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1. Introduction 

Diagnosability property and fault detection schemes have been widely addressed on 
centralized approaches using the global model of the Discrete Event System (DES).  Roughly 
speaking, diagnosability is the property of determining if using the system model is possible 
to detect and locate the faulty states in a finite number of steps. In the works (Sampath, et 
al., 1995) and (Sampath, et al., 1996), a method for modeling a DES using finite automata is 
proposed; based on this model, a diagnoser is derived. The cycles in the diagnoser are used 
to determine when the DES is diagnosable. 
Recently, fault diagnosis of DES has been addressed through a distributed approach 
allowing breaking down the complexity when dealing with large and complex systems 
(Benveniste, et al., 2003; O. Contant, et al., 2004; Debouk, et al., 2000; Genc & Lafortune, 
2003; Jiroveanu & Boel, 2003; Pencolé, 2004; Arámburo-Lizárraga, et al., 2005).  
In (Debouk, et al., 2000) it is proposed a decentralized and modular approach to perform 
failure diagnosis based on Sampath's results (Sampath, et al., 1995). In (Contant, et al., 2004) 
and (Pencolé, 2004) the authors presented incremental algorithms to perform diagnosability 
analysis based on (Sampath, et al., 1995) in a distributed way; they consider systems whose 
components evolve by the occurrence of events; the parallel composition leads to a complete 
system model intractable. In (Genc & Lafortune, 2003) it is proposed a method that handles 
the reachability graph of the PN model in order to perform the analysis similarly to 
(Sampath, et al., 1995); based on design considerations the model is partitioned into two 
labelled PN and it is proven that the distributed diagnosis is equivalent to the centralized 
diagnosis; later, (Genc & Lafortune, 2005) extend the results to systems modeled by several 
labelled PN that share places, and present an algorithm to determine distributed diagnosis. 
In (Qiu & Kumar, 2005) it is studied the codiagnosability property, this property guarantees 
that any faults occurred in the system must be detected by at least one local diagnoser in a 
finite number of steps using the local information, besides, a notion of safe-codiagnosability 
is mentioned to capture the fact that the system has a safe specification while the system 
performance is tolerable. (Arámburo-Lizárraga, et al., 2005) proposes a methodology for 
designing reduced diagnosers and presents an algorithm to split a global model into a set of 
communicating sub-models for building distributed diagnosers.  The diagnosers handle a 
system sub-model and every diagnoser has a set of communication events for detecting and O
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locating the faults of the corresponding sub-model.  (Arámburo-Lizárraga,  et al., 2007) 
shows how to design low interaction distributed diagnosers reducing the communication 
among them and proposes a redundant distributed diagnoser scheme composed by a set of 
independent modules handling two kinds of redundancy (duplication or TMR).   
This work considers the system modeled as an interpreted PN (IPN) allowing describing the 
system with partially observable states and events; the model includes the possible faults it 
may occur. In order to build such a model, this work presents a bottom-up modeling 
methodology in which the behavior of the system elements is decomposed into state 
variables; a range for each state variable must be settled. These ranges represent the possible 
values of state variables. Afterwards, these rages are coded into IPN (modules), where each 
value is represented by a different place. Then two composition operators for joining 
modules are used; the first one is named synchronic composition, which merges transitions 
according to certain rules. It is similar to the synchronic product presented in (Giua & 
DiCesare, 1994); the second one is named permissive composition, which uses selfloops for 
enabling transitions among modules; this allows constraining the model behavior into the 
actual system behavior. This new operator avoids the use of tuning phases of other 
modeling methods used in supervisory control (Giua & DiCesare, 1994). Based on the 
derived IPN model with the proposed methodology, the diagnosability property for IPN 
models is introduced. Roughly speaking, this property says that an IPN is diagnosable if it is 
possible to know both, when a faulty place is marked and which faulty place is marked.  
This property is closely related to the observability property (Aguirre-Salas, et al., 2002) and 
(Ramírez-Treviño, et al., 2003) and polynomial algorithms to test when an IPN is 
diagnosable are derived, avoiding the reachability analysis of other approaches. Also, a 
distributed diagnoser is presented; every distributed diagnoser uses the local information or 
communication among diagnosers for detecting and locating a system fault. The 
diagnosability property is preserved in the distributed architecture. Redundancy techniques 
could be applied to the distributed diagnosers to detect and locate a malfunction in the 
distributed diagnosers set.   
The chapter is organized as follows: section 2 provides basic definitions of PN, IPN and the 
modeling methodology are presented. In section 3 the property of input-output 
diagnosability is defined and characterized, a diagnoser scheme devoted to detect and 
isolate failure states is also presented.  Section 4 presents a procedure to build a reduced IPN 
model. Section 5 describes a method for model decomposition allowing interaction 
distributed diagnosers, also, it is presented a redundant scheme for reliable diagnosis 
applying redundancy to the distributed diagnosers. Finally, conclusions are given. 

2. Basic notations and system modeling 

2.1 Petri net basics 

We consider systems modeled by Petri Nets and Interpreted Petri Nets.  A Petri Net 
structure is a graph G  = (P, T, I, O) where: P = {p1, p2, ..., pn} and  T = {t1, t2 ,... ,tm} are finite 

sets of nodes called respectively places and transitions, I (O): P × T → ℤ+ is a function 
representing the weighted arcs going from places to transitions (transitions to places), where 

ℤ
+ is the set of nonnegative integers. 

The symbol •tj (tj
•) denotes the set of all places pi such that I(pi,tj)≠0 (O(pi,tj)≠0). Analogously, •pi (pi

•) denotes the set of all transitions tj such that O(pi,tj)≠0 (I(pi,tj)≠0) and the incidence 
matrix of G is C=[cij], where cij = O(pi,tj) - I(pi,tj). 
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A marking function M: P→ℤ+ represents the number of tokens (depicted as dots) residing 

inside each place. The marking of a PN is usually expressed as an n-entry vector.   

A Petri Net system or Petri Net (PN) is the pair N=(G,M0), where G is a PN structure and M0 

is an initial token distribution. R(G,M0) is the set of all possible reachable markings from M0 

firing only enabled transitions.  In a PN system, a transition tj is enabled at marking Mk if ∀pi ∈ P, Mk(pi) ≥ I(pi,tj); an enabled transition tj can be fired reaching a new marking Mk+1 which 

can be computed as Mk+1 = Mk + Cvk, where vk(i)=0, i≠j, vk(j)=1.  

Interpreted Petri Nets (IPN) (Ramírez-Treviño, et al., 2003) is an extension to PN that allow 

to associate input and output signals to PN models.  An IPN (Q, M0) is an Interpreted Petri 

Net structure where Q = (G, Σ, λ,ϕ) with an initial marking M0, G is a PN structure, Σ = {α1, 

α2, ... ,αr} is the input alphabet of the net, where αi is an input symbol, λ: T→Σ ∪{ε} is a 

transition labelling function with the following constraint: ∀tj,tk ∈ T, j ≠ k, if ∀pi I(pi,tj) = 

I(pi,tk) ≠ 0 and both λ(tj) ≠ ε, λ(tk) ≠ ε, then λ(tj) ≠ λ(tk); ε represents an internal system event, 

and ϕ : R(Q,M0)→( ℤ+)q is an output function that associates to each marking an output 

vector, where q is the number of outputs.  In this work ϕ is a q×n matrix.  If the output 

symbol i is present (turned on) every time that M(pj)≥1, then ϕ (i,j)=1, otherwise ϕ(i,j)=0. 

A transition tj ∈ T of an IPN is enabled at marking Mk if ∀pi ∈ P, Mk(pi) ≥ I(pi,tj). If tj is 

enabled at marking Mk, and λ(tj) is present, then tj can be fired reaching Mk+1, i.e., 

1+⎯→⎯
k

t

k
MM j ; Mk+1 can be computed using the state equation: 

Mk+1 = Mk + Cvk 

yk  = ϕ(Mk) 
(1) 

where C and vk are defined as in PN and yk ∈ (ℤ+)q is the k-th output vector of the IPN. 

The sequence ......
kji
ttt=σ  is a firing transition sequence of an IPN (Q,M0) if 

......
10

⎯→⎯⎯→⎯⎯→⎯ kji t

x

tt MMM  According to functions λ and ϕ, transitions and places of 

an IPN (Q,M0) are classified.  If λ(ti) ≠ ε the transition ti is said to be manipulated. Otherwise 

it is non-manipulated. A place pi ∈ P is said to be measurable if the i-th column vector of ϕ  

is not null, i.e. ϕ (•,i) ≠ 0. Otherwise it is non-measurable. The following concepts are useful 

in the study of the diagnosability property. 

The set £(Q,M0) = { ......
kji
ttt=σ  ∧ ......

10
⎯→⎯⎯→⎯⎯→⎯ kji t

x

tt MMM  } of all  firing  

transition  sequences  is called the firing language of  (Q,M0).  

A sequence of input-output symbols of (Q,M0) is a sequence ω = (α0,y0)(α1,y1)...(αn,yn), where 

αj ∈ Σ ∪{ε}.  The symbol αi+1 is the current IPN input when the output changes from yi to yi+1. 

It is assumed that α0 = ε and y0 = ϕ(M0).  

The firing transition sequence σ ∈ £(Q,M0) whose firing actually generates ω is denoted by 

σω. The set of all possible firing transition sequences that could generate the word ω is 

defined as Ω(ω) = {σ | σ ∈ £(Q,M0) ∧ the firing of σ produces ω}. 

The set Λ(Q,M0) = {ω | ω is a sequence of input-output symbols} denotes the set of all 

sequences of input-output symbols of (Q,M0) and the set of all input-output sequences of 

length greater or equal than k will be denoted by Λk(Q,M0), i.e. Λk(Q,M0) = {ω ∈ Λ(Q,M0) | 

|ω| ≥ k} where k ∈ ℕ.  
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The set ΛB(Q,M0) = {ω ∈ Λ(Q,M0) |  σ∈Ω(ω) such that  
j

MM ⎯→⎯σ
0

 and  Mj  enables  no 

transition, or when ⎯→⎯ it

j
M   then ( ) →=• 0,

i
tC  } denotes all input-output sequences 

leading to an ending marking in the IPN (markings enabling no transition or only self-loop 
transitions). 
An IPN (Q, M0) described by the state equation (1) is event-detectable iff the firing of any 
pair of transition ti, tj of (Q, M0) can be distinguished from each other by the observation of 
the sequences of input-output symbols. 
The following lemma (Rivera-Rangel, et al., 2005) gives a polynomial characterisation of 
event-detectable IPN. 
Lemma 1: A live IPN given by (Q,M0) is event-detectable if and only if: 

1. ∀ti, tj ∈ T such that λ(ti) = λ(tj) or λ(ti) = ε it holds that ϕC(•,ti) ≠ ϕC(•,tj) and 

2. ∀tk ∈ T  it holds that ϕC(•,tk) ≠ 0. 

2.2 System modeling 

We work with the modeling methodology proposed in (Ramírez-Treviño, et.al.,2007). The 
methodology follows a modular bottom-up strategy. After identifying the system 
components, a set of state variables is assigned to every component, each state variable 
behavior is modeled by a PN model, herein named module. Then the set of modules are 
integrated into a single model according to the appropriate relationships achieved through 
two module composition operations. This methodology builds binary IPN modules to 
represent the behavior of each component of the identified DES and the relationships 
between them. The model captures the normal and faulty behavior of the individual 
components of the system. Below it is described the detailed steps of the methodology.  

2.2.1 Modeling methodology 

1. System components.- The system components must be identified and named. 
Afterwards, a finite set System_Components= {sc1, sc2,…, scn} of these names must be 
created. A system component could be a valve, a motor, a system resource, etc. 

2. State variables.- For each system component, the different variables needed to represent 
its behavior must be chosen. In other words, the finite set State_Variablesi= {svi1, svi2,…, 

svim} associated to the system component sci∈ System_Components must be built. These 
variables could represent the position (for instance a valve position), velocity, voltage, 
etc. of each system component, or could represent a task descriptor (for instance a 
machine state). There exists at least one state variable for each system component. 

3. Set of values.- For each state variable svij ∈ State_Variablesi, the set { }ij
p

ijij

sv
valvalvalValue i

j

,...,,
21

=  of possible values of svij must be stated. Necessary faulty 

values should also be considered in this set. For instance, the variable "valve_position" 
may take four values: "Open", "Closed", "ErrorOnOpen" and "ErrorOnClosed", or the 
variable "task_machine1" may take three values: "loading", "processing", and 
"unloading". 

4. Codification.- The values in each set i

jsv
Value must be represented in terms of PN 

markings. This can be easily achieved if binary places are used. Thus, for each svij ∈ 
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State_Variables_i a set { }ij
n

ijij

sv
pppP i

j

,...,,
21

=  of places such that i

jsv
Value = i

jsv
P must be 

created. The marking of these places is binary and mutually exclusive. Then, M(pijz)=1 

means that the variable svij takes the value 
ij

z
val . Because of the existence of faulty 

values, the set of places can be partitioned into the subsets 
F

svij
P  and 

N

svij
P , representing 

the faulty and normal values respectively. 

5. Event modeling.- For each pair of values ij

m
val , ij

n
val  such that the state variable svij 

could change from value ij

m
val  to a value ij

n
val , a transition ij

mn
t must be created. Then, 

one arc going from place ij

m
p  to transition ij

mn
t  and one arc going from transition ij

mn
t  to 

place ij

n
p must be added. 

6. Initial marking.- The initial marking is defined as: ( ) 1
0

=ij

m
pM  if the initial value of the 

variable svij  is ij

m
val and ( ) 0

0
=ij

m
pM  otherwise. 

7. Output.- The output of this algorithm is a set of isolated PN modules, each one 
modeling the behavior of a state variable svij . 

8. Perform synchronous composition and permissive among modules IPN to obtain the 
global IPN model system (see Alcaraz-Mejía et al. 2003) and (Ramírez-Treviño et al. 
2007).  

In the IPN system model the sets of nodes are partitioned into faulty nodes (PF, places 
coding faulty states, and TF, transitions leading to faulty states) and normal functioning 

nodes (PN and TN); so P = PF ∪ PN  and  T = TF∪TN. N

i
p denotes a  place in PN.  Since   PN  ⊆  

P then  N

i
p  also belongs to (Q, M0). The set of risky places of (Q, M0) is PR = •TF.   The post-

risk transition set of (Q, M0) is TR = PR• ∩ TN.  ( )NN MQ
0

, denotes the embedded normal 

behavior of (Q, M0), i.e., ( )NN MQ
0

, is the subnet induced by normal nodes. 

Example 1.   Consider the producer-consumer scheme depicted in figure 1.  
 

Buffer of 2-slots

Producer Consumer

Buffer of -slots

Producer Consumer

Buffer of 2-slots

Producer Consumer

Buffer of -slots

Producer Consumer

 

Fig. 1. Producer-Consumer with buffer of 2-slots scheme 

The model consists of a producer unit (PU), a consumer unit (CU) and a buffer of 2-slots. 
The behavior of this system is the following. The producer unit PU creates and delivers 
products into the free buffer positions. The consumer unit CU retrieves products from the 
buffer when there is a product stored into a buffer slot. The producer unit PU could reach a 
faulty state from its producing state. Similarly, the consuming unit could reach a faulty state 
from its consuming state. We model each system component isolately (see figure 2), then the 
synchronous composition and permissive operations are applied to obtain the global system 
model of the producer-consumer scheme. In figure 3 is depicted the normal system behavior 
model; figure 4 includes the faulty behavior, in this case when PU stops its production and 

www.intechopen.com



 Advances in Robotics, Automation and Control 
 

 

74 

CU stops its consumption.  The places p1, p2, p3 represent the normal PU behavior  and p11 

represents the faulty behavior. Places p4, p5, p6 represent the normal CU behavior  and p12 
represents the faulty behavior. The places p7, p8, p9 and p10 represent the 2- slots of the 

buffer. Function λ is defined as λ(t1)=a, λ(t8)=b; and λ(ti)=ε for others transitions.  
Measurable places are p3, p6, p8, p10, PR= {p3,p6}, TR = {t1,t8}, TF = {t9,t10} and PF = {p11,p12}. 

3. Centralized diagnosability 

The characterisation of input-output diagnosable IPN is based on the partition of R(Q,M0) 
into normal and faulty markings where all the faulty markings must be distinguishable from 
other reachable markings. 
 

p1

p11

p3

p2

p4

p5

p6

p12

p7

p8

Producer Model

1-th slot buffer model

Consumer Model

t1

t3

t10

t9

t2
t8

t12t11

t5t4

p9

p10

2-th slot buffer model

t7t6

 

Fig. 2. IPN modules of the identified components 

p1

p3

p2

p4

p5

p6

p9

p10

t1

t3

t8

t7

t5
t2

p7

p8

t6
t4

 

Fig. 3. Normal behavior of the IPN of the producer-consumer scheme 

p1

p11

p3

p2

p4

p5

p6

p12

p9

p10

t1

t3

t8

t7

t10t9

t5
t2

p7

p8

t6
t4

 

Fig. 4. Normal and Faulty behavior of the IPN of the producer-consumer scheme 
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Definition 1: An IPN given by (Q,M0) is said to be input - output  diagnosable in k < ∞ steps if 

any marking  Mf  ∈ F is distinguishable from any other Mk ∈ R(Q,M0) using any word ω ∈ 

Λk(Q,Mf) ∪ ΛB(Q,Mf), where F = {M | ∃pk ∈ PF such that M(pk)>0, M ∈ R(Q,M0)}. 
The following result provides sufficient structural conditions for determining the input-
output diagnosability of an IPN model. 

Theorem 1: Let (Q,M0) be a binary IPN,   such  that   ( )NN MQ
0

,  is live, strongly connected 

and event detectable.  Let {X1,...,Xτ} be the set of all T-semiflows of (Q,M0).  If ∀ N

i
p ∈ PN, ( )•N

i
p ∩ TF ≠ ∅ the following conditions hold: 

1. ∀r, ∃j Xr(j)≥1, where tj ∈ ( )•N

i
p  - TF, 

2. ∀tk ∈ ( )•N

i
p - TF, •(tk)={ N

i
p } and λ(tk) ≠ ε. 

then the IPN (Q,M0) is input-output diagnosable. 

Proof: Assume that (Q,M0)  meets all conditions of the theorem. Since ( )NN MQ
0

,  is live, then 

it is live by places (see Desel & Esparza, 1995), i.e. ∀p ∈ P there exists a marking Mk such 

that Mk(pi)>0, previous observation is also valid for any N

i
p ∈ PN , ( )•N

i
p ∩ TF ≠ ∅. Thus 

there exists σω such that 
k

MM w⎯→⎯σ
0

and ( ) 1=N

ik
pM . The input-output symbol word 

generating σω will be denoted by ω. Choose the longest transition firing sequence σω not 
including transitions in TF (could be the empty one). Such sequence must be marking a place 

N

i
p ∈ PN , ( )•N

i
p ∩ TF ≠ ∅ since in the next step a faulty transition should be fired. 

Since the initial marking is known, ( )NN MQ
0

, is event detectable, and σω contains no faulty 

transitions, then the marking Mk such that 
k

MM w⎯→⎯σ
0

, can be computed using the IPN 

state equation. 

Since N

i
p  has a token at Mk, then a transition F

i
t  ∈ ( )•N

i
p ∩ TF could be fired reaching a 

faulty marking Mj. Thus, we will prove that it is possible to detect that Mj is reached. 

Assume that such transition 
F

i
t  at Mk. Thus 

j

t

k
MMM

F

iw ⎯→⎯⎯→⎯σ
0

and Mj adds a token 

into a place F

j
p ∈ ( ) ••N

i
p ∩ PF  and removes a token from the place 

N

i
p . Since the use of the 

modeling methodology assures that ( ) ελ =F

i
t  and ( ) ( )

jk
MM ϕϕ = , then the firing of F

i
t  

cannot be detected using the current sequence of input-output symbols, i.e. it is not possible 
to determine when the faulty marking Mj was reached. In other words, the input-output 

symbol word ω generates both σω and σω F

i
t . In order to detect when Mj is reached, we 

proceed as follows. 

Since it holds that ∀r, ∃j Xr(j)≥1, tj ∈ T - TF , then no T-semiflow can be fired without firing a 

transition in ( )•N

i
p - TF. Moreover, since the number of transitions in (Q,M0) is finite, then 

the length of a sequence attempting to fire a transition ( )•N

i
p  should be finite. Then a 

transition tk ∈ ( )•N

i
p ∩ TN must be attempted to fire after the firing of a finite sequence. 

Since the current marking in the net is the faulty marking Mj, then tk cannot be fired. Since 

the condition 2 indicates that ( ) ελ ≠
k
t , then we can detect when the symbol ( )

k
tλ is given to 
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the system. Moreover, since •(tk)= { }N
i
p , if tk cannot be fired, then certainly that ( ) 0=N

ij
pM and that ( ) 1=F

jj
pM , where F

j
p ∈ ( ) ••N

i
p ∩ PF . Thus the faulty marking Mj is 

detected, i.e. the IPN is input-output diagnosable.  ฀ 

3.1 Diagnosability test 

Determining when an IPN is input-output diagnosable is reduced to the following tests. 
1. Binarity of (Q,M0). It is fulfilled because of the modeling methodology. 
2. Liveness of modules can be tested efficiently; however the property is not preserved 

during arbitrary module composition operators. Thus some constraints in the 
application of synchronous and permissive compositions are introduced to guarantee 
liveness during composition. Such constraints may follow the rules introduced in (Koh 
& DiCesare, 1991) for module composition. 

3. Event detectability and strongly connectedness are determined in polynomial time as 

well as detecting places N

i
p ∈ PN such that ( )•N

i
p ∩ TF ≠ ∅. Then condition 2 of previous 

theorem is efficiently tested. 
4. Finally, condition 1 can be verified in polynomial time. In this case we need to check 

that there exists no T-semiflow that does not include transitions in ( )•N

i
p , N

i
p ∈ PN such 

that  ( )•N

i
p ∩ TF ≠ ∅. Thus we need to check that the following linear programming 

problems have no solutions. 
N

i
p∀ ∈ PN such that N

i
p ∈ PN, ( )•N

i
p ∩ TF ≠ ∅ 

        ∄X 
 s.t. 
 CX=0 

 x(j)=0,∀tj∈ ( )•N

i
p - TF 

There exist different strategies for constructing the diagnoser-model, we presented two 

different ways: a centralized and a distributed diagnoser.   A centralized diagnoser model is 

composed by a copy of the normal system behavior of (Q,M0).  Also a reduced diagnoser 

model can be built.  Also, this work handles a distributed diagnoser which is very useful for 

large and complex system besides incorporate reliability to the system diagnosis process 

through redundancy techniques applied to the distributed diagnoser model.  The different 

diagnoser models are defined in the following sections. 

3.2 Centralized diagnoser design 

Diagnosability theorem given above provides the basis for designing an on-line diagnoser 

(see figure 5).  Such diagnoser can detect a fault and locate faulty markings reached by an 

IPN. The proposed scheme for diagnosis (Ramírez-Treviño, et al., 2004) handles a copy of 

the normal behavior model which must evolve similarly to the system; the outputs of both 

the system and the model are compared and, when there is a difference, a procedure is 

started to compute the faulty marking. 

Example 2.  The IPN system model depicted in figure 3 represents the normal behavior 
model for the producer-consumer diagnoser. The initial marking M0 represents that all the 
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buffers are empty, the PU is waiting to deliver and the CU state is idle. Since this IPN is 
input-output diagnosable by theorem 1, then we can detect and locate the fault with the 
diagnoser. The system and its on-line diagnoser are depicted in figure 6, notice the 
diagnoser is a copy of the system.  Now assume that the events represented by the sequence 
t2t3 are executed into the system, then the sequence t2t3 is fired in the diagnoser model. Thus 
both, the system and the diagnoser-model have the same output "producing" and 
"consuming". If the fault transition t11 is fired, then p11 is marked in the system and no 
system output change is detected. When the symbol of t1, λ(t1) is given as input to the 
system, then the diagnoser-model evolves and its new output is "consuming", however the 
output of the system continues in "producing" and "consuming". Then the difference is the 
signal "producing"; thus the algorithm determines that p11 is marked, thus the fault is 
isolated. 

DiagnoserDiagnoser

(Q,M0)
Input

event-

detetion

Ek

Fault

isolation

algorithm
Faulty 

state
DiagnoserDiagnoser--modelmodel

)( N

k

N Mϕ

-

+

(QN,M0
N)

)( kMϕ
Output of (Q,M0)

Output of (QN,M
0
N)

System

 

Fig. 5. On-line diagnose scheme 
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t3
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t10t9
t5

t2
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Fig. 6. On-line diagnoser model 
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4. Reduced diagnoser 

4.1 Diagnoser model 

Definition 2: The proposed diagnoser model structure for the system normal behavior (QN, 

M0N) is an IPN (Qd, M0d) where the set of places is Pd ={pd} and the set of transitions is Td=TN, 

the incidence matrix Cd of (Qd, M0d) is the following 

 Cd = BTϕNCN   (2) 

where BT is a q×1 vector (q is the number of measurable places of ((QN,M0N))), ϕN is the 
output matrix of (QN, M0N), CN is the incidence matrix of (QN, M0N).  
The initial marking of the diagnoser model structure for one place is computed as: 

 ( )NNTd MBM
00

ϕ=   (3) 

We propose a matrix B that is computed as follows: 
Algorithm 1: Building B 

Inputs: C-incidence matrix of an IPN, 
       l - number of places in the diagnoser-model,  
      q - number of measurable places in the IPN, 
Outputs: A matrix B 

1. The “base number” b should be computed. In this case b=2max(abs(cij))+1, where cij is an 
element of incidence matrix C. 

2. Define a q × 1 vector. 

3. [ ]110 −qbbb "  

This procedure computes matrix B. 
According to the way in which B was constructed, all columns of Cd must different from 
zero and different from each other. 

If a transition ti ∈ T - (TR ∪ TF) is fired in (Q,M0) then it is fired in (Qd, M0d) (it is possible 

since these transitions are event detectable, thus the output system information is enough to 

detect when one of these transition is fired). 

If a transition tj∈TR is enabled in (Qd, M0d) and λ(tj) is activated in (Q,M0), then tj must be 

fired in (Qd, M0d). Thus, if tj is not fired in (Q,M0), then (Q,M0) reached a faulty marking. In 

this case the output of the system and the output of the diagnoser are different from each 

other. 

4.2 Error computation and fault isolation 

Definition 3. Error computation. The k-th error is computed by the following equation: 

 ek= Mkd -  BT(ϕMk)  (5) 

Notice that ek is computed from the diagnoser-model output and not from the marking Mk. 

It means that the proposed diagnoser is using the system output and not internal system 

signals (those signals that are non measurable). 

Definition 4. Fault isolation. When ek ≠ 0, an error is detected, then a faulty marking was 

reached. The mechanism used to find out the faulty marking is named fault isolation. This 

work proposes the following algorithm to accomplish this task. 
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Algorithm 2: Fault isolation 

Inputs: Mk , Mkd , ek. 
Outputs: p(faulty place), Mf(faulty marking) 
Constants: Cd is the IPN diagnoser structure incidence matrix 
i = index of the column of Cd such that Cd(1,i)= ek 

     - ∀p∈ · ti, Mk (p)=0 

     - ∀p∈ ti ·, Mk (p)=0 

     - ∀pF∈ (•ti) •• ∩PF, Mk (pF )=1 
     -  Mf = Mk 
     -  Return (p, Mf) 

Example 3. Consider the system of the example 1.  The IPN depicted in figure 4 represents 
the behavior of the system of example 1. Since this IPN is input-output diagnosable by 
theorem 1, then a diagnoser can be built for this system. In this case we will use the reduced 
structure presented in this section. 

1 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0
; 

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

NC φ

− −⎡ ⎤⎢ ⎥−⎢ ⎥⎢ ⎥−⎢ ⎥− − ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥= = ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎣ ⎦⎢ ⎥−⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥−⎣ ⎦

 

The base obtained to compute B is b=2*1+1=3; since we build B using algorithm 9. We obtain 
the following vector: 

[ ]TTB 27931=  

Therefore Cd  is: 

[ ]3327991271 −−−−=dC  

Hence, its associated IPN is depicted in figure 7. 
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Fig. 7.  The IPN reduced diagnoser-model  
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The initial marking of the diagnoser is M0d =[3]. In order to show how the diagnoser works, 
assume that the following sequence t2t3 is executed into the system, then this sequence is 
fired in the diagnoser. Thus the system output is [ ]1011))(( =T

k
Mϕ , and the marking of 

the IPN diagnoser is Mkd =[3 1]. Then ek= Mkd - (BT )(ϕMk)  = [31] – [31] = 0, thus the system is 
in a normal state. Now if the faulty transition t9 is fired, then p11 is marked, however no 
change in the output system is detected. If the symbol of t1 (λ(t1)=a) is given as input to the 
IPN of the system model and IPN diagnoser, then the diagnoser evolves, and Mk+1 d =[30]. 

Then ek = −1 indicating the existence of an error. The fault isolation algorithm (algorithm 2) 
detects that the column 1 of Cd is equal to ek, thus t1 was not fired in the system. Then the 
same algorithm detects the faulty marking and determines that the faulty place p11 is 
marked. 

5. Distributed diagnoser 

5.1 Model distribution 
In order to build a distributed diagnoser, the IPN model (Q, M0) can be conveniently 
decomposed into m interacting modules where different modules share nodes (transitions 
and/or places).  

Definition 5. Let (Q,M0) be an IPN. A module μk = (Nk, Σk, λk, ϕk) is an IPN subnet of the 
global model (Q,M0), where: 

• Nk = (Tk, Pk, Ik, Ok, IkC, OkC, M0k) where: 

• Tk ⊆ T, 

• Pk = PkL ∪ PkC;  PkL ⊆ P; PkC represents the communication places among modules; this set 

is a copy of some places PlL that belongs to other modules, l≠k. PkC is the minimal places that 
is required for the transitions of the module are event-detectable. M(PkC )= M(PlL). 

• Ik(Ok): PkL × Tk → Z+, s.t., Ik(pi,tj) = I(pi,tj) (Ok(pi,tj) = O(pi,tj)), ∀pi ∈ PkL and ∀tj ∈ Tk.  • IkC(OkC): PkC × Tl → Z+, s.t., IkC(pi,tj) = I(pi,tj) (OkC(pi,tj) = O(pi,tj)), ∀pi ∈ PkC and ∀tj ∈ 

Tl, l≠k. IkC(OkC) are the input(output) arcs to from pi∈ PkC  to transitions of other modules. 

• M0k = M0 |Pk • Σk = {α∈Σ⏐∃ti, ti ∈Tk, λ(ti) = α} 

• λk : Tk → Σk ∪ {ε}, s.t. λk(ti) = λ(ti) and ti ∈Tk • ϕk : R(μk, M0k) → (Z+)qk, qk is restricted to the outputs associated to Pk. 
Definition 6.  Let (Q,M0) be an IPN. A distribution DNi of (Q,M0) is a finite set of m modules, 
i.e.,  DNi={μ1, μ2,…,μm}.  The distribution DNi holds the following conditions: 

1.     ∩ ∪m

k

m

k

L

k

L

k
PPP1 1;= = == φ  (It is a partition over PkL). 

2.     ∪m

k k
TT1= = (It is not a partition) 

The set of communication places ∪m

k

C

kcom
PP 1==  of a distribution represents the measurable 

places of each module μk ∈ DNi needed to guarantee the event-detectability property of μk. 
Definition 7. Let DNi be a distribution of (Q,M0) and σ=titj…tk… be a sequence of £(Q,M0). We 
define the natural projection PTk of £(Q,M0) over the languages of the modules μk ∈ DNi  of 
the following way:  

PTk: £(Q,M0) → £(μk,M0k) 

∈∀
qsji
tttt ...  £(Q,M0)  
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There exists the input-output symbol projection over the input and output module symbols.  
Let ω = (α0,y0)(α1,y1)...(αn,yn)  be a sequence of symbols of (Q,M0) ( ) ( ) ( )( )

nkOUTnkINkOUTkINokOUTkINk
yPPyPPyPPP ,...,,,)(

110
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0)(' =sywhere
i

 if the measurable place does not belong to μk 

)()(' sysywhere
ii

=  otherwise. 

Example 4. Consider the IPN system model depicted in the figure 4. We partition the 
producer-consumer model to obtain a distributed model. The figure 8 depictes a distribution 
DNi.  For the sake of simplicity, we use in the example the same names for duplicated nodes 
(places or transitions) belonging to different modules. The distribution has three modules, 

i.e., |DNi|= 3; IkC(OkC) is represented by the dashed arcs. The module μ1 has the transitions 

T1 = {t1,t2,t3,t9} and the place set P1 = {p1,p2,p3,p11}∪{p10}. We are preserving the property of 
event detectability of common transitions duplicating measurable places, and using these 
copies in different modules. 
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Fig. 8. Distributed Interpreted Petri Net Models  

5.2 Distributed input-output diagnosability 
The results of centralized diagnosability are applied to the modules. 
A module is locally diagnosable if, for every local fault we can detect it only using local 
information, else it is conditionally diagnosable.  
Definition 8.  (Local Diagnosability) A module μn ∈ DNi is said to be locally input-output 
diagnosable in k < ∞ steps if any faulty marking Mfn ∈ R(μn, M0n) is distinguishable from any 

other Mkn ∈ R(μn, M0n) using words ωn, where 
nn

P ωωμ =Λ )( . 

www.intechopen.com



 Advances in Robotics, Automation and Control 
 

 

82 

Definition 9.  (Conditional Diagnosability) A module μn ∈ DNi is said to be conditional input-

output diagnosable in k < ∞ steps if any faulty marking Mfn ∈ R(μn, M0n) is distinguishable 

from any other Mkn ∈ R(μn, M0n) using words ωn and ωm, where 
nn

P ωωμ =Λ )(  and 

mm
P ωωμ =Λ )( , ωm denotes the set of all input-output sequences that lead to a marking a 

duplicate place in μm, where μn ≠ μm. 

5.3 Communication channels  

Definition 10. The border transitions between two modules μk and μz  is: Tkzborder = {ti | ti ∈ {Tk ∩ Tz}}.  This concept can be extended to several modules. 
The communication channels between two modules are represented by IkC(OkC). We assume 

that every module can communicate with every other module.  The firing of a transition tj ∈ 

Tk may be local to the module μk  and cause only a local marking change, or it may involve 

communication with another module if tj ∈ Tkzborder. Every time a transition tj ∈ Tkzborder is 

fired in μk then a message is sent to every μz containing the same tj ∈ Tkzborder to put a token in 

some place px ∈ PzC such that px ∈ •tj.  In (Lampson, 1993) it is proposed different ways to 
create protocols for implementing reliable messages. 

5.4 Redundant diagnoser 
Since distributed diagnosers leads to the use of several computers (CPU), then, redundancy 
can be introduced in the diagnosers.  For instance, the Triple Modular Redundancy (TMR) 
can be used in this case. 
Assume that a distribution DNi={μ1, μ2,…,μm} was obtained and that it was distributed over 
m computers (see figure 9). 
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Fig. 9. On-Line Distributed Diagnoser 

Then, a TRM scheme can be also applied to figure 9 (see figure 10), increasing the diagnoser 
reliability.  
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Fig. 10. On-Line Redundant Distributed Diagnoser 

6. Conclusions 

This chapter introduced the diagnosability property in DES modeled using IPN. It presented 
a structural characterization of this property using the T-semiflows of the IPN.   
The approach herein presented exploits the IPN structure to determine when it is 
diagnosable, this approach leads to polynomial characterization of diagnosability.  
Based on the DES model, three different types of diagnosers were presented. The first one 
was a centralized version, allowing to detect and locate faults. Sometimes, however, the 
system could very large; leading to large diagnoser models thus the other two diagnosers 
are designed to tackle this problem. 
The second diagnoser is a reduced scheme.  It uses one place; however the number of tokens 
could be large. The third diagnoser is a distributed one, were the diagnoser model is 
distributed over different computers. Adopting this approach the problems that appear in 
centralized versions are eliminated. Moreover, in this last case, a redundant diagnoser can 
be used for increasing the reliability of the distributed diagnosers.  
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