.00146,0.2) 0.9 

3 /2π−  0 0.224 /2π  (0.0,-0.0228,0.00739) 0.11 

4 /2π  0 0 0 (-0.0025,0.000035,0.153) 0.781 

5 /2π−  0 0.225 /2π−  (0.0,-0.0208,0.017) 0.053 

6 0 0.041 0 /2π−  x x 

Right Arm       

RA0 0 0 0 0 (0.0278,0.0,0.051) 0.823 

1 /2π−  0 0.061 /2π−  (0.062,0.000125,-0.0085) 1.437 

2 /2π  0 -0.0055 /2π  (-0.00798,-0.00146,0.2) 0.9 

3 /2π−  0 0.224 /2π  (0.0,-0.0228,-0.00739) 0.11 

4 /2π  0 0 0 (-0.0025,0.000035,0.153) 0.781 

5 /2π−  0 0.225 /2π−  (0.0,-0.0208,0.017) 0.053 

6 0 0.041 0 /2π−  x x 

Head       

H0 0 0.04 0.47 0 (0.0,0.0,0.0) 0.5 

1 /2π−  0 0 0 (0.0,0.0,0.0) 0.5 

2 0 0 0 0 x x 

Pelvis x x x x (-0.056,0.0,-0.0173) 4.6341 

Waist x x x x (0.0,0.0,0.17) 25.7 

Table  1. The DH parameters, centroid and mass data of KIST humanoid `Mahru I' 
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arms, and then the motions of support left/right legs are generated as shown in Fig. 6 by the 
suggested kinematic resolution method of CoM Jacobian with embedded dancing arm 
motions. Actually, we utilized the kinematic resolution method of CoM Jacobian with the 
partially specified embedded motion, namely, Eq. (18) and Eq. (19). The initial positions of 

CoM are = 0.034[ ],  = 0.0[ ],  = 0.687[ ]
x y z
c m c m c m , respectively. The experimental results 

show the good performance of proposed method. Though the joint configurations of dual 
arms are rapidly changed with the dancing motion given as shown in Fig. 5, the position of 
CoM is not nearly changed at the initial position as shown in Fig. 6. The joint configurations 
of both legs are automatically generated as shown in Fig. 7 to maintain the CoM position 
constantly. Also, we can see in Fig. 8 that the ZMP has the small changes within the bounds 
of 0.01[ ]m±  approximately. As a result, we could succeed in implementing the fast dancing 

motion stably thanks to the developed kinematic resolution method of CoM Jacobian with 
embedded (dancing) motion. 
 

  
  

 

Fig. 5. Desired Joint Trajectories of Left and Right Arms while Dancing 
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Fig. 6. Experimental Result: Actual CoM Trajectories while Dancing 

 

Fig. 7. Experimental Result: Actual Joint Trajectories of Left and Right Legs generated by the 
developed Kinematic Resolution Method while Dancing 
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Fig. 8. Experimental Result: Actual ZMP Trajectories while Dancing 

 Second, in order to show the performance of the suggested balancing controller of Eq. (33) 
against external disturbances, we realized the corresponding experiments only for both legs 
as shown in Fig. 9. In experiment, if we push the robot forward or pull it backward, then the 
ZMP errors are caused and these ZMP errors give rise to the balancing controller input of 
Eq. (33) and then the balancing control input is resolved using the suggested resolution 
method of Eq. (18) and Eq. (19). Hence, the robot was able to recover the original posture as 
shown in Fig. 9. These results demonstrate the robustness and performance of proposed 
balancing controller.  
  

 

Fig. 9. Experimental Result: Performance of Balancing Controller 
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6. Concluding remarks 

In this chapter, the kinematic resolution method of CoM Jacobian with embedded task 
motion and the balancing control method were proposed for humanoid robot. The proposed 
kinematic resolution method with CoM Jacobian offers the whole body coordination 
function to the humanoid robot automatically. Also, the disturbance input-to-state stability 
(ISS) of the proposed balancing controller was proved to show the robustness against 
disturbances. Finally, we showed the effectiveness of the proposed methods through 
experiments.  
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9. Appendix 

9.1 Proof of Eq. (5) 
In Fig. 1, the position of i-th limb represented on the world coordinate is given by  

= o

i o o ir r R r+
 

where o
R  is the rotation matrix of body center frame with respect to world coordinate 

frame. Let's differentiate above equation, then  

 
=      = [ ]o o

i o o i o i o o or r R r R r R Rω+ + ← ×$ $$ $ $
 

= [ ]      [ ] = [ ]o o

i o o o i o ir r R r R r a b b aω+ × + ← × − ×$ $ $
 

= [ ]o o

i o o i o o ir r R r R rω− × +$ $ $
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in which,  

0

[ ] = 0

0

z y

z x

y x

a a

a a a

a a

⎡ ⎤−⎢ ⎥× −⎢ ⎥⎢ ⎥−⎣ ⎦  
 

Now, if we include the angular velocity, then the total velocity of i-th limb motion 
represented on the world coordinate can be obtained as follows:  

= [ ]o o

i o o i o o ir r R r R rω− × +$ $ $
 

= o

i o o iRω ω ω+
 

 Therefore,  

33

33 3

0[ ]
=

00

o o
i o oo i i

o
i o o i

r r RI R r r

RIω ω ω
⎡ ⎤ ⎡ ⎤− ×⎡ ⎤ ⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

$ $ $

 

in short, 

    
1    = o

i i o o i ix X x X J q−∴ +$ $ $
 

9.2 Proof of Eq. (8) 
In Fig. 1, the position of CoM represented on the world coordinate is given by  

=1

=
n

o

o o i

i

c r R c+∑
 

Let us differentiate above equation, then  

=1

= ( )
n

o o

o o i o i

i

c r R c R c+ +∑ $$ $ $
 

=1 =1

=
n n

o o

o o o i o i

i i

c r R c R cω+ × +∑ ∑$ $ $
 

=1

= ( )   =
n

o o o

o o o o i i ci i

i

c r c r R c c J qω+ × − + ←∑$ $ $ $ $
 

=1

   = ( )
n

o

o o o o ci i

i

c r c r R J qω∴ + × − +∑$ $ $
 

9.3 Derivation of CoM jacobian of i-h limb: o

c
i

J  

The CoM position of k-th link in i-th limb represented on the body center frame is given by  
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1

, 1 1=o o o k

i k k k kc r R c
−− −+

 
 

where 1

o

kr −  and 1

o

kR −  mean the position and rotation matrix of (k-1)-th link frame in i-th 

limb represented on the body center frame, respectively, and  

,

1

,

,

cos( ) sin( ) 0

( ) = sin( ) cos( ) 0

0 0 1

k k k x

k

k z k k k k k y

k z

q q

c R q q q

σ
σ σ

σ
−

⎡ ⎤−⎡ ⎤ ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦  
 

in which ( )
z k

R q  is the z-directional rotation matrix about k-th link driving axis and k
σ  

means the constant centroid position of k-th link with respect to (k-1)-th frame, this should 

be obtained from the design procedures of robot similarly to the Denavit-Hartenberg 

parameters. Let us differentiate and rearrange above equation like this:  

1 1

, 1 1 1

1 1 1

1 1 1 1

1 1

1 1 1 1

1 1

=

= ( )

=   =

= ( ) ,

o o o k o k

i k k k k k k

o o o k o k k

k k k k k k k

o o o k o o o k

k k k k k k k k

o o o

k k k z k k

c r R c R c

r R c R c

r R c since R

r R R q

ω ω
ω ω ω ω
ω σ

− −− − −
− − −− − − −

− −− − − −
− −

+ +
+ × + ×
+ × +
+ ×

$$ $ $

$
$
$

 

in which  

1 1= ( )o o o

k k k kq zω ω − −+ $
 

1 2 1 1 2= ( ).o o o o o

k k k k kr r r rω− − − − −+ × −$ $
 

 

where 1

o

kz −  means the z-direction (or driving axis) vector of (k-1)-th link frame represented 

on body center frame. For instance, for k=1 (first link of i-th limb),  

,1 0 1 0 1 1

1 0 0 1 1

= ( )

= [ ( ) ],

o o o o

i z

o o

z

c r R R q

q z R R q

ω σ
σ

+ ×
×

$ $

$
 

 

for k=2 (second link of i-th limb),  

,2 1 2 1 2 2

1 0 1 0 1 0 2 1 1 2 2

1 0 1 0 1 2 2 2 1 1 2 2

= ( )

[ ( )] [ ( ) ( )] ( )

= [ ( ( ) )] [ ( ) ]

o o o o

i z

o o o o o o
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z z
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q z r r R R q q z R R q
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$ $
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 for k=3 (third link of i-th limb),  

,3 2 3 2 3 3

1 0 2 0 2 1 2 1 1 0 2 1 3 2 2 3 3

1 0 2 0 2 3 3 2 1 2 1 2 3 3 3 2 2 3 3

= ( )
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 for = ik n  (last link of i-th limb),  

, 1 1

1 0 1 0 1 2 1 1 1 1

1 1

= ( )

= [ ( ( ) )] [ ( ( ) )]
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o o o o
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$ $

$ $ A

$
 

 

The CoM position of i-th limb represented on the body center frame is obtained as follow:  

, ,

=1

=

n
i

o o

i i k i k

k

c cμ∑
 

 

where 
,i k

μ  means the mass influence coefficient of k-th link in i-th limb defined as Eq. (10). 

Also, its derivative has the following form:  

 
, ,
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Therefore,  
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In short,  
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In addition, the total CoM position represented on the body center frame is also obtained as 
follow:  

, ,

=1 =1 =1

     = =

nn n i
o o o

i i k i k

i i k

c c cμ∴ ∑ ∑∑
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The book presents an excellent overview of the recent developments in the different areas of Robotics,
Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design;
it also introduces new mathematical tools and techniques devoted to improve the system modeling and
control. An important point is the use of rational agents and heuristic techniques to cope with the
computational complexity required for controlling complex systems. Through this book, we also find navigation
and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be
included in the next generation of productive systems developed by man.
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