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1. Introduction   

One technique that uses Wang’s Recurrent Neural Networks with the “Winner Takes All” 
principle is presented to solve two classical problems of combinatorial optimization: 
Assignment Problem (AP) and Traveling Salesman Problem (TSP).  
With a set of appropriate choices for the parameters in Wang’s Recurrent Neural Network, 
this technique appears to be efficient in solving the mentioned problems in real time. In 
cases of solutions that are very close to each other or multiple optimal solutions to 
Assignment Problem, the Wang’s Neural Network does not converge. The proposed 
technique solves these types of problems by applying the “Winner Takes All” principle to 
Wang’s Recurrent Neural Network, and could be applied to solve the Traveling Salesman 
Problem as well. This application to the Traveling Salesman Problem can easily be 
implemented, since the formulation of this problem is the same that of the Assignment 
Problem, with the additional constraint of Hamiltonian circuit.  
Comparisons between some traditional ways to adjust parameters of Recurrent Neural 
Networks are made, and some proposals concerning to parameters with dispersion 
measures of the cost matrix coefficients to the Assignment Problem are shown. Wang’s 
Neural Network with principle Winner Takes All performs only 1% of the average number 
of iterations of Wang’s Neural Network without this principle. In this work 100 matrices 

with dimension varying of 3×3 to 20×20 are tested to choose the better combination of 
parameters to Wang’s recurrent neural network. 
When the Wang’s Neural Network presents feasible solutions for the Assignment Problem, 
the "Winner Takes All" principle is applied to the values of the Neural Network’s decision 
variables, with the additional constraint that the new solution must form a feasible route for 
the Traveling Salesman Problem.  
The results from this new technique are compared to other heuristics, with data from the 
TSPLIB (Traveling Salesman Problem Library). The 2-opt local search technique is applied to 
the final solutions of the proposed technique and shows a considerable improvement of the 
results. The results of problem “dantzig42” of TSPLIB and an example with some iterations 
of technique proposed in this work are shown.  
This work is divided in 11 sections, including this introduction. In section 2, the Assignment 
Problem is defined. In section 3, the Wang’s recurrent neural network is presented and a O
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problem with multiple optimal solutions is shown. In section 4, the technique based on the 
“Winner takes all“ principle is presented and an example of application to Assignment 
Problem is shown. In section 5, some alternatives for parameters of Wang’s neural network 
to Assignment Problem are presented. In section 6 the results to 100 matrices are shown. In 
Section 7, it is presented the formulation of Traveling Salesman Problem. In section 8 the 
application of Wang’s neural network with “Winner Takes all“ is shown with five examples 
of TSPLIB. In Section 9, results to others problems of TSPLIB are compared to the ones 
obtained trhrough other techniques. Findings are presented in section 10, and section 11 
contains the references. 

2. The assignment problem 

The objective of this problem is assigning a number of elements to the same number of 
positions, and minimizing the linear cost function. This problem is known in literature as 
Linear Assignment Problem or problem of Matching with Costs (Ajuha et al., 1993; Siqueira 
et al., 2004), and can be formulated as follows:  

 Minimize C = ∑∑= =

n

i

n

j

ijijxc
1 1

 (1) 

 Subject to 1
1

=∑=

n

i

ijx , j = 1, 2, ..., n (2) 

 1
1

=∑=

n

j

ijx , i = 1, 2, ..., n (3) 

 xij ∈ {0, 1}, i, j = 1, 2, ..., n,  (4) 

where cij and xij are, respectively, the cost and the decision variable associated to the 
assignment of element i to position j. The usual representation form of c in the Hungarian 
method is the matrix form. When xij = 1, element i is assigned to position j.  
The objective function (1) represents the total cost to be minimized. The set of constraints (2) 
and (3) guarantees that each element i will be assigned for exactly one position j. The set (4) 
represents the zero-one integrality constraints of the decision variables xij. The set of 
constraints (4) can be replaced by: 

 0≥ijx ,  i, j = 1, 2, ..., n.  (5) 

Beyond traditional techniques, as the Hungarian method and the Simplex method, some 
ways of solving this problem has been presented in the last years. In problems of great scale, 
i.e., when the problem’s cost matrix is very large, the traditional techniques do not reveal 
efficiency, because the number of restrictions and the computational time are increased.  
Since the Hopfield and Tank’s publication (Hopfield & Tank, 1985), lots of works about the 
use of Neural Networks to solving optimization problems had been developed (Matsuda, 
1998; Wang, 1992 and 1997). The Hopfield’s Neural Network, converges to the optimal 
solution of any Linear Programming problem, in particular for the AP. 
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Wang, 1992, considered a Recurrent Neural Network to solve the Assignment Problem, 
however, the necessary number of iterations to achieve an optimal solution is increased in 
problems of great scale. Moreover, in problems with solutions that are very close to each 
other or multiple optimal solutions, such network does not converge. 
In this work, one technique based on the “Winner Takes All“ principle is presented, 
revealing efficiency solving the problems found in the use of Wang’s Recurrent Neural 
Network. Some criteria to adjust the parameters of the Wang’s Neural Network are 
presented: some traditional ways and others that use dispersion measures between the cost 
matrix’ coefficients. 

3. The Wang’s recurrent neural network to assignment problem 

Consider the 12 ×n vectors cT, that contains all the rows of matrix c; x, that contains the 
decision elements xij, and b, that contains the number “1“ in all positions. The matrix form of 
the problem described in (1)-(4) is due Hung & Wang, 2003:  

 Minimize C = cTx (6) 

 Subject to Ax = b  (7) 

0≥ijx , i, j = 1, 2, ..., n, 

where matrix A has the following form: 

22

21 ...

... nn

nBBB

III
A ×ℜ∈⎥⎦

⎤⎢⎣
⎡=  

where I is an n × n identity matrix, and each Bi matrix, for i = 1, 2..., n, contains zeros, with 
exception of ith row, that contains the number “1“ in all positions. 
The Recurrent Neural Network proposed by Wang (published in Wang, 1992; Wang, 1997; 
and Hung & Wang, 2003) is characterized by the following differential equation: 

 ∑ ∑= =
−−+−−= n

k

n

l

t

ijijljik
ij

ectxtx
dt

tdu

1 1

)()(
)( τληθηη ,  (8) 

where xij = g(uij(t)) and the equilibrium state of this Neural Network is a solution for the 
Assignment Problem, where g is the sigmoid function with a β parameter, i.e., 

 g(u) = 
ue β−+1

1
. (9) 

The threshold is defined as the 12 ×n vector θ = ATb = (2, 2, ..., 2). Parameters η, λ and τ are 
constants, and empirically chosen (Hung & Wang, 2003), affecting the convergence of the 
network. Parameter η serves to penalize violations in the problem’s constraints’ set, defined 
by (1)-(4). Parameters λ and τ control the objective function’s minimization of the 
Assignment Problem (1). The Neural Network matrix form can be written as: 

 τλθη t

cetWx
dt

tdu −−−−= ))((
)(

, (10) 
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where x = g(u(t)) and W = ATA. The convergence properties of Wang’s Neural Network are 
demonstrated in Wang 1993, 1994 & 1995, and Hung & Wang, 2003. 

3.1 Multiple optimal solutions and closer optimal solutions 

In some cost matrices, the optimal solutions are very closer to each other, or in a different 
way, some optimal solutions are admissible. The cost matrix c given below: 

 

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

⎝

⎛

=

2.002.02.06.02.02.20

01.0107.219.06.0

2.002.02.06.02.02.20

01.0107.219.06.0

5.11.005.11.002.03.0

2.002.02.06.02.02.20

5.54.33.05.54.03.001

01.0107.219.06.0

c , (11) 

has the solutions x* and x̂  given below:   

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

⎝

⎛

=

00000000

33.033.0033.00000

0025.00025.005.0

33.033.0033.00000

005.0005.000

0025.00025.005.0

00000010

33.033.0033.00000

*x  and ,

00100000

01000000

00000100

10000000

00001000

00000001

00000010

00010000

ˆ

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

⎝

⎛

=x  

where x* is found after 4,715 iterations using the Wang’s neural network, and x̂  is an 

optimal solution.  
The solution x* isn’t feasible, therefore, some elements xij* violate the set of restrictions (4), 
showing that the Wang’s neural network needs adjustments for these cases. The simple 
decision to place unitary value for any one of the elements xij* that possess value 0.5 in 
solution x* can become unfeasible or determine a local optimal solution. Another adjustment 
that can be made is the modification of the costs’ matrix’ coefficients, eliminating ties in the 
corresponding costs of the variable xij* that possess value different from “0“ and “1“. In this 
way, it can be found a local optimal solution when the modifications are not made in the 
adequate form. Hence, these decisions can cause unsatisfactory results.  

4. Wang’s neural network and “Winner Takes All” principle to assignment 
problem 

The method considered in this work uses one technique based on the ”Winner Takes All” 
principle, speeding up the convergence of the Wang’s Neural Network, besides correcting 
eventual problems that can appear due the multiple optimal solutions or very closer optimal 
solutions (Siqueira et al., 2005). 
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The second term of equation (10), Wx(t) − θ, measures the violation of the constraints to the 
Assignment Problem. After a certain number of iterations, this term does not suffer 
substantial changes in its value, evidencing the fact that problem’s restrictions are almost 
satisfied. At this moment, the method considered in this section can be applied.  
When all elements of x satisfy the condition Wx(t) − θ φ≤ , where φ ∈ [0, 2], the proposed 

technique can be used in all iterations of the Wang’s Neural Network, until a good approach 
of the Assignment Problem be found. An algorithm of this technique is presented as follows: 

Step 1: Find a solution x of the AP, using the Wang’s recurrent neural network. If Wx(t) − θ φ≤ , then go to Step 2. Else, find another solution x.  

Step 2: Given the matrix of decision x, after a certain number of iterations of the Wang’s 

recurrent neural network. Let the matrix x , where x  = x, m = 1, and go to step 3. 

Step 3: Find the mth biggest array element of decision, x kl. The value of this element is 

replaced by the half of all elements sum of row k and column l of matrix x, or either,  

  
2

1

1 1
⎟⎟⎠
⎞

⎜⎜⎝
⎛ += ∑ ∑= =

n

i

n

j

kjilkl xxx . (12) 

              The other elements of row k and column l become nulls. Go to step 4.  
Step 4: If m ≤  n, makes m = m + 1, and go to step 3. Else, go to step 5. 

Step 5: If a good approach to an AP solution is found, stop. Else, make x = x , execute the 

Wang’s neural network again and go to Step 2.  

4.1 Illustrative example 
Consider the matrix below, which it is a partial solution of the Assignment Problem defined 
by matrix C, in (13), after 14 iterations of the Wang’s recurrent neural network. The biggest 
array element of x  is in row 1, column 7. 

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

⎝

⎛

=

2907.0251.02592.00353.00829.00138.00031.01142.0

0144.00369.02016.03053.001562.0174.01681.0

2186.00136.00025.000366.02956.02823.02037.0

0061.00306.00024.03931.0272.02674.000711.0

1571.00598.00747.01131.00521.02184.02412.01456.0

0024.00425.03438.003449.00688.00709.01754.0

01866.01648.01484.01525.00168.02827.00056.0

3551.0422.0*0033.00514.01083.00168.00011.00.0808

x  

 

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

⎝

⎛

=

7.03.1031.17.34.54.1

8.32.301.09.67.07.06.0

9.04.49.45.88.102.05.0

9.56.469.05.02.17.78.2

9.04.29.01.10.1005.0

8.62.44.08.91.08.29.27.1

2.85.14.02.12.03.32.03.1

01.04.42.24.01.31.64.1

c  (13) 
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After the update of this element through equation (12), the result given below is found. The 

second biggest element of x  is in row 5, column 5. 

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

⎝

⎛

=

2907.002592.00353.00829.00138.00031.01142.0

0144.002016.03053.001562.0174.01681.0

2186.0.00025.000366.02956.02823.02037.0

0061.000024.0393.0*272.02674.000711.0

1571.000747.01131.00521.02184.02412.01456.0

0024.003438.003449.00688.00709.01754.0

001648.01484.01525.00168.02827.00056.0

00412.1000000

x  

After the update of all elements of x , get the following solution:  

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

⎝

⎛

=

0473.10000000

000544.100000

0.00000533.100

0000446.10000

00000000632.1

00000491.1000

0000000564.10

00412.1000000

x . 

This solution is presented to the Wang’s neural network, and after finding another x 

solution, a new x  solution is calculated through the “Winner Takes All“ principle.  

This procedure is made until a good approach to feasible solution is found. In this example, 

after more 5 iterations, the matrix x  presents one approach of the optimal solutions: 

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

⎝

⎛

=

9991.00000000

000003.100000

0.0000100

0009985.00000

0000000999.0

00009994.0000

0000009996.00

09992.0000000

x . 

Two important aspects of this technique that must be taken in consideration are the 

following: the reduced number of iterations necessary to find a feasible solution, and the 

absence of problems related to the matrices with multiple optimal solutions. The 

adjustments of the Wang’s neural network parameters are essential to guarantee the 

convergence of this technique, and some forms of adjusting are presented on the next 

section. 
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5. The parameters of Wang’s recurrent neural network 

In this work, the used parameters play basic roles for the convergence of the Wang’s neural 

network. In all the tested matrices, η = 1 had been considered, and parameters τ and λ had 
been calculated in many ways, described as follows (Siqueira et al., 2005).  

One of the most usual forms to calculate parameter λ for the AP can be found in Wang, 1992, 

where λ is given by: 

 λ = η/Cmax ,  (14) 

where Cmax = max{cij; i, j = 1, 2, ..., n}.  
The use of dispersion measures between the c matrix coefficients had revealed to be efficient 

adjusting parameters τ and λ. Considering δ as the standard deviation between the c cost 

matrix’ coefficients, the parameter λ can be given as:  

 λ = η/δ. (15) 

Another way to adjust λ is to consider it a vector, defined by: 

 ⎟⎟⎠
⎞⎜⎜⎝

⎛=
nδδδηλ 1

,...,
1

,
1

21

, (16) 

where δi, for i = 1, 2..., n, represents the standard deviation of each row of the matrix c. Each 

element of the vector λ is used to update the corresponding row of the x decision matrix. 

This form to calculate λ revealed to be more efficient in cost matrices with great dispersion 
between its values, as shown by the results presented in the next section.  
A variation of the expression (14), that uses the same principle of the expression (16), is to 

define λ by the vector: 

 ⎟⎟⎠
⎞

⎜⎜⎝
⎛=

maxmax2max1

1
,...,

1
,

1

nccc
ηλ , (17) 

where ci max = max{cij; j = 1, 2, …, n}, for each i = 1, 2, …,n. This definition to λ also produces 
good results in matrices with great dispersion between its coefficients.  

The parameter τ depends on the necessary number of iterations for the convergence of the 
Wang’s neural network. When the presented correction “Winner Takes All“ technique isn’t 
used, the necessary number of iterations for the convergence of the Wang’s neural netowork 

varies between 1,000 and 15,000 iterations. In this case, τ is a constant, such that: 

 000,15000,1 ≤≤ τ . (18) 

When the “Winner Takes All“ correction is used, the necessary number of iterations varies 

between 5 and 300. Hence, the value of τ  is such that: 

 3005 ≤≤ τ . (19) 

In this work, two other forms of τ parameter adjustment had been used, besides considering 

it constant, in the intervals showed in expressions (18) and (19). In one of the techniques, τ is 
given by: 
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 ( )nnδμδμδμμτ ,...,,
1

2211= , (20) 

where μi are the coefficients average of ith row of matrix c, δi is the standard deviation of ith 

row of matrix c, and μ is the average between the values of all the coefficients of c.  

The second proposal of adjustment for τ uses the third term of definition of neural network 

of Wang (8). When cij = cmax, the term −λicij exp(−t /τi ) = ki must satisfied g(ki) ≅ 0, so xij has 

minor value, minimizing the final cost of the Assignment Problem. Isolating τ, and 

considering cij = cmax and λi = 1/δi, where i = 1, 2..., n, τ is got, as follows: 

 

⎟⎟⎠
⎞⎜⎜⎝

⎛ −
−=

max

ln
c

k

t

i

i

i

λ
τ , (21) 

The parameters’ application results given by (14)-(21) are presented on next section.  

6. Results to assignment problem 

In this work, 100 matrices (with dimensions varying of 3×3 until 20×20) had been used to 
test the techniques of adjustments to parameters presented in previous section, beyond the 
proposed “Winner Takes All” correction applied to the Wang’s recurrent neural network. 
These matrices had been generated randomly, with some cases of multiple optimal solutions 
and very closer optimal solutions. 
The results to 47 tested matrices with only one optimal global appear in Table 1, and results 
to 53 matrices with multiple optimal solutions and/or very closer optimal solutions appear 
in Table 2. Table 3 shown results to all matrices tested to Assignment Problem. 
To adjust λ, the following expressions had been used on Tables 1, 2 and 3: (14) in the first 
and last column; (15) in the second column; (17) in the third column; and (16) in fourth and 
fifth columns. To calculate τ, the following expressions they had been used: (19) in the three 
firsts columns; (20) in the fourth column; (21) in the fifth column; and (18) in the last column. 
The results of the Wang’s neural network application, without the use of the proposed 
correction in this work, are meet in the last column of Tables 1, 2 and 3. In the last row of the 
Tables 1, 2 and 3 the numbers of iterations of each technique is given by the average 
between the numbers of iterations found for all tested matrices.  
 

parameter λ λ = 
maxC

η λ = δη  λi = 
maxic

η λ = δη  λi = 
iδη  λ =

maxC
η  

parameter τ 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 μ
δμτ ii

i =  
⎟⎟⎠
⎞⎜⎜⎝

⎛ −
−=

max

ln
c

k

t

i

i

i

λ
τ  

1,000 ≤ τ ≤  
≤ 15,000 

global optimality 40 45 40 40 46 47 

local optimality 7 2 7 7 1 0 

infeasibility 0 0 0 0 0 0 

global optim.(%) 85 96 85 85 98 100 

average error (%) 2.35 0.98 0.74 5.10 0.02 0 

iterations (average) 37 46 41 72 51 3,625 

Table 1. Results for 47 matrices with only one optimal solution 
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parameter λ λ = 
maxC

η λ = δη  λi = 
maxic

η λ = δη  λi = 
iδη  λ =

maxC
η  

parameter τ 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 μ
δμτ ii

i =  
⎟⎟⎠
⎞⎜⎜⎝

⎛ −
−=

max

ln
c

k

t

i

i

i

λ
τ  

1,000 ≤ τ ≤  
≤ 15,000 

global optimality 33 43 32 39 46 0 

local optimality 20 10 21 14 7 0 

infeasibility 0 0 0 0 0 53 

global optim.(%) 62 81 60 74 87 0 

average error (%) 4.87 1.63 6.37 4.79 2.14 - 

iterations (average) 39 42 41 76 47 6,164 

Table 2. Results for 53 matrices with multiple optimal solutions 

The results had been considered satisfactory, and the adjustments of the parameters that 

result in better solutions for the “Winner Takes All“ correction are those that use the 

standard deviation and the average between the elements of matrix of costs, and the use of 

parameters in vector form revealed to be more efficient for these matrices. The results 

shown in Tables 1, 2 and 3 reveal that the dispersion techniques between the coefficients of 

matrix c are more efficient for the use of the correction “Winner Takes All“ in matrices with 

multiple optimal solutions.  

 

parameter λ λ = 
maxC

η λ = δη  λi = 
maxic

η λ = δη  λi = 
iδη  λ =

maxC
η  

parameter τ 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 μ
δμτ ii

i =  
⎟⎟⎠
⎞⎜⎜⎝

⎛ −
−=

max

ln
c

k

t

i

i

i

λ
τ  

1,000 ≤ τ ≤  
≤ 15,000 

global optim.(%) 73 88 72 79 92 47 

local optimality 27 12 28 21 8 0 

infeasibility 0 0 0 0 0 53 

average error (%) 3.17 1.19 2.57 5.00 0.71 - 

iterations (average) 38 44 41 74 49 4,970 

Table 3. Results for all matrices 

The pure Wang’s neural network has slower convergence when the adjustments described 

by (15)-(17) and (19)-(21) are applied for the parameters λ and τ, respectively. Better results 

are found with combination of parameters (16) and (21), as shown in Tables 1, 2 and 3. This 

combination is used to solve the Traveling Salesman Problem. 

These results shows that the “Winner Takes All“ principle, applied to the Wang’s neural 

network, produces good results to Assignment Problem, mainly in matrices with multiple 

optimal solutions. The parameters to Wang’s neural network presented in section 5 show 

the efficiency of this technique for great scale problems, because the average number of 

iterations necessary to find feasible solutions for the Assignment Problem was considerably 

reduced, compared to the pure Wang’s neural network. 

The application of “Winner Take All“ principle to Wang’s recurrent neural network to solve 

the Traveling Salesman Problem is presented on next sections.  
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7. The traveling salesman problem 

The formulation of Traveling Salesman Problem is the same of Assignment Problem, with 

the additional constraint of Hamiltonian circuit, i.e., the feasible route must form a cycle 

which visits each city exactly once, and returns to the starting city: 

 Minimize C = ∑∑= =

n

i

n

j

ijijxc
1 1

 (22) 

 Subject to   1
1

=∑=

n

i

ijx ,    j = 1, 2, ..., n (23) 

 1
1

=∑=

n

j

ijx ,   i = 1, 2, ..., n (24) 

 xij ∈ {0, 1},    i, j = 1, 2, ..., n (25) 

 

 x~  forms a Hamiltonian cycle (26) 

 

where the vector x~  has the whole sequence of the route that was found, i.e., the solution for 

the Traveling Salesman Problem. 

The Traveling Salesman Problem is a classical problem of combinatorial optimization in the 

Operations Research area. The purpose is to find a minimum total cost Hamiltonian cycle 

(Ahuja et al.,1993). There are several practical uses for this problem, such as Vehicle Routing 

(Laporte, 1992) and Drilling Problems (Onwubolu & Clerc, 2004).  

This problem has been used during the last years as a basis for comparison in order to 

improve several optimization techniques, such as Genetic Algorithms (Affenzeller & 

Wanger, 2003), Simulated Annealing (Budinich, 1996), Tabu Search (Liu et al., 2003), Local 

Search (Bianchi et al., 2005), Ant Colony (Chu et al., 2004) and Neural Networks (Leung et 

al., 2004; Siqueira et al., 2007).  

The main types of Neural Network used to solve the Traveling Salesman Problem are: 

Hopfield’s Recurrent Networks (Wang et al., 2002) and Kohonen’s Self-Organizing Maps 

(Leung et al., 2003). In a Hopfield’s Network, the main idea is to automatically find a 

solution for the Traveling Salesman Problem by means of an equilibrium state of the 

equation system defined for the Traveling Salesman Problem. By using Kohonen’s Maps for 

the Traveling Salesman Problem, the final route is determined through the cities 

corresponding to those neurons that have weights that are closest to the pair of coordinates 

ascribed to each city in the problem.  

Wang’s recurrent neural network with the “Winner Takes All” principle can be applied to 

solve the Traveling Salesman Problem on this way: solving this problem as if it were an 

Assignment Problem by means of the Wang’s neural network, and, furthermore, using the 

“Winner Takes All” principle on the solutions found with the Wang’s neural network, with 

the constraint that the solutions found must form a feasible route for the Traveling Salesman 
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Problem. The parameters used for the Wang’s neural network are those that show the best 

solutions for the Assignment Problem, as shown on Tables 1, 2 and 3 of previous section. 

The solutions found with the heuristic technique proposed in this work are compared with 

the solutions from the Self-Organizing Maps (SOM) and the Simulated Annealing (SA) for 

the symmetrical TSP, and with other heuristics for the asymmetrical TSP. The 2-opt Local 

Search technique (Bianchi et al., 2005) is used to improve the solutions found with the 

technique proposed in this work. The data used for the comparisons are from the TSPLIB 

database (Reinelt, 1991). 

8. Wang’s neural network and “Winner Takes All” principle to traveling 
salesman problem 

The algorithm presented on section 4 to Assignment Problem can be easily modified to solve 

the Traveling Salesman Problem: 

Step 1: Determine a maximum number of routes rmax. Find a solution x to Assignment 

Problem using the Wang’s neural netowork. If Wx(t) − θ φ≤ , then go to Step 2. 

Otherwise, find another solution x.  

Step 2: Given the decision matrix, consider matrix x , where x  = x, m = 1 and go to Step 3. 

Step 3: Choose a row k in decision matrix x . Do p = k, x~ (m) = k and go to Step 4. 

Step 4: Find the biggest element of row k, x kl. This element’s value is given by the half of 

the sum of all elements of row k and of column l of matrix x, i.e.,  
 

  
2

1

1 1
⎟⎟⎠
⎞

⎜⎜⎝
⎛ += ∑ ∑= =

n

i

n

j

kjilkl xxx . (27) 

 

The other elements of row k and column l become null. So that sub-routes are not 

formed, the other elements of column k must also be null. Do x~ (m + 1) = l; to 

continue the Traveling Salesman Problem route, make k = l and go to Step 5.  

Step 5: If m < n, then make m = m + 1 and go to Step 4. Otherwise, do  
 

  
2

1

1 1
⎟⎟⎠
⎞

⎜⎜⎝
⎛ += ∑ ∑= =

n

i

n

j

kjipkp xxx , (28) 

 

x~ (n + 1) = p, determine the route’s cost, C, and go to Step 6. 

Step 6: If C < Cmin, then do Cmin = C and x = x . Make r = r + 1. If r < rmax, then run the 

Wang’s neural network again and go to Step 2, otherwise Stop.  

8.1 Illustrative examples applied to problems of TSPLIB 

Consider the symmetrical Traveling Salesman Problem with 14-city instances burma14, due 

Zaw & Win (Reinelt, 1991), as shown in Fig. 1. After 17 iterations, the Wang’s neural 

network presents the following solution for the Assignment Problem: 
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⎟⎟
⎟⎟
⎟⎟
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⎟⎟
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⎟⎟
⎟⎟
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

⎝

⎛

=

008.013.002.001.002.005.009.01.005.014.02.006.003.0

08.0008.008.003.007.01.024.008.004.003.003.005.006.0

12.007.0002.001.002.003.012.021.016.014.009.003.002.0

03.006.002.0021.022.013.004.002.002.001.003.009.014.0

03.006.002.017.0019.011.004.002.003.002.003.012.014.0

03.006.002.022.023.0012.004.002.002.001.003.01.014.0

04.008.002.015.012.014.0004.002.002.002.004.014.018.0*

09.023.014.004.002.003.005.0015.009.005.004.003.003.0

09.007.02.002.001.002.002.012.0023.013.007.002.002.0

07.007.013.002.002.002.003.01.018.0017.008.003.002.0

12.004.013.002.001.001.002.006.012.02.0022.004.002.0

19.004.009.002.002.002.004.005.007.006.024.0009.004.0

06.005.002.01.013.01.014.003.002.001.003.009.0018.0

04.006.002.014.016.015.016.003.002.002.002.004.017.00

x  

 

In this decision matrix, a city is chosen to start the route, for instance, city 8, this is, p = 8. In 

row p of the decision matrix the biggest element is chosen, thus defining the Traveling 

Salesman’s destiny when he leaves city p. The biggest element of row p is in column 1, 

therefore, k = p = 8 and l = 1. After the decision matrix x  is updated by means of equation 

(27), the route goes on with k = 1: 
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⎜⎜
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⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

⎝

⎛

=

008.013.002.001.002.005.009.01.005.014.02.006.00

08.0008.008.003.007.01.024.008.004.003.003.005.00

12.007.0002.001.002.003.012.021.016.014.009.003.00

03.006.002.0021.022.013.004.002.002.001.003.009.00

03.006.002.017.0019.011.004.002.003.002.003.012.00

03.006.002.022.023.0012.004.002.002.001.003.01.00

000000000000001.1

09.023.014.004.002.003.005.0015.009.005.004.003.00

09.007.02.002.001.002.002.012.0023.013.007.002.00

07.007.013.002.002.002.003.01.018.0017.008.003.00

12.004.013.002.001.001.002.006.012.02.0022.004.00

19.004.009.002.002.002.004.005.007.006.024.0009.00

06.005.002.01.013.01.014.003.002.001.003.009.000

04.006.002.014.016.015.016.003.002.002.002.004.017.0*0

x  

 

The biggest element of row 1 in matrix x  is in column 2, therefore, l = 2. This procedure is 

executed until all rows are updated, thus defining the route: x~ = (8, 1, 2, 10, 9, 11, 13, 7, 6, 5, 

4, 3, 14, 12, 8), as shown in Fig. 1a, with a cost of 34.03, which represents an average error of 

10.19%. 
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000000000.1000000
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This solution is presented to the Wang’s neural network, by making x = x . After more 16 

iterations the neural network the following decision matrix is presented: 
 

 

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
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⎠

⎞
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⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

⎝

⎛

=

01.013.003.002.003.006.009.012.006.015.026.008.004.0

09.0007.008.004.008.013.025.009.005.003.004.006.007.0

1.007.0001.001.001.003.009.02.015.012.009.002.002.0

02.007.001.0021.021.013.003.002.002.001.003.009.012.0

03.006.002.017.002.012.003.002.003.002.004.013.013.0

03.007.001.021.025.0013.003.002.002.001.003.01.013.0

04.008.002.014.012.014.0004.002.002.002.004.014.017.0

1.028.013.004.002.004.006.0018.011.005.005.003.003.0

07.007.014.001.001.001.002.009.0021.01.007.002.001.0

07.009.012.002.003.002.003.01.02.0018.009.003.002.0

12.005.011.002.003.002.003.006.014.023.0026.004.002.0

17.005.007.002.002.002.004.004.007.006.023.0009.003.0

07.007.002.011.015.012.018.003.002.002.003.011.0019.0

04.007.002.015.018.016.019.003.002.002.002.005.018.00

x ’ 

 
 

Through the “Winner Takes All” principle, an approximation for the optimal solution of this 

problem is found with the route: x~ = (2, 1, 10, 9, 11, 8, 13, 7, 12, 6, 5, 4, 3, 14, 2), with a cost of 

30.88 (Fig. 2b). 
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Consider the symmetrical Traveling Salesman Problem with 42-city instance by Dantzig 

(Reinelt, 1991), as shown in Fig. 3 and 4. This problem contains coordinates of cities in the 

United States, and after 25 epochs the condition Wx(t) − θ φ≤ is satisfied with 01.0=φ and 

the Wang’s neural network presents the first solution 1
~x  for the Traveling Salesman 

Problem, as shown in Fig. 3a. 

 

 
(a)                                                                             (b) 

 

Fig. 2. (a) Feasible solution found to burma14 through the proposed method, with an 
average error of 10.19%. (b) Optimal solution found through the proposed method 

The solution 1
~x  is presented to Wang’s neural network, and after 20 iterations an improved 

solution is reached, with the average error decreasing from 19.56% to 0.83% as shown in Fig. 

3a and 3b.  

An improvement to heuristic Wang’s neural network is the application of local search 2-opt 

heuristic on Step 5 of the algorithm shown in this section. This application is made after the 

expression (27), to the Wang’s neural network solution in the algorithm, just as an 

improvement. The results of Wang’s neural network with 2-opt on problem dantzig42 is 

shown in Fig. 4, where after 72 epochs an optimal solution is found. 
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(a)                                                                          (b) 

Fig. 3. Solutions found to dantzig42 data without 2-opt improvement. (a) First feasible tour 
found through the proposed heuristic, with an average error of 19.56%. (b) Tour with 0.83% 
of average error, after 29 iterations. 

Others examples of results found to symmetrical Traveling Salesman problems are (Reinelt, 
1991): the 58-city instance of Brazil, due Ferreira, shown in Fig. 5; the 532-city instances of 
United States due Padberg and Rinaldi, shown in Fig. 6; and the drilling problem u724 due 
Reinelt, shown in Fig. 7. 
 

 
(a)                                                                           (b) 

 
(c)                                                                           (d) 

Fig. 4. Solutions found to dantzig42 data with 2-opt improvement. (a) First feasible solution 
found, in 26 epochs and average error of 8.77%. (b) 36 epochs and error 1.5%. (c) 45 epochs 
and error 0.57%. (d) 72 epochs and optimal solution found. 
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(a)                                                                           (b) 

Fig. 5. Solutions found to brazil58 data. (a) Feasible solution found without local search 
improvement with 81 epochs and average error of 2.9%. (b) Optimal solution found with 2-
opt improvement with 88 epochs. 
 

 
(a)                                                                           (b) 

Fig. 6. Solutions found to att532 data. (a) Feasible solution found without local search 
improvement with 411 epochs and average error of 14.58%. (b) Feasible solution found with 
local search improvement with 427 epochs and average error of 1.27%. 
 

           
(a)                                                                           (b) 

Fig. 7. Solutions found to u724 data. (a) Feasible solution found without local search 
improvement with 469 epochs and average error of 16.85%. (b) Feasible solution found with 
local search improvement with 516 epochs and average error of 6.28%. 
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The next Section shows the results of applying this technique to some of the TSPLIB’s 

problems for symmetrical and asymmetrical Traveling Salesman problems. 

9. Comparisons of technique proposed with others heuristics to some 
TSPLIB’s problems 

The results found with the technique proposed to problems of TSPLIB with symmetrical 

cases are compared with Self Organizing Maps and Simulated Annealing results. In 

asymmetrical problems of TSPLIB, the technique proposed are compared with heurist of 

insertion of arcs. In both cases the local search technique was applied to results found with 

Wang’s Recurrent Neural Network with “Winner Takes All”. 

For symmetrical problems, the following methods were used to compare with the technique 

presented in this work:  

• the method that involves statistical methods between neurons’ weights of Self 
Organizing Maps (Aras et al., 1999) and has a global version (KniesG: Kohonen 
Network Incorporating Explicit Statistics Global), where all cities are used in the neuron 
dispersion process, and a local version (KniesL), where only some represented cities are 
used in the neuron dispersion step;  

• the Simulated Annealing technique (Budinich, 1996), using the 2-opt improvement 
technique;  

• Budinich’s Self Organizing Map, which consists of a traditional Self Organizing Map 
applied to the Traveling Salesman Problem, presented in Budinich, 1996;  

• the expanded Self Organizing Map (ESOM), which, in each iteration, places the neurons 
close to their corresponding input data (cities) and, at the same time, places them at the 
convex contour determined by the cities (Leung et al., 2004);  

• the efficient and integrated Self Organizing Map (eISOM), where the ESOM procedures 
are used and the winning neuron is placed at the mean point among its closest 
neighboring neurons(Jin et al., 2003);  

• the efficient Self Organizing Map technique (SETSP), which defines the updating forms 
for parameters that use the number of cities of problem (Vieira et al., 2003);  

• and Kohonen’s cooperative adaptive network (CAN) uses the idea of cooperation 
between the neurons’ close neighbors and uses a number of neurons that is larger than 
the number of cities in the problem (Cochrane & Beasley, 2003).  

The computational complexity of the proposed heuristic is O(n2 + n) (Wang, 1997), 

considered competitive when compared to the complexity of mentioned Self Organizing 

Map, which have complexity O(n2) (Leung et al., 2004). The CAN technique has a 

computational complexity of O(n2log(n)) (Cochrane & Beasley, 2003), while the Simulated 

Annealing technique has a complexity of O(n4log(n)) (Liu et al., 2003). 

The results for the proposed heuristic in this paper, together with the 2-opt improvement, 

presented an average error range from 0 to 3.31%, as shown in the 2-opt column of Table 4. 

The methods that use improvement techniques to their solutions are Simulated Annealing, 

CAN and Wang’s neural network with “Winner Takes All”.  

The technique proposed in this paper, with 2-opt, present better results that Simulated 

Annealing and CAN methods in almost every problem, with the only exception in the lin105 

problem. Without the improvement 2-opt, the results of problems eil76, eil51, eil101 and 
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rat195 are better than the results of the other neural networks that do not use improvement 

techniques in its solutions.  
In Table 4 are shown the average errors of the techniques mentioned above. The "pure" 
technique proposed in this work to Traveling Salesman Problem, the proposed technique 
with the 2-opt improvement algorithm, as well as the best (max) and worst (min) results of 
each problem considered are also shown. 
 

average error (%) 

for 8 algorithms presented on TSPLIB WRNN with WTA 
TSP’s 
name 

n 
optimal 
solution

KniesG KniesL SA Budinich ESom EiSom Setsp CAN Max Min 2-opt 

eil51 51 430 2.86 2.86 2.33 3.10 2.10 2.56 2.22 0.94 1.16 1.16 0 

st70 70 678.6 2.33 1.51 2.14 1.70 2.09 NC 1.60 1.33 4.04 2.71 0 

eil76 76 545.4 5.48 4.98 5.54 5.32 3.89 NC 4.23 2.04 2.49 1.03 0 

gr96 96 514 NC NC 4.12 2.09 1.03 NC NC NC 6.61 4.28 0 

rd100 100 7,910 2.62 2.09 3.26 3.16 1.96 NC 2.60 1.23 7.17 6.83 0.08 

eil101 101 629 5.63 4.66 5.74 5.24 3.43 3.59 NC 1.11 7.95 3.02 0.48 

lin105 105 14,383 1.29 1.98 1.87 1.71 0.25 NC 1.30 0 5.94 4.33 0.20 

pr107 107 44,303 0.42 0.73 1.54 1.32 1.48 NC 0.41 0.17 3.14 3.14 0 

pr124 124 59,030 0.49 0.08 1.26 1.62 0.67 NC NC 2.36 2.63 0.33 0 

bier127 127 118,282 3.08 2.76 3.52 3.61 1.70 NC 1.85 0.69 5.08 4.22 0.37 

pr136 136 96,772 5.15 4.53 4.90 5.20 4.31 NC 4.40 3.94 6.86 5.99 1.21 

pr152 152 73,682 1.29 0.97 2.64 2.04 0.89 NC 1.17 0.74 3.27 3.23 0 

rat195 195 2,323 11.92 12.24 13.29 11.48 7.13 NC 11.19 5.27 8.82 5.55 3.31 

kroa200 200 29,368 6.57 5.72 5.61 6.13 2.91 1.64 3.12 0.92 12.25 8.95 0.62 

lin318 318 42,029 NC NC 7.56 8.19 4.11 2.05 NC 2.65 8.65 8.35 1.90 

pcb442 442 50,784 10.45 11.07 9.15 8.43 7.43 6.11 10.16 5.89 13.18 9.16 2.87 

att532 532 27,686 6.8 6.74 5.38 5.67 4.95 3.35 NC 3.32 15.43 14.58 1.28 

Table 4. Results of the experiments for the symmetrical problems of TSP, with techniques 
presented on TSPLIB: KniesG, KniesL, SA, Budinich’s SOM, ESOM, EISOM, SETSP, CAN 
and a technique presented on this paper: WRNN with WTA. The solutions presented in 
bold characters show the best results for each problem, disregarding the results with the 2-
opt technique. (NC = not compared) 

For the asymmetrical problems, the techniques used to compare with the technique 
proposed in this work were (Glover et al., 2001):  

• the Karp-Steele path methods (KSP) and general Karp-Steele (GKS), which begin with 
one cycle and by removing arcs and placing new arcs, transform the initial cycle into a 
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Hamiltonian one. The difference between these two techniques is that the GKS uses all 
of the cycle’s vertices for the changes in the cycle’s arcs; 

• the path recursive contraction (PRC) that consists in forming an initial cycle and 
transforming it into a Hamiltonian cycle by removing arcs from every sub-cycle;  

• the contraction or path heuristic (COP), which is a combination of the GKS and RPC 
techniques;  

• the “greedy” heuristic (GR) that chooses the smallest arc in the graph, contracts this arc 
creating a new graph, and keeps this procedure up to the last arc, thus creating a route; 

• and the random insertion heuristic (RI) that initially chooses 2 vertices, inserts one 
vertex that had not been chosen, thus creating a cycle, and repeats this procedure until 
it creates a route including all vertices.  

 

average error (%) 

for 6 algorithms WRNN with WTA 
TSP’s 
name 

n 
optimal 
solution

GR RI KSP GKS PRC COP max Min 2-opt 

br17 17 39 102.56 0 0 0 0 0 0 0 0 

ftv33 33 1,286 31.34 11.82 13.14 8.09 21.62 9.49 7.00 0 0 

ftv35 35 1,473 24.37 9.37 1.56 1.09 21.18 1.56 5.70 3.12 3.12 

ftv38 38 1,530 14.84 10.20 1.50 1.05 25.69 3.59 3.79 3.73 3.01 

pr43 43 5,620 3.59 0.30 0.11 0.32 0.66 0.68 0.46 0.29 0.05 

ftv44 44 1,613 18.78 14.07 7.69 5.33 22.26 10.66 2.60 2.60 2.60 

ftv47 47 1,776 11.88 12.16 3.04 1.69 28.72 8.73 8.05 3.83 3.83 

ry48p 48 14,422 32.55 11.66 7.23 4.52 29.50 7.97 6.39 5.59 1.24 

ft53 53 6,905 80.84 24.82 12.99 12.31 18.64 15.68 3.23 2.65 2.65 

ftv55 55 1,608 25.93 15.30 3.05 3.05 33.27 4.79 12.19 11.19 6.03 

ftv64 64 1,839 25.77 18.49 3.81 2.61 29.09 1.96 2.50 2.50 2.50 

ft70 70 38,673 14.84 9.32 1.88 2.84 5.89 1.90 2.43 1.74 1.74 

ftv70 70 1,950 31.85 16.15 3.33 2.87 22.77 1.85 8.87 8.77 8.56 

kro124p 100 36,230 21.01 12.17 16.95 8.69 23.06 8.79 10.52 7.66 7.66 

ftv170 170 2,755 32.05 28.97 2.40 1.38 25.66 3.59 14.66 12.16 12.16 

rbg323 323 1,326 8.52 29.34 0 0 0.53 0 16.44 16.14 16.14 

rbg358 358 1,163 7.74 42.48 0 0 2.32 0.26 22.01 12.73 8.17 

rbg403 403 2,465 0.85 9.17 0 0 0.69 0.20 4.71 4.71 4.71 

rbg443 443 2,720 0.92 10.48 0 0 0 0 8.05 8.05 2.17 

Table 5. Results of the experiments for the asymmetrical problems of TSP with techniques 
presented on TSPLIB:  GR, RI, KSP, GKS, RPC, COP and a technique presented on this 
paper:  WRNN with WTA. The solutions presented in bold characters show the best results 
for each problem, disregarding the results with the 2-opt technique. 

Table 5 shows the average errors of the techniques described, as well as those of the "pure" 
technique presented in this work and of the proposed technique with the 2-opt technique. 
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The results of the "pure" technique proposed in this work are better or equivalent to those of 
the other heuristics mentioned above, for problems br17, ftv33, ftv44, ft53, ft70 and kro124p, 
as shown in Table 5. By using the 2-opt technique on the proposed technique, the best 
results were found for problems br17, ftv33, pr43, ry48p, ftv44, ft53, ft70 and kro124p, with 
average errors ranging from 0 to 16.14%. 

10. Conclusions 

This work presented the Wang’s recurrent neural network with the “Winner Takes All” 
principle to solve the Assignment Problem and Traveling Salesman Problem. The 
application of parameters with measures of matrices dispersion showed better results to 
both problems.  
The results of matrices to Assignment Problem had shown that the principle “Winner Takes 
all” solves problems in matrices with multiple optimal solutions, besides speed the 
convergence of the Wang’s neural network using only 1% of necessary iterations of neural 
network pure.   
Using the best combination of parameters, the average errors are only 0.71% to 100 tested 
matrices to Assignment Problem. Using these parameters solutions of Traveling Salesman 
Problem can be found. 
By means of the Wang’s neural network, a solution for the Assignment Problem is found 
and the “Winner Takes All” principle is applied to this solution, transforming it into a 
feasible route for the Traveling Salesman Problem. These technique’s solutions were 
considerably improved when the 2-opt technique was applied on the solutions presented by 
the proposed technique in this work.  
The data used for testing were obtained at the TSPLIB and the comparisons that were made 
with other heuristics showed that the technique proposed in this work achieves better 
results in several of the problems tested, with average errors below 16.14% to these 
problems.  
A great advantage of implementing the technique presented in this work is the possibility of 
using the same technique to solve both symmetrical and asymmetrical Traveling Salesman 
Problem as well.  
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