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1. Introduction

Immunostimulation by environmental and occupational factors has been shown to cause
various human diseases such as allergy and autoimmune diseases [1,2]. For example, solvents
such as vinyl chloride have been linked to the development of scleroderma (SSc) [3-5], and
previous studies reported the relationship between exposure to solvents and rheumatoid
arthritis (RA) [6] or multiple sclerosis [7,8]. Another typical substance is silica. Patients exposed
to silica particles were shown to develop not only pulmonary fibrosis, known as silicosis [9,10],
one of the typical forms of pneumoconiosis, but also various autoimmune diseases [11,12] such
as RA (historically known as Caplan syndrome) [13,14], SSc [15-17], systemic lupus erythem‐
atous (SLE) [18,19], and anti-neutrophil cytoplasmic antibody (ANCA)-related vasculitis/
nephritis [20-22]. Many epidemiological reports have demonstrated that silica exposure is a
risk factor of autoimmune diseases [11,12].

The mechanism of silica-induced autoimmune dysregulation has been attributed to silica
acting as an adjuvant [23,24]. However, silica particles may directly stimulate circulating
peripheral immune cells and cause certain alterations in the cellular or molecular functions of
these cells because these particles may be retained in pulmonary lesions as well as the lymph
nodes after they are inhaled into the body [9-12]. Therefore, if the direct effects of these particles
change the characteristics of immune cells leading to the dysregulation of immune tolerance,
clarifying these cellular and molecular mechanisms may be useful in preventing immune
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disorders in silicosis patients as well as providing an insight into the etiology of various
autoimmune diseases.

We previously investigated the immunological effects of silica using human peripheral blood
immune cells derived from healthy donors and silicosis patients [25-27]. In this review, we
summarized our findings, in which silica was shown to be an environmental immunostimu‐
lator and the chronic activation of immune cells by recurrent and chronic exposure to silica
was demonstrated to cause an imbalance in the regulation of T cell responses.

2. Autoantibodies detected in silicosis patients and their relationship with
HLA phenotypes

We previously measured autoantibodies in silicosis patients, all of whom were Japanese
brickyard workers in Bizen city, Okayama prefecture, Japan. All patients were diagnosed with
silicosis based on their radiological findings in accordance with the ILO 2000 guidelines. The
amount of free silica inhaled by these patients was estimated to be from 40 to 60%, as deter‐
mined by their work environment. No subjects exhibited any symptoms of autoimmune
diseases such as sclerotic skin, Raynaud’s phenomenon, facial erythema, or cancer.

We demonstrated that the overall titer of anti-nuclear antibodies (ANA) was higher in these
patients than in healthy volunteers [28]. In addition, silicosis patients without bullous diseases
tested positive for anti-desmoglein autoantibodies and the frequencies of HLA-DRB1*04,
HLA-DQB1*03, *0303, and *05, and HLA-DPB1*0402 and *0501 alleles were higher in these
patients than in a healthy Japanese control population in the literature [29,30]. Moreover, the
relationship between the autoantibodies in silicosis patients and HLA phenotypes was also
analyzed in silicosis patients with anti-topoisomerase I autoantibodies [30-34], and the results
obtained revealed that the allelic frequency of HLA-DQB1*0402 was significantly higher in
anti-topoisomerase I positive Japanese silicosis patients than in anti-topoisomerase I negative
patients or healthy donors [30-34].

We also assessed autoantibodies against Fas/CD95 [35], the cell death receptor, which plays
an important role in the apoptosis of lymphocytes, and caspase-8 [36,37]. This anti-Fas
autoantibody, in particular, was shown to induce apoptosis in Fas-expressing cells [35].

Even silicosis patients without any clinical symptoms of autoimmune diseases have various
inapparent alterations in self-tolerance depending on individual factors, such as HLA pheno‐
types. In addition, when both respiratory and immunological factors were analyzed using
factor analysis, this immunological progression was not concomitant with the development of
respiratory disease [38]. Respiratory and immunological factors were shown to deteriorate to
varying degrees in more than half of silicosis patients; however, a subpopulation was classified
as a better respiratory and worse immunological group, while the opposite group was also
reported [38].

Therefore, we attempted to confirm whether silica particles directly stimulated human
immune cells, particularly T cells, with experimental evidence.
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3. Schematic summary of the chronic activation of T cells by silica particles

A summary of the findings obtained and considerations are schematically presented in Figure
1. Silica particles were shown to chronically activate various T cells. Previous studies reported
that effector T cells expressed various activation markers such as PD-1 and CD25 and produced
many molecular markers for chronic T cell activation such as soluble Fas (sFas), decoy receptor
3 (DcR3), and soluble interleukin (IL)-2 receptor (sIL-2R) [39,40].

On the other hand, silica particles were also shown to activate CD4+CD25+FoxP3+regulatory
T cells (Treg). However, this chronic activation caused the enhanced expression of Fas/CD95
on the surface of Treg, which induced early apoptosis [41]. Therefore, Treg may be lost from
the peripheral blood, with the resulting imbalance between Treg and effector T cells subse‐
quently leading to autoimmune dysregulation.

Detailed explanations of these findings are presented below.

4. Immune stimulation of effector T cells by silica particles

Freshly isolated peripheral blood mononuclear cells (PBMCs) obtained from healthy donors
were incubated with silica particles. The CD69 expression on the membrane surface was
examined as a marker, demonstrating gradual activation of T lymphocytes during 10-day
incubation [42].

Other activation markers were examined in serum derived from silicosis patients and com‐
pared with those from healthy donors [43]. The results showed that sIL-2R levels were slightly
higher in silicosis patients than in healthy donors. sIL-2R levels were also examined in serum
derived from SSc patients, and correlations between sIL-2R levels and the immunological
status of healthy donors, silicosis patients, and SSc patients as 1, 2 and 3 for continuous
variables were analyzed. The correlation coefficient was shown to be 0.575 with p=0.0008,
which indicated that, from the viewpoint of immunological alterations based on serum sIL-2R
levels, silicosis patients were located between healthy donors and SSc patients. Elevated sIL-2R
levels may be a pathophysiological marker for hematological malignancies such as human T
lymphotropic retrovirus type-1 (HTLV-1) associated with adult T cell leukemia (ATL) and
hairy cell leukemia, which reflects the increased production of cells leading to an elevation in
serum titers [44-47]. Elevated sIL-2R levels have recently been reported in various autoimmune
or inflammatory diseases, suggesting that the immune response is activated by chronic
stimulation of T cells with an auto-or foreign antigen [48-51]. Therefore, the moderate, chronic
activation status of the immune system may play a role in silicosis.
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Figure 1. Schematic summary of the chronic activation of effector T cells, regulatory T cells (Treg; CD4+25+FoxP3+),
and Th17 caused by exposure to silica particles. The chronic activation of effector T cells caused these cells to express
activation surface markers such as CD25 and PD-1 with a decrease in the expression of the Fas/CD95 molecule. In‐
stead of a reduction in membrane Fas, these cells produced soluble Fas, an alternative spliced form of wild-type Fas,
and DcR3 as well as the soluble IL-2 receptor (sIL-2R). sFas and DcR3 prevented fas-ligand/Trail-induced apoptosis,
leading to longer survival. sIL-2R and DcR3 as well as sFas were markers for the chronic activation of effector T cells.
These might be explained by autoantigen-recognizing cells contaminating the long-term surviving cells. Treg en‐
hanced expression of the surface Fas receptor and become prone to Fas-mediated apoptosis as a result of chronic acti‐
vation. Treg may die quickly in silicosis patients (even when repeatedly recruited from the bone marrow). The overall
balance between Treg and reactive T cells moves toward decreased Treg, resulting in the subsequent aberrant regula‐
tion of autoimmunity.
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Similar to sIL-2R, DcR3 has been identified as a chronic activation marker for the human
immune response [52]. DcR3 was initially discovered in malignant cells such as lung and colon
cancers [53], and its role was considered to be that of a protective molecule binding with the
TNF-related apoptosis-inducing ligand (TRAIL) or the Fas ligand secreted from tumor-
attacking T cells [54]. These functions are similar to the soluble Fas molecule, which is an
alternative splicing form of wild-type membrane Fas secreted from lymphocytes due to the
absence of a transmembrane domain. Soluble Fas has also been shown to bind to the Fas ligand
in extracellular areas, which prevented Fas ligand-inducing and Fas–mediated apoptosis in T
cells [55-58].

Elevated DcR3 levels were recently reported in the serum or pathological lesions of patients
with various autoimmune diseases such as RA and SLE, and these findings indicated that the
production of high levels of DcR3 may reflect chronic activation of the immune system
[52,59-62], particularly antigen-recognizing T cells.

We previously demonstrated that the expression of DcR3 mRNA in PBMCs was higher in
silicosis patients than in healthy donors [63]. Although the expression of DcR3 mRNA was
only examined in whole PBMCs including lymphocytes and monocytes, taken together with
recent findings showing elevated DcR3 levels in autoimmune diseases, these results suggest
that examining serum DcR3 levels in silicosis patients is of importance. We have started this
analysis and will report our findings in the near future.

sFas has been shown to have a similar role to that of lymphocytes. Although its molecular
function is to prevent apoptosis, elevations in sFas levels have been reported in serum from
patients with various autoimmune diseases [62-64] as well as silicosis patients [67]. Using
PBMCs, the sFas and membrane (wild-type) Fas message expression ratio was also shown to
be higher in silicosis patients than in healthy donors [68]. Our findings also revealed that
peripheral T cells, which produce lower levels of surface membrane Fas, were the producers/
expressers of sFas, whereas normal (relatively higher) surface membrane Fas-expressing T
cells produced lower levels of sFas [25]. Fas-mediated apoptosis may proceed more easily in
the latter fraction due to various stimuli by self-or foreign antigens or the anti-Fas autoanti‐
body, which we discovered in the serum of silicosis patients, and repeated recruitment from
the bone marrow. Peripheral T cells derived from silicosis patients were shown to be the
dominant sFas producer with a smaller fraction of apoptosis-prone T cells than that from
healthy donors [25-27]. The sFas-producing fraction may survive longer and retain a chroni‐
cally activated status. Thus, this fraction may be stimulated and respond to autoantigens.

Similar to DcR3, the higher expression and production of sFas suggest that the peripheral blood
of silicosis patients frequently includes a chronically activated and self-antigen recognizing T
cell fraction.

These findings are summarized in Figure 2.
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Figure 2. Evidence of chronically-activated effector T cells in silicosis patients. Serum soluble Fas, the soluble/
membrane Fas mRNA expression ratio in PBMCs, and DcR3 expression and serum sIL-2R levels were higher in silicosis
patients than in healthy donors. In addition, immunological abnormality levels in silicosis patients were determined to
be 1, 2, and 3 (normal individuals and silicosis and SSc patients) as continuous variables between healthy donors and
SSc patients. Then, the serum sIL-2R levels were positively correlated with these immunological scores. All of these
findings indicate that effector T cells chronically and recurrently exposed become activated and their cellular features
proceed to autoimmune dysregulation.

5. Immune stimulation of regulatory T cells by silica particle

From the beginning of Treg analysis in silicosis patients, the CD4+CD25+ fraction from PBMCs
derived from these patients was shown to be less functional than that from healthy donors [28].
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However, FoxP3-positive cells cannot be used in the experiment, since the use of the collected
cells in the subsequent cell biological experiment precludes the permeabilization of the cell
membrane because of the staining of nuclear molecules, such as FoxP3. Thus, it is unknown
whether the CD4+25+ fraction used in the experiment was pure Treg or a mixture of chroni‐
cally-activated reactive T cells. In other words, it is unknown whether the reduced functions
of the Treg fraction with peripheral CD4+25+ in the silicosis patients was caused by the
impurity of the Treg cells or the contamination of chronically-activated CD4+25+reactive T
cells.

Therefore, we examined the expression of surface Fas in peripheral CD4+FoxP+ T cells derived
from both silicosis patients and healthy donors [41], as shown in Figure 3. The results obtained
revealed that the expression of Fas was higher in Treg from silicosis patients than in those from
healthy donors. Since when Treg is stimulated, Fas expression was shown to be one of the
markers for activated Treg; therefore, Treg may be a self-limited inhibitor for the immune
response [69,70] and should be terminated by activation-induced cell death. Taken together,
these results indicate that exposure to silica may activate Treg as well as effector T cells and
induce the higher production of Fas by Treg.

PBMCs from healthy donors and silicosis patients were incubated with silica particles for four
days and the percentage of CD4+FoxP3+ cells was then measured [41]. As shown in Figure 3
and reported previously, the frequency of apoptosis-induced Treg cell death during cultivation
with silica particles was higher in PBMCs from silicosis patients than in that from healthy
donors.

These results demonstrated that silica activated Treg, which then produced higher levels of
surface Fas. Apoptosis then occurred in activated Treg. This cascaded reaction can continue
for a long time in silicosis because of recurrent encounters between silica particles and T cells.
The early loss of Treg may cause T cell recruitment. However, the overall balance between
long-surviving reactive T and Treg cells will move toward predominance of reactive T cells
[41].

5. Current issues in immune stimulation by silica

The mechanism by which silica affects Th17 cells has not yet been established. Th17 cells are
considered to play an important role in the autoimmune reaction and increases in the Th17
cell population or typical cytokines produced by Th17 cells, including IL-17A, may be related
to autoimmune reactions [71,72]. However, the microenvironment surrounding the develop‐
ment of T lymphocytes, defined by cytokine profiles such as IL-6 and TGF-β, may affect the
developmental direction of both Treg and Th17 cells. Therefore, importance needs to be placed
on investigations of how silica particles cause changes in the cellular and molecular charac‐
teristics of Th17 cells, and what the link is between these alterations and autoimmune dysre‐
gulation in silicosis patients.
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6. Immunological effects of asbestos, a mineral silicate

Asbestos is a mineral silicate, in which the chemical core atom is Si and O, and various metals
such as iron, magnesium or calcium have been shown to bind to asbestos to chemically form
asbestos fibers [73]. However, the physical properties of silica and asbestos are different. The
former is particulate matter while the latter is a fibrous mineral. Although silica has been
shown to have an effect on the human immune system, as mentioned above, asbestos fibers
may also have immunological effects on human lymphocytes, which may alter human anti-
tumor immunity because the most important clinical complication in patients exposed to
asbestos is malignant tumors.

Figure 3. Surface Fas expression in peripheral CD4+FoxP+ T cells (Treg) derived from both silicosis patients and healthy
donors. The expression of Fas was higher in the Treg of silicosis patients than in those of healthy donors. PBMCs from
healthy donors and silicosis patients were incubated with silica particles for four days and the percentage of
CD4+FoxP3+ cells was then measured. The frequency of apoptosis-induced Treg cell death during cultivation with sili‐
ca particles was higher in PBMCs from silicosis patients than in that from healthy donors.
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Although reports of autoimmune diseases in asbestos-exposed patients are rare [74,75], the
main complication noted in these patients is malignancies such as mesothelioma and lung
cancer [76,77]. In addition, the incidence of cancer in the larynx, GI-tract, and bladder was
shown to be high in asbestos-exposed patients [76,77].

We previously examined the immunological effects of asbestos [78,79], and demonstrated that
temporary and relatively high-dose exposure to asbestos caused apoptosis in T cells as well as
alveolar epithelial cells and mesothelial cells, whereas low-dose and continuous exposure to
asbestos caused the acquisition of resistance to asbestos-caused apoptosis in T cells with the
activation of Scr-family kinase, IL-10, l STAT3, and Bcl-2 [80]. The expression of CXCR3, one
of the chemokine receptors related to the anti-tumor immunity, as well as IFNγ was also
reduced in these cells [81,82]. Asbestos exposure also induced the impaired differentiation and
proliferation of CD8+ cytotoxic T cells [83], and the reduced expression of NKp46 activating
receptor in NK cells [84,85]. Taken together, these findings indicate that asbestos causes a
reduction in anti-tumor immunity.

7. Conclusions

Even if core chemical substances, Si and O2, are identical, the immunological effects of silica
seem to be completely opposite to those of asbestos. Silica is a chronic stimulator of T cells,
with chronic exposure leading to autoimmune dysregulation due to the chronic activation of
responder T cells as well as Treg, resulting in an imbalance in the regulation of T cell responses.
On the other hand, asbestos reduces anti-tumor immunity. Therefore, asbestos is not a
stimulator, but can alter the function of immune cells.
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