
1. Introduction

A porous material is a two-phase medium consisting of a solid part (skeleton) and a fluid
part (pore space). During the propagation of a sound wave in such a medium, interactions
between these two phases of different nature take place, giving various physical properties
that are unusual in classical media. The large contact area between solid and fluid, which is
the main characteristic of porous media induces new phenomena of diffusion and transport
in the fluid, in relation to micro-geometry of the pore space. Many applications are concerned
with understanding the behavior of acoustic waves in such media. In geophysics, we are
interested in the propagation of acoustic waves in porous rocks, for information on soil
composition and their fluid content. Oil companies have greatly contributed to the study
of acoustic properties of natural porous media. In medicine, the characterization of porous
media such as trabecular bone, is useful for diagnosing osteoporosis, bone disease that
is manifested by the deterioration of bone microarchitecture. Acoustic characterization of
materials is often achieved by measuring the attenuation coefficient and phase velocity in
the frequency domain [1] or by solving the direct and inverse problems directly in the time
domain [2–4]. The attractive feature of a time domain based approach is that the analysis is
naturally limited by the finite duration of ultrasonic pressures and is consequently the most
appropriate approach for the transient signal. The objective of this chapter is to show the
most recent theoretical and experimental methods developed by the authors for the acoustic
characterization of porous materials. The direct and inverse scattering problems are solved in
time domain using experimental reflected and transmitted signals. The physical parameters
of the porous medium are recovered by solving the inverse problem at the asymptotic domain
corresponding to the high frequency range (ultrasound), and at the viscous domain (low
frequency range). Figures 1 and 2 give an example of porous materials commonly used in
the characterization. The figure 1 shows a sample of air-saturated plastic foam used for sound
absorption, and figure 2 shows a sample of cancellous bone used in the diagnosis of the disease
of osteoporosis.
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Figure 1. Air saturated Plastic foam

Figure 2. Human cancellous bone sample

2. Porous materials in rigid structure: Equivalent fluid model

2.1. Introduction

The air saturated porous materials are often used as a sound absorber in the fight against noise
pollution. The polyurethane foam, felt or glass wools are three examples of common materials
used in aerospace and automotive industries and in building construction. Generally, when
a sound wave propagates through a porous material saturated with air, the structure remains
stationary and non-deformable with respect to the acoustic excitation, this is due to the
heaviness and stiffness of the skeleton of the structure relative in air. This is called porous
rigid structure and, in this case, we use the equivalent fluid model where viscous and
thermal effects are disconnected [5]. The fluid-structure interactions responsible for the
sound attenuation (particularly important in porous media), are described by two dynamic
susceptibilities, the dynamic tortuosity and compressibility. The dynamic tortuosity [6]
decribes the viscous and inertial effects, the dynamic compressibility [7–9] represents the
thermal effects. A prediction of the acoustic behavior of porous material requires the
determination of both dynamic susceptibilities. The latter can depend only on the physical
characteristics of the fluid and the geometry of the fluid domain. Sound propagation in the
saturating fluid involves both transport and diffusion characteristics. The phenomenon of
transport is the fact that a global movement fluid/solid is induced during the propagation.
The phenomenon of diffusion is related to the expansion/compression of the fluid. They
result in a change in temperature fluid/solid (the latter remaining at room temperature)
driving a heat diffusion, not negligible if the fluid is a gas. Moreover, in the case of sound
propagation, the frequency of movement is important. It is clear that the character of the
movement is changed to different frequencies, the fluid probe different aspects of micro
geometry. In principle one should expect that there are an infinite number of geometric
parameters. But on the other hand, a practical viewpoint, the information provided by a
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finite set of parameters low and high frequencies may be sufficient to describe the dynamic
susceptibilities. For a given frequency, one can define a boundary layer thickness, respectively
viscous and thermal δ = (2η/ωρ f )

1/2, δ′ = (2κ/ρ f Cpω)1/2, where η is the viscosity, ρ f the
fluid density, κ the coefficient of thermal conduction, Cp the specific heat at constant pressure
and ω the angular frequency. The quantities δ and δ′ are respectively the penetration depths
of isothermal viscous and rotational movement. The boundary layer is small if the penetration
depth is small compared to a "radius" characteristic pore. It is then at high frequencies. The
opposite situation corresponds to low frequencies. In the high frequencies, inertial effects are
described by the tortuosity α∞, the visco-thermal losses by viscous and thermal lengths Λ et
Λ′, respectively. At low frequencies, inertial effects are represented by the viscous tortuosity
α0, and visco-thermal exchanges by the visco-thermal permeabilities k0 and k′0. Porosity φ is a
parameter playing an important role both in high in low frequency.

2.2. Parameters describing the porous materials

There are several geometrical parameters that can be associated with a porous structure. Some
depend only on the shape of the porous solid and do not vary when it expands or changes
the scale of the solid. This is the case of the porosity and tortuosity. Others depend on the
dimensions, in the case of viscous and thermal permeabilities that vary in shape as an equal
surface, and viscous and thermal characteristic lengths that vary as lengths.

• Porosity φ: The porosity of a porous material saturated with a fluid is defined by the ratio
of the volume of fluid saturating the porous medium to the total volume of the sample.
This quantity is dimensionless and can vary from 0 (non-porous solid material) to 1 (free
fluid).

• Tortuosity α∞: The tortuosity is a geometric parameter describing the appearance of
tortuous pores, and inertial coupling between the fluid and the structure of the material in
high-frequency regime. Tortuosity takes its lowest value (α∞ = 1) in the case of porous
materials having a straight pores, and large values (α∞ = 1.5, 2) for the most resistive
material.

• Inertial factor α0 (low frequency tortuosity): The inertial factor α0 corresponds to the low

frequency approximation of the dynamic tortuosity given by Norris [10]; α0 = <v(r)2>

<v(r)>2 ,

where < v(r) > is the average velocity of the viscous fluid for direct current flow within
an elementary volume, small compared to the relevant wavelength, but large compared
to the individual grains/pores of the solid. Note that the tortuosity α∞ (high frequency
parameter) has a similar definition than α0, the difference is that for α∞, v(r) corresponds
to the velocity of the perfect incompressible fluid.

• Thermal tortuosity α′0: This low frequency parameter is the thermal counterpart of α0. Its

definition is given by: α′0 =
<θ2

0>
<θ0>2 , where θ0 is the scaled response excess temperature field

in the low frequency range.

• The specific flow resistivity σ: When a porous material placed in a tube sealed to the walls,
is traversed by a fluid, it is a pressure difference between the two free faces. This means
that a proportional relationship exists between flow rate Qv and pressure drop ΔP given by
the ΔP = RQv, the coefficient R is the resistance to fluid flow and can therefore be defined
as the ratio ΔP/Qv. For a homogeneous porous material, the resistance is proportional to
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the length d of the sample and inversely to his section S. Then can be defined, the resistivity
as the specific resistance to the passage of a fluid. Denoted σ, the resistivity is defined by
σ = (S/d)R.

• Viscous permeability k0: Static viscous permeability is related to the flow resistivity by
the relation k0 = η/σ, where η is the dynamic viscosity of the fluid. Viscous permeability
is a geometrical parameter, homogeneous to a surface (it is expressed in m2), independent
of the nature of the saturating fluid and depending only on the internal geometry of the
porous material. This parameter represents the effective pore section for the flow of fluid,
it is connected to the low frequency behavior of the fluid exchange between viscous and
saturating the porous structure.

• Viscous characteristic length Λ: The work of Johnson et al [6] in 1987 on the
characterization of viscous effects at high frequencies has introduced the viscous

characteristic length Λ given by 2
Λ =

∫
S u2dS∫
V u2dV where u is the speed of a microscopic

incompressible perfect fluid, S the area of the interface between solid and fluid phases
and V the volume of fluid. The length Λ is a geometrical parameter. This definition
applies to a smooth interface fluid/solid, and for a low boundary layer thickness to the
radius of curvature characteristic of the interface. When the pore surface has singularities
(peaks), this definition of the characteristic length is no longer valid. The parameter Λ is
an indicator of the size of the narrow neck of the pore, i.e. the privileged place of viscous
exchanges.

• Thermal characteristic length Λ′: In 1991, Allard and Champoux [8], introduced by
analogy with Johnson et al [6], a geometric parameter called thermal characteristic length

given by 2
Λ′ =

∫
S dS∫
V dV . In other words Λ′ is twice the ratio of fluid volume on the total

contact surface between the solid and fluid. The factor 2 is introduced so that in the case
of cylindrical pores, Λ′ is the pore radius. The length Λ′ is an indicator of the size of large
pores, privileged place of heat exchange.

• Thermal permeability k′0: The study of viscous and thermal effects shows that there are
similarities between these two effects. Starting from the equation of heat diffusion, Lafarge
[9] introduced the equivalent of Darcy’s law for the temperature excess, by introducing a
new parameter: the thermal permeability k′0, which is the inverse of the constant trapping.

2.3. Models of dynamic susceptibilities

There are several models describing the inertial viscous and thermal exchanges between the
fluid and the structure. We present here the most elaborate.

2.3.1. The model of Johnson et al. for the dynamic tortuosity

Johnson et al [6] have proposed a simple model describing the function α(ω), which is the
dynamic tortuosity, when the porous structure is saturated with a Newtonian viscous fluid.
This model can be applied to the case of our porous structures saturated with air. Two
model parameters, the tortuosity α∞ and the viscous characteristic length Λ are involved in a
high-frequency limit:

α(ω) = α∞

⎛⎝1 − 2
Λ

(
η

jωρ f

)1/2
⎞⎠ , ω −→ ∞. (1)
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where j2 = −1, η is the dynamic viscosity of the fluid, ω the angular frequency, ρ f the
density of the fluid. In the low frequency limit, the expression of the dynamic tortuosity
in the frequency domain is given by:

α(ω) = − ηφ

ρ f k0 jω
, ω −→ 0, (2)

where, k0 is the viscous permeability given by: k0 =
η
σ (with the dimension of a surface), σ

is the specific resistance passage of the fluid. The meaning of the quantities α∞, Λ, k0 have
been given previously. Johnson et al [6] imply that these three geometric parameters provide
sufficient information about the microgeometry. The proposed general expression for α(ω) is
then that of the simplest analytic function verifying these limits:

α(ω) = α∞

(
1 − 1

jx

√
1 − M

2
j x

)
where x =

ωα∞ρ f

σφ
and M =

8k0α∞

φΛ2 . (3)

2.3.2. The equivalent model for the dynamic compressibility

A model similar to the previous one has been set for the frequency dependence of the thermal
exchanges between the fluid and the structure, because of the heat capacity of the solid part is
significant. The result is a two-parameter model, Λ′ and k′0/φ, the quantities Λ′ and k′0/φ for
thermal effects playing respectively the role of Λ and k0 for viscous effects. In a high-frequency
limit, Allard and Champoux [7, 8] showed the following behavior of β(ω):

β(ω) = 1 − 2(γ − 1)
Λ′

(
η

Prρ f

)1/2 (
1

jω

)1/2
, ω −→ ∞, (4)

where Pr is the number of Prandt and γ the adiabatic constant. As before, this behavior
implies that the thermal boundary layer thickness δ′ becomes small compared to any
characteristic radius of curvature of the interface. One can see that there is no equivalent
of the tortuosity α∞ for thermal effects, at very high frequency β(ω) tends to 1 as α(ω) tends
to the tortuosity α∞.

In a low frequency limit, Lafarge [9] showed that:

β(ω) = γ +
(γ − 1)ρ f k′0Pr

ηφ jω
, when ω −→ 0. (5)

where k′0, which has the same size (area) that the Darcy permeability of k0, is a parameter
analogous to the parameter k0, but adapted to the thermal problem. The proposed general
expression for β(ω) is then that of the simplest analytic function satisfying the limits ((4) and
(5):

β(ω) = γ − (γ − 1)/

[
1 − 1

j x′

√
1 − M′

2
j x′

]
where x′ =

ωρ f k′0Pr

ηφ
and M′ =

8k′0
φΛ′2 .

the parameter k′0 introduced by Lafarge called thermal permeability by analogy to the viscous
permeability.
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2.3.3. Extensions of models by pride and Lafarge

The development of Johnson et al in high frequency for the tortuosity dynamics stops after
the term 1√

jω
, Pride et al [11] proposed a second correction term which is 1

jω . The asymptotic

expansion of the dynamic tortuosity now is written as follows:

α(ω) = α∞

⎛⎝1 − 2
Λ

(
η

jωρ f

)1/2

− σφ(1 − ℘)

jωρ f α∞

⎞⎠ , ω −→ ∞. (6)

The Pride parameter ℘ [11] is a geometrical parameter, dimensionless, connected to a
correction term α0 playing the role of inertia of fluid at low frequencies:

℘ =
M

4
(

α0
α∞

− 1
) , where M =

8k0α∞

φΛ2 .

The expansion of low frequency dynamic tortuosity is given by:

α(ω) = − ηφ

ρ f k0 jω
+ α0, ω −→ 0 (7)

The new expression of the analytic function taking into account developments of (6) and (7) is
given by:

α(ω) = α∞

(
1 − 1

jx

(
1 − ℘+ ℘

√
1 − M

2℘2 j x

))
.

The value of ℘ depends on the geometry of the pores, for example in the case of cylindrical
pores of circular section, it is shown that ℘ = 3/4. For rectangular sections, one obtains values
close to 3/4.

For thermal effects, Lafarge [9] suggested a similar expression for the dynamic thermal
compressibility, also introducing a dimensionless parameter ℘′ and gives a correction to
the Allard and Champoux model at high frequencies. The expression of the dynamic
compressibility is then given by:

β(ω)=1−(γ−1)

⎡⎣ 2
Λ′

(
η

Prρ f

)1/2 (
1

jω

)1/2
+

(
η

ρ f Pr jω

)
.
(
(1 − ℘′)φ

k′0
− 4

Λ′2

)⎤⎦ , ω −→ ∞.

(8)

The parameter ℘′ is connected to α′0, thermal equivalent of α0, which describes the thermal
inertia of fluid at low frequency:

℘′ =
M′

4(α′0 − 1)
.

The general expression for the dynamic compressibility is then given by:

β(ω) = γ − (γ − 1)/

[
1 − 1

j x′

(
1 − ℘′ + ℘′

√
1 − M′

2℘′2 j x′
)]

.
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One can notice that the models of Pride and Lafarge are reduced to those of Johnson and
Allard when ℘ = 1 and ℘′ = 1. We will see later the influence of these parameters on the
propagation.

2.4. Temporal modeling of propagation: asymptotic regime

The use of transient signals in the acoustic characterization of porous media is widely used
experimentally. These signals have a wide frequency content making some complicated
frequency approaches. The frequency methods are very effective for monochromatic signals,
however, for transient signals, the temporal approach [2, 12–15] is best suited for several
reasons:

• Time domain analysis is naturally bounded (limited) by the finite duration of impulses.

• Time-modeling is often easier to develop because it is closer to the reality of experiments.

• In many situations, the introduction of the "time" parameter make easier the analysis of
experimental results.

• For certain applications, it is fast because it avoids back and forth operations between time
and frequency domains by FFT.

• It provides an elegant solution of the direct problem necessary for the resolution of the
inverse problem.

• It is well suited for comparison between theory and experiment.

In return for these benefits, it is necessary to use a new mathematical formalism. In the
frequency domain approach, the relevant quantities for the characterization of porous media
are functions of frequency which can be interpreted as susceptibilities. While frequency
methods lead to the frequency responses of the medium, in the temporal approach, one is
interested in these impulse responses.

2.5. Concept of fractional derivative and propagation equation

In the asymptotic regime corresponding to high frequencies, the fluid-structure interactions
are described by expressions (1) et (4) according to the Johnson-Allard model. Writing the
equations in the time domain is equivalent to taking the inverse Fourier transform of (1)
and (4). The temporal equivalent of jω is ∂/∂t, while the temporal equivalent of

√
jω is a

fraction0al derivative of order 1/2. The definition of fractional derivative of order ν is given
by [16]:

Dν[x(t)] =
1

Γ(−ν)

∫ t

0
(t − u)−ν−1x(u)du, (9)

where Γ is the Eulerian function of the second kind [17]. From the definition (9), the
expressions of response factors α(ω) and β(ω) are then given in the time domain by [2]:

α(ω)
t−→ α∞δ(t) +

1
ρ f

χv(t),

β(ω)
t−→ δ(t) + Kaχth(t),

133Transient Acoustic Wave Propagation in Porous Media



8 Will-be-set-by-IN-TECH

where δ(t) is the Dirac distribution and the operators, Ka the modulus of the fluid, χv(t) and
χth(t) are given by:

χv(t) =
2ρ f α∞

Λ

√
η

πρ f
t−1/2,

χth(t) =
2(γ − 1)

KaΛ′

√
η

πPrρ f
t−1/2,

In this model, the time convolution of t−1/2 with a function, is interpreted as an operator
of fractional derivative. The acoustic fields satisfy the Euler equation and the constitutive
equation [2] given by:

ρ f α∞ ∂tv(r, t) +
∫ t

0
χv(t − t′) ∂tv(r, t′) dt′ = −∇p(r, t), (10)

1
Ka

∂t p(r, t) +
∫ t

0
χth(t − t′) ∂t p(r, t′) dt′ = −∇.v(r, t). (11)

These constitutive relations in the time domain satisfy the principle of causality. In these
equations, p is the acoustic pressure, v the particle velocity. The term α∞δ(t) reflects the
instantaneous response of the porous medium and describes the inertial coupling between
fluid and structure. For instantaneous responses, we mean that the time response is smaller
than the characteristic time scale of the change in the acoustic field. The susceptibilities χv
and χth are operators of memory that determine the dispersion of the medium.

We assume that the medium varies with the thickness x only, and that the incident wave is
plane and normal to the surface of the material. Sound pressure is denoted by p(x, t). We
assume that the pressure field is zero for moments earlier to 0. The wave equation for acoustic
pressure field of a porous medium having a dispersive rigid structure is obtained from the
constitutive equations (10, 11), and is of the form:

∂2
x p(x, t)− 1

c2
0

[
α∞∂2

t p(x, t) +

(
α∞Kaχth +

χv

ρ f
+ c2

0χth ∗ χv

)
∗ ∂2

t p(x, t)

]
= 0, (12)

where c0 = (Ka/ρ f )
1/2 is the sound speed in the free fluid. The following notation is used for

convolution integrals of two causal functions f (x, t) and g(x, t);

[ f ∗ g](x, t) =
∫ t

0
f (x, t − t′)g(x, t′)dt′.

The propagation equation (12) can be written as:

∂2 p(x, t)
∂x2 − A

∂2 p(x, t)
∂t2 − B

∫ t

0

∂2 p(x, t)/∂t′2√
t − t′

dt′ − C
∂p(x, t)

∂t
= 0, (13)

where the coefficients A, B and C are constant and given by:

A =
ρ f α∞

Ka
, B =

2α∞

Ka

√
ρ f η

π

(
1
Λ

+
γ − 1√

PrΛ′

)
C =

4α∞(γ − 1)η
KaΛΛ′√Pr

,
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respectively, The coefficient A gives the wave velocity c = 1/
√

ρ f α∞/Ka in the air saturating

the porous medium. α∞ plays the role of the refractive index of the porous medium that

changes the speed c0 =
√

Ka/ρ f in free space to c0 = c/
√

α∞ in the porous medium.

The other coefficients depend essentially on characteristic lengths Λ and Λ′ and express
the fluid-structure visco-thermal interactions. The constant B describes the dispersion of
the signal and C the attenuation of the amplitude of the wave (without dispersion). The
propagation equation (13) describes the evolution of the acoustic wave inside the porous
material. The boundary conditions have not been introduced, the porous medium is assumed
to be infinite. The coefficients of the equation of propagation do not depend on the porosity, in
fact, porosity appears at the interfaces of the porous material via the relationship of continuity
of acoustic flow (the flow rate is equal to the porosity multiplied by the speed). This parameter
appears naturally at the reflection and transmission of an acoustic wave through a slice of
porous material. The solution of the wave equation (13) is given by the Green function G of
the porous medium [3, 18], defined by:

p(x, t) =
∫ t

0
G(x, t − t′)p(0, t)dt′,

where p(x, t) is the sound pressure in the porous medium and p(0, t) the incident signal.

2.6. Solution of the propagation equation: Green function (Johnson-Allard
model)

To solve the propagation equation and obtain the Green function of the medium, we solve the
equation (13) using the method of Laplace transform [18], taking into account the following
initial conditions of causality:

p(x, t)|t=0 = 0 and
∂p
∂t

|t=0 = 0. (14)

Denote by P(x, z) the Laplace transform of p(x, t) defined by:

P(x, z) = L [p(x, t)] =
∫ ∞

0
exp(−zt)p(x, t)dt,

and the inverse Laplace transform by:

p(x, t) = L−1 [P(x, z)] .

Using the following relationship:

L [δ(t)] = 1, L [H(t)] =
1
z

and L
[

1√
t

]
=

√
π

z
,

where H(t) is the Heaviside jump function, the Laplace transform of the wave equation (13)
is:

∂2P(x, z)
∂x2 −z2

(
1
c2 +

C
z
+B

√
π

z

)
P(x, z)=−

(
1
c2 +B

√
π

z

)(
zp(x, 0)+

∂p(x, 0)
∂t

)
−Cp(x, 0).

(15)
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Taking into account the initial conditions (14), equation (15) simplifies to

∂2P(x, z)
∂x2 − z2

(
1
c2 +

C
z
+ B

√
π

z

)
P(x, z) = 0,

which is a second order differential equation with real coefficients constant. The general
solution of equation is:

P(x, z) = e−
x
c

√
f (z)ϕ(z) + e

x
c

√
f (z)ψ(z),

where ϕ(z) and ψ(z) are two independent functions of x and:

f (z) = z2
(

1 +
Cc2

z
+ Bc2

√
π

z

)
= z(z + b′

√
z + c′). (16)

In equation (16), the constants b′ and c′ are positive and are given by:

b′ = Bc2√π and c′ = Cc2. (17)

Retaining the finite solution at infinity, which corresponds to the physical solution of our
problem, we have:

P(x, z) = e−
x
c

√
f (z)ϕ(z).

The solution of equation (13) is the inverse Laplace transform of P(x, z). We obtain:

p(x, t) = L−1
(

e−
x
c

√
f (z)ϕ(z)

)
= L−1

(
e−

x
c

√
f (z)

)
∗ L−1 (ϕ(z)) .

The core problem is the calculation of the inverse Laplace transform of the term

L−1
(

e−
x
c

√
f (z)

)
. This has been well studied in reference [18]. By letting:

Δ2 = b′2 − 4c′, (18)

it is easy to check that Δ2 is always positive in the Johnson-Allard model. The expression of
f (z) (Eq. 16) can be written as

f (z) =
(

z +
b′

2
√

z
)2

−
(

Δ
√

z
2

)2

. (19)

When Δ = 0, the solution of the propagation equation(13) is given [18] by:

p(x, t) =

{
0, if 0 ≤ t ≤ x/c,

1
4
√

π
b′x
c

∫ t
x/c

1
(τ−x/c)3/2 exp

(
− b′2x2

16c2(τ−x/c)

)
p(0, t − τ)dτ, if t > x/c,

(20)

where p(0, t) = L−1 (ϕ(z)). In this case the Green function is given [18, 19] by:

G(x, t) =

{
0, if 0 ≤ t ≤ x/c,

1
4
√

π
b′x
c

1
(t−x/c)3/2 exp

(
− b′2x2

16c2(t−x/c)

)
, if t > x/c,

(21)
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When Δ2 > 0, the general solution of the propagation equation is given by:

p(x, t)=

⎧⎨⎩
0, if 0 ≤ t ≤ x/c,

x
c

∫ t
x/c

(
b′

4
√

π
1

(τ−x/c)3/2 exp
(
− b′2x2

16c2(τ−x/c)

)
+Δ

∫ τ−x/c
0 h′(ξ)dξ

)
p(0, t−τ)dτ, t > x/c.

(22)

where

h′(ξ) = − 1
4π3/2

1√
(τ − ξ)2 − x2/c2

1
ξ3/2

∫ 1

−1
exp

⎛⎜⎝−

(
μΔ

√
(τ − ξ)2 − x2/c2 + b′(τ − ξ)

)2

16ξ

⎞⎟⎠

×

⎛⎜⎝
(

μΔ
√
(τ − ξ)2 − x2/c2 + b′(τ − ξ)

)2

8ξ
− 1

⎞⎟⎠ μdμ√
1 − μ2

.

In this case, the Green function [18] is given by:

G(x, t) =

⎧⎨⎩
0, if 0 ≤ t ≤ x/c,

x
c

(
b′

4
√

π
1

(t−x/c)3/2 exp
(
− b′2x2

16c2(t−x/c)

)
+ Δ

∫ t−x/c
0 h′(ξ)dξ

)
, if t > x/c.

(23)

2.7. Solution of the propagation equation: Green function (Pride-Lafarge model)

Extensions of Pride-Lafarge (6,8) are expressed in the time domain [3] using the definition of
fractional derivative:

α̃(t) = α∞

⎛⎝δ(t) +
2
Λ

(
η

ρ f

)1/2
∂−1/2

∂t−1/2 +
σφ(1 − ℘)

ρ f α∞

∂−1

∂t−1

⎞⎠ ,

β̃(t) = δ(t) + (γ − 1)

⎛⎝ 2
Λ′

(
η

Prρ f

)1/2
∂−1/2

∂t−1/2 +

(
η

ρ f Pr

)[
(1 − ℘′)φ

k′0
− 4

Λ′2

]
∂−1

∂t−1

⎞⎠ ,

α̃(t) and β̃(t) are the operators of tortuosity and compressibility. In these equations, the
operator ∂−1/∂t−1 represents the time integral:

∂−1x(t)
∂t−1 =

∫ t

0
x(t′)dt′,

and semi-operator ∂−1/2/∂t−1/2 represents the fractional derivative. In this case, the basic
equations are given by:

ρ f α∞ ∂tv(r, t) +
∫ t

0
χ′

v(t − t′) ∂tv(r, t′) dt′ = −∇p(r, t), (24)

1
Ka

∂t p(r, t) +
∫ t

0
χ′

th(t − t′) ∂t p(r, t′) dt′ = −∇.v(r, t), (25)

137Transient Acoustic Wave Propagation in Porous Media



12 Will-be-set-by-IN-TECH

where the operators χ′
v(t) and χ′

th(t) are given by:

χ′
v(t) =

2ρ f α∞

Λ

√
η

πρ f
t−1/2 + σφ(1 − ℘)

∂−1

∂t−1 ,

χ′
th(t) =

2(γ − 1)
KaΛ′

√
η

πPrρ f
t−1/2 +

(
η(γ − 1)
Kaρ f Pr

)[
(1 − ℘′)φ

k′0
− 4

Λ′2

]
∂−1

∂t−1 ,

In these expressions, the convolutions express the dispersive nature of the porous material.
They take into account the memory effect, where the medium response to excitation of the
wave is not instantaneous but takes some time.

The propagation equation can be easily obtained from (24, 25). The propagation equation
obtained has exactly the same form as the equation (13), the only difference appears at the

coefficient C =
(

4α∞(γ−1)η

KaΛΛ′√Pr
+

σφ(1−℘)
Ka

+
α∞(γ−1)η

Kak′0Pr

[
(1−℘′)φ

k′0
− 4

Λ′2

])
, However, we will see that

its solution is different. Since the coefficient C exchange rate, the coefficients c′ and Δ given
by equation ((17, 18) also change. With extensions of Pride-Lafarge, the coefficient Δ2 can be
negative [3], it gives:

Δ
′2 = −Δ2 =⇒ Δ

′2 = 4c′ − b′2. (26)

In this case, f (z) given by equation (16) can be written in the form:

f (z) =
(

z +
b′

2
√

z
)2

+

(
Δ′√z

2

)2

. (27)

Using expressions (26 and 27) and analytical calculations given in [3], we obtain the solution
of the wave equation when Δ2 is negative:

p(x, t)=

{
0, if 0 ≤ t ≤ x/c,∫ t

x/c

[
F1(τ)+

∫ τ−x/c
0 H(ξ, τ)dξ+ j

∫ τ−x/c
0 Ξ(ξ, τ)dξ

]
p(0, t−τ)dτ if t > x/c.

(28)

with

F1(τ) =
1

4
√

π
b′

x
c

1
(τ − x/c)3/2 exp

(
− b′2x2

16c2(τ − x/c)

)
, j2 = −1.

The functions H(ξ, τ) and Ξ(ξ, τ) are given by the following equations where τ is replaced by
t:

H(ξ, t) =
Δ′

4π
√

π

x
c

1√
(t − ξ)2 − x2/c2

1
ξ3/2 ×

∫ 1

−1

[AB
4ξ

cos
(AB

8ξ

)
−

(B2 −A2

8ξ
− 1

)
sin

(AB
8ξ

)]
exp

(
−B2 −A2

16ξ

)
μdμ√
1 − μ2

and

Ξ(ξ, t) = − Δ′

4π
√

π

x
c

1√
(t − ξ)2 − x2/c2

1
ξ3/2∫ 1

−1

[(B2 −A2

8ξ
− 1

)
cos

(AB
8ξ

)
+

AB
4ξ

sin
(AB

8ξ

)]
exp

(
−B2 −A2

16ξ

)
μdμ√
1 − μ2

,
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where

A = Δ′μ
√
(t − ξ)2 − x2/c2 and B = b′(t − ξ).

The Green function is given by [3]:

G(t, x) =

{
0, if 0 ≤ t ≤ x/c,
F1(t) +

∫ t−x/c
0 H(ξ, t)dξ + j

∫ t−x/c
0 Ξ(ξ, t)dξ if t > x/c.

(29)

2.8. The reflection and transmission operators

For a slice of porous material occupying the domain 0 ≤ x ≤ L, the incident and scattered
fields are connected by scattering operators (i.e. operators of reflection and transmission) of
the material. These are operators [4] represented in integral form:

pr(x, t) =
∫ t

0
R̃(τ)pi

(
t − τ +

x
c0

)
dτ, (30)

pt(x, t) =
∫ t

0
T̃(τ)pi

(
t − τ − L

c
− (x − L)

c0

)
dτ. (31)

In equations (30) and (31) functions R̃ and T̃ represent the kernel of reflection and transmission
operators, respectively. These are independently-owned operators of the incident field
and depend only on the material properties. To express the operators of reflection and
transmission, we assume [4] that the field of acoustic pressure and flow are continuous at
the interfaces of the material:

p(0+ , t) = p(0− , t), p(L−, t) = p(L+, t)

v(0− , t) = φv(0+ , t), v(L+, t) = φv(L−, t) (32)

The expressions of R̃ and T̃ are given by (see Ref. [4])

R̃(t) =
(−φ +

√
α∞

φ +
√

α∞

)
∑

n≥0

(
φ −√

α∞

φ +
√

α∞

)2n [
G
(

t, 2n
L
c

)
− G

(
t, (2n + 2)

L
c

)]
,

T̃(t) =
4φ

√
α∞

(
√

α∞ + φ)2 ∑
n≥0

(
φ −√

α∞

φ +
√

α∞

)2n

G
(

t +
L
c0

, (2n + 1)
L
c

)
.

where G is the Green function of the medium. These expressions take into account the
multiple n reflections within the porous material. Given the high attenuation of acoustic
waves in air-saturated porous media, multiple reflections are negligible. For reflections at
the interfaces x = 0 and x = L, the expressions of the operators of reflection and transmission
are simplified (Ref. [4] ) as follows:

R̃(t) =
√

α∞ − φ√
α∞ + φ

δ(t)− 4φ
√

α∞(
√

α∞ − φ)

(
√

α∞ + φ)3 G
(

t,
2L
c

)
, (33)

T̃(t) =
4φ

√
α∞

(φ +
√

α∞)2 G
(

t +
L
c

,
L
c

)
. (34)
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The first term on the second member of the equation (33):
((
√

α∞ − φ)/(
√

α∞ + φ)) δ(t) is equivalent to the instantaneous reflection response of the
porous material. This term corresponds to the wave reflected by the first interface x = 0 .
It depends only on the porosity and tortuosity of the material. The reflected wave to the first
interface has the advantage not to be dispersive, but simply attenuated. This shows that it is
possible to measure the porosity and tortuosity of the porous material by measuring just the
first reflected wave.

The second term of equation (33): − 4φ
√

α∞(
√

α∞−φ)
(
√

α∞+φ)3 G
(

t, 2L
c

)
corresponds to the reflection by

the second interface x = L. This term depends on the Green function of the medium that
describes the propagation and scattering of the acoustic wave having made a round trip in the
slab of porous material. Green’s function depends on the tortuosity, and viscous and thermal
characteristic lengths Λ and Λ′ material, but does not depend on the porosity. Experimentally,
this second contribution to the debate can not be measured for low-resistive materials, because
the acoustic signal is very attenuated.

Let us study the sensitivity [20] of porosity on the transmission operator T̃(t). Taking the
derivative of T̃(t) versus the porosity φ, we obtain:

∂T̃
∂φ

=
4
√

α∞(
√

α∞ − φ)

(
√

α∞ + φ)3 G
(

t +
L
c

,
L
c

)
,

when φ −→ √
α∞, the derivative ∂T̃

∂φ −→ 0. This shows that when the porous medium tends to
a free fluid, or for weakly resistive porous material with low values of porosity and tortuosity
(near 1), the sensitivity of the porosity of the transmitted wave tends to zero. More generally,
for a wide range of air saturated porous materials, the term ∂T̃

∂φ is very small. Finally, we
conclude that the operator of transmission depends on all parameters, but the low sensitivity
of the porosity, makes impossible the determination of this parameter from transmitted data.

2.9. Numerical simulations

Let us consider a sample of air saturated porous M1 having the following physical properties:
thickness 0.8 cm, tortuosity α∞ = 1.5, viscous characteristic length Λ = 25 μ m, thermal
characteristic length Λ = 75μ m, specific resistance to fluid flow σ = 200,000 Nm −4 s, porosity
φ = 0.82 and thermal permeability k′0 = 2.77 10−10 m 2. A simulated transmitted signal was
calculated from the equation (31). The input signal is given in figure 3 and its spectrum in
Figure 4. Figure 5 shows a comparison between two signals, the first (solid line) corresponds
to the real part of the solution (28) of Pride-Lafarge model when ℘ = ℘′ = 0.7 and the second
(dotted) corresponds to the solution (22) model of Johnson-Allard (℘ = ℘′ = 1). We choose
the same values for ℘ and ℘′ to simplify the study. This specific value of 0.7 is only valid
for porous materials with circular pores. In the general case, the values of ℘ and ℘′ may
be different from 0.7. Note that it is possible to have positive values of Δ (Eq. 18) for other
values of ℘ and ℘′. From Figure 5, we notice a significant change in the wave amplitude.
By increasing ℘ and ℘′ from 0.7 to 1, the wave amplitude increases by 65% of its original
value. This result can be predicted by the fact that when the values of ℘ and ℘′ increases, the
coefficient C decreases, and hence the wave amplitude decreases due to interactions; inertial,
viscous and thermal between fluid and structure. This phenomenon is much more important
for resistive porous materials. Figure 6 shows the same comparison as Figure 5 for another
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Figure 3. Incident signal
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Figure 4. Spectrum of the incident signal
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Figure 5. Comparison between simulated transmitted signal corresponding to the real part of the
solution of Pride-Lafarge (Eq. 28) for ℘ = ℘′ = 0.7 (solid line) and simulated signal corresponding to the
solution of Johnson-Allard (Eq. 22) for ℘ = ℘′ = 1 (dotted line) for the sample M1.

sample M2 less resistive, having the following parameters: thickness 0.8 cm, tortuosity α∞ =
1.05, viscous characteristic length Λ = 300 μ m, thermal characteristic length Λ′ 900 = μ m,
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Figure 6. Comparison between simulated transmitted signal corresponding to the real part of the
solution of Pride-Lafarge (Eq. 28) for ℘ = ℘′ = 0.7 (solid line), and the transmitted signal corresponding
to the simulated Allard-Johnson solution (Eq. 22) for ℘ = ℘′ = 1 (dotted line) for the sample M2.
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Figure 7. Spectrum of the transmitted signal simulated for ℘ = ℘′ = 0.7 Eq. (28) (solid line) and
simulated transmitted signal spectrum for ℘ = ℘′ = 1 (Eq. 22) (poitillés).

specific resistance to the passage of fluid σ =20000Nm−4 s, porosity φ = 0.96 and thermal
permeability k′0 = 2.77 10−9 m 2. In Figure 6, the influence of the parameters ℘ and ℘′ on
the attenuation is smaller than that in Figure 5. We can conclude that the parameters ℘ and ℘′

play an important role in the acoustic attenuation, especially for resistive media.

It is possible to see from Figures 5 and 6, when the values of ℘ and ℘′ change from 0.7 to 1, the
waveform changes only at the amplitude of the wave, but it is not dispersed. Figure 7 shows
the spectra of two simulated signals given in Figure 5. From the spectra of two simulated
signals, we can see they have the same bandwidth, which means that there is no dispersion.
This last result shows that ℘ and ℘′ play an important role in attenuation the acoustic wave but
not on its dispersion. Figure 8 shows the imaginary part of the solution (28) for ℘ = ℘′ = 0.7
(sample M1). The amplitude of the imaginary part of the solution is very small compared
to the real part (figure 5), this is why only the real part of the solution corresponding to the
physical solution is taken into account when a comparison with the experiment is performed.
It is possible to write the Green function given by equation (29) as G = G1 + iG2 =| G |eiθ,
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Figure 8. Simulated transmitted signal corresponding to the imaginary part of the solution (28) model of
Pride-Lafarge.

tan θ = G2/G1 
 1. This leads to the conclusion that all components of the signal have the
same phase (very small θ, which is therefore a physical factor not essential.

2.10. Transmitted wave

The expression (34) shows that the transmitted wave depends on the porosity φ, and
parameters describing the high frequency acoustic propagation in the material (tortuosity α∞
and viscous and thermal characteristic lengths Λ and Λ′). The study of the sensitivity of the
porosity (in the previous paragraph) showed that the effect of propagation described by the
Green’s function altogether mask the effect of interfaces: recall that the Green function G is

independent of porosity and the effect of the interface appears through the term 4φ
√

α∞

(φ+
√

α∞)2

in the expression of the transmission operator (34). The low sensitivity of the porosity in
transmission makes its determination impossible. Solving the inverse problem, using the
transmitted waves allowed the determination of the tortuosity and viscous and thermal
characteristic lengths. Note that the ratio of two lengths was set at 3 [20–23]. Currently the
only method for the separate determination of the two lengths is based on the saturation of
the porous by two different fluids [24]. The two characteristic lengths are acting the same
way on the dispersion and attenuation of the transmitted signal. So it is mathematically
impossible to trace two unknowns giving the same physical effect on the waveform. We limit
ourselves in our work to set an arbitrary ratio between the two lengths. The tortuosity acts
on the speed of the wavefront (delay of the transmitted signal with respect to the incident
signal) and the attenuation of the amplitude of the waveform. While the characteristic lengths
affect the dispersion and attenuation of the signal. A basic inverse problem associated with a
slab of porous material may be stated as follows: from the measurements of the transmitted
signals outside the slab, find the values of the parameters of the medium. As shown in the
previous section, the solution of the direct problem is the system of two operators expressed as
functions on α∞, Λ and Λ′. The inversion algorithm for finding the values of the parameters
of the slab is based on a fitting procedure: find the values of the parameters α∞, Λ and Λ′

such that the transmitted and reflected signal describes the scattering problem in the best
possible way (e.g., in the least-squares sense). Experiments were performed in air using a
pairs of broadband Ultran transducers NCG200-D13 with a central frequency of 195 kHz and
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a bandwith of 6 dB extending from 140 kHz to 250 kHz. Pulses of 400 V are provided by a
5058PR Panametrics pulser/receiver. The received signals are filtered above 1 MHz to avoid
high frequency noise. Electronic interference is eliminated by 1000 acquisition averages. The
experimental setup is shown in Fig. 9. Consider a sample of plastic foam, of thicknesses

pulse generator

Computer

Digital oscilloscope

High frequency filtering

Pre-amplifier

Triggering

Sample

Transducers

Figure 9. Experimental set-up of the ultrasonic measurements in transmitted mode.

0.7 ± 0.01cm. The measured signal generated by the transducer (measured without the
sample) is given in Fig. 10 as a dashed line. The measured transmitted signal (obtained with
the sample inserted) is given in the same figure (Fig. 11) as a solid line. By solving the inverse
problem using the experimental transmitted data, we find the following optimized values:
α∞ = 1.26 and Λ = 66μm. In Figs. 11, we compare the experimental transmitted signal and
simulated transmitted signal for the optimized values of tortuosity and viscous characteristic
length. The difference between experiment and theory is slight, which leads us to conclude
that the physical parameters are well-identified.
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Figure 10. Experimental incident signal (dashed line) and transmitted signal (solid line) using the pair
of transducers Ultran NCG200-D13 (140 kHz - 250 kHz).

2.11. Determination of transport parameters in air-saturated porous materials via
reflected ultrasonic waves

A method for measuring transport parameters in porous materials simultaneously, using
measurements of waves reflected at the first and second interface, has been proposed
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Figure 11. Comparison between experimental transmitted signal (solid line) and simulated transmitted
signal (dashed line).

[25]. This method is based on a temporal model of direct and inverse scattering problems
affecting the propagation of transient ultrasonic waves in a homogeneous isotropic slab of
porous material with a rigid frame. Generally, porosity and tortuosity can be evaluated
simultaneously by the wave reflected at the first interface at oblique incidence [26–29] but this
is not possible at normal incidence [4, 30]. Viscous and thermal characteristic lengths can be
estimated only by transmitted waves. Porosity cannot be determined from transmitted waves
because of its weak sensitivity in this mode [4]. The advantage of the proposed method is
that all the parameters can be determined at normal incidence (the ratio between viscous and
thermal lengths is fixed as in classical methods [21–24] based on transmission measurement).
The main principle of this method is the experimental detection of reflected contributions from
the first and the second interface of the medium. The properties of these two contributions are
used to estimate the four acoustical parameters needed for ultrasonic propagation in porous
material with a rigid frame, by solving the inverse problem. Studying the sensitivity of
each reflected wave parameter demonstrates the importance of each contribution) first and
second interface! for the inversion. Numerical and experimental validation for weak resistive
air-saturated industrial plastic foams is given to validate this method.

2.12. Reflected and transmitted waves

This section concerns the ultrasonic characterization of air-saturated porous materials by
solving the inverse problem using experimental data. It is generally easy to solve the
inverse problem via transmitted waves, obtaining optimized values of tortuosity, viscous
and thermal characteristic lengths, but this is not the case for the porosity because of its
weak sensitivity in the transmitted mode. The reflection mode is an alternative to the
transmission mode, in that it gives a good estimation of porosity and tortuosity by processing
the data relative to measurements of the wave reflected by the first interface. The viscous
and thermal characteristic lengths cannot be determined via the first interface reflection. The
wave reflected by the second interface can be experimentally detected only for the weakly
resistive porous materials. In this case, the characteristic lengths can be estimated. But
for common air-saturated porous materials, the second reflection is very damped and its
experimental detection is difficult. We solve the inverse problem [31] numerically by the
least-squares method, using both reflected and transmitted experimental data. We determine
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simultaneously all the physical parameters intervening in the propagation. The minimization
between experiment and theory is made in the time domain. The inverse problem is well
posed, and its solution is unique. As with the classic ultrasonic approach for characterizing
porous material saturated with one gas, the characteristic lengths are estimated by assuming
a given ratio between them. Tests are performed using industrial plastic foams. Experimental
and numerical results, and prospects are discussed [31].

2.13. Ultrasonic characterization of air-saturated double-layered porous media

This section concerns a time-domain model of transient wave propagation in double-layered
porous materials [32]. An analytical derivation of reflection and transmission scattering
operators is given in the time domain. These scattering kernels are the medium’s responses
to an incident acoustic pulse. The expressions obtained take into account the multiple
reflections occurring at the interfaces of the double-layered material. The double-layered
porous media consist of two slabs of homogeneous isotropic porous materials with a rigid
frame. Each porous slab is described by a temporal equivalent fluid model, in which
the acoustic wave propagates only in the fluid saturating the material. In this model,
the inertial effects are described by the tortuosity; the viscous and thermal losses of the
medium are described by two susceptibility kernels which depend on the viscous and thermal
characteristic lengths. the inverse problem is solved using experimental reflected signals at
normal incidence. The sensitivity of porosity, tortuosity, and viscous characteristic length of
each layer is studied showing their effect on the reflected interface waveforms. The inverse
problem is solved numerically by the least-squares method. Five parameters are inverted:
porosity and tortuosity of the two layers and the viscous characteristic length of the first
layer. The minimization of the discrepancy between experimental and theoretical data is
made in the time domain. The inverse problem is shown to be well posed and its solution
to be unique. Experimental results for waves reflected by the interfaces of the double-layered
porous material are given and compared with theoretical predictions [32].

2.14. Acoustic characterization of porous materials at low frequency range

In this frequency range, the viscous forces are important throughout the fluid, the cycle
of compression/expansion in the porous medium is slow enough to allow heat exchange
between fluid and structure. At the same time, the temperature of the structure is practically
unchanged by the passage of the sound wave due to the large value of its specific heat
conducting relation to that of the fluid: the structure acts as a thermostat. In this case the
isothermal compression is directly applicable. This range corresponds to frequencies where
the viscous skin depth δ = (2η/ωρ f )

1/2 is larger than the pore radius.

An acoustic method [33–37] using transmitted and reflected waves is proposed for measuring
static viscous permeability k0, flow resistivity σ, static thermal permeability k′0 and the
inertial factor α0 (low frequency tortuosity), of porous materials having a rigid frame at low
frequencies. Flow resistivity of porous material is defined as the ratio between the pressure
difference across a sample and the velocity of flow of air through that sample per unit cube.
The static thermal permeability of porous material is a geometrical parameter equal to the
inverse trapping constant of the solid frame. The inertial factor describes the fluid structure
interactions in the low frequency range (1-3 kHz). These parameters are determined from the
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solution of the inverse problem. The propagation equation is given (along the x−axis) by:

∂2 p(x, t)
∂x2 − 1

c2
∂2 p(x, t)

∂t2 − A
∂p(x, t)

∂t
+ B

∂3 p(x, t)
∂t3 = 0, (35)

1
c2 =

ρ f

Ka

(
α0γ − (γ − 1)Prk′0

k0

)
, A =

ηφ

ρ f k0
,

B = −
α0(γ − 1)k′0Prρ2

f

Kaηφ
+

α′0(γ − 1)k′0
2Pr

2ρ f
2

ηφk0Ka
−

γα∞ρ2
f Λ2

(
α0
α∞

− 1
)3

4ηKa

The solution of this equation gives the Green function [34] of the porous material:

G(x, t) =
1√
π

x
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√
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⎡⎣√
Δ

4 b′
1

t3/2 exp
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16c2 b′ t

)
− 2

π
√

π

∫ ∞

x
c

√
b′

F(ζ, t)√
ζ2 − x2

c2 b′
dζ

⎤⎦ ,

F(ζ, t) =
∫ ∞

0
exp(−s t)

√
s(s + 1/2b′)ℵ(ζ, s)ds,

ℵ(ζ, s) =
∫ 1

−1
cos

⎡⎣√
Δ

2b′
ζ
√

s − y
√

s(s + 1/2b′)

√
ζ2 − x2

c2 b′

⎤⎦ yd y√
1 − y2

,

b′ = Bc2, c′ = Ac2, Δ = 1 + 4b′c′.

The incident pi(t) and transmitted pt(t) fields are related in time domain by the transmission
scattering operator 31. Its expression is given by the relation given in Ref. [34]:

T̃(t) =
∫ t

0
D(τ)G(t − τ + L/c, L/c)dτ,− ∗ (36)

D(t) =
2

�
√

π

1
t3/2

∫ ∞

0

(
u2

2t
− 1

)
u exp

(
− u

�
− u2

4t

)
du, � =

√
ρ f k0γπ

η
.

In the very low frequency range, the propagation equation 35 is reduced to a diffusive
equation

∂2 p(x, t)
∂x2 − d

∂p(x, t)
∂t

= 0, (37)

where d =
σφγ
Ka

the diffusion constant. The solution of this diffusive equation gives the Green
function of the porous material [33, 35, 36]:

G(x, t) =
x
√

d
2
√

π

1
t3/2 exp

(
− x2 d

4t

)
. (38)

The transmission scattering operator is T̃(t) = D(t) ∗ G(L, t), where * denotes the time
convolution operation. The operator D(t) is given by

D(t) = − 8
B2

(
1 +

t
B2

)
exp

(
t

B2

)
Erfc

(√
t

B

)
+

4
B
√

πt

(
2

t
B2 + 1

)
, B =

1
η

√
φ3γσ3ρ f ,
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where Erfc is the complementary error function and ρ f is the fluid density.

The inverse problem is to find the parameters k′ and α0 [37] which minimize numerically
the discrepancy function U(k′, α0) = ∑i=N

i=1 (pt
exp(x, ti)− pt(x, ti))

2, wherein pt
exp(x, ti)i=1,2,...n

is the discrete set of values of the experimental transmitted signal and pt(x, ti)i=1,2,...n the
discrete set of values of the simulated transmitted signal predicted from Eq. (31). The inverse
problem is solved numerically by the least-square method. For its iterative solution, we used
the simplex search method (Nedler Mead) [38] which does not require numerical or analytic
gradients. Experiments are performed in a guide [33–37] (pipe), having a diameter of 5 cm.
The experimental set up is given in Fig. 12. For measuring the static thermal permeability and
the inertial factor, a pipe of 3 m long, since the frequencies used in the experiment are between
1kHz and 4 kHz. However, for measuring the viscous permeability (and flow resistivity)
[33, 35, 36], a pipe of 50 m long must be used (50Hz-1kHz) to avoid the reflections at its
end. In this case, it is not important to keep the pipe straight, it can be rolled in order to
save space without perturbations on experimental signals (the cut-off frequency of the tube
fc ∼ 4kHz). A sound source Driver unit "Brand" constituted by loudspeaker Realistic 40-9000
is used. Bursts are provided by synthesized function generator Standford Research Systems
model DS345-30MHz. The signals are amplified and filtered using model SR 650-Dual channel
filter, Standford Research Systems. The signals (incident and transmitted) are measured using
the same microphone (Bruel&Kjaer, 4190) in the same position in the tube. The incident signal
is measured without porous sample, however, the transmitted signal is measured with the
porous sample. Consider a cylindrical sample of plastic foam M of diameter 5 cm, porosity
φ = 0.85 and thickness 4.15 cm. The viscous permeability k0 of the porous sample is measured
by solving the inverse problem in time domain at viscous domain (very low frequency
range)[33, 35, 36]. The obtained value of k0 is (0.44 ± 0.02) × 10−9 m2. The static thermal
permeability is measured using classic Kundt tube (continuous frequency) [39] (continuous
frequency) obtaining the value of k′0 = (1.54 ± 0.05) × 10−9, with a ratio of 3.5 between k′0
and k0. The tortuosity α∞ and the viscous characteristic length Λ are measured in the high
frequency range [4] obtaining the values: α∞ = 1.2 and Λ = 65μm. The value of the thermal
tortuosity α′0 is approximated by the relation α′0  α0/α∞. Fig. 13 shows the experimental
incident signal (solid line) generated by the loudspeaker in the frequency bandwidth (2.5 -
3.5) kHz, and the experimental transmitted signal (dashed line). After solving the inverse
problem numerically for the thermal permeability k′0 and the inertial factor α0 , we find the
following optimized values: k′0 = (1.06 ± 0.2) × 10−9m2 and α0 = 2.15 ± 0.15. We present
in Fig. 14 the variation of the minimization function U with the thermal permeability k′0 and
tortuosity α0. The obtained ratio of 2.4 between the inverted k′0 and k0 is in adequacy with
the ratio given in literature [9, 39], which is found generally to be between 2 and 4 for plastic
foams. In Fig. 15, we show a comparison between an experimental transmitted signal and
simulated transmitted signal for the optimized values of thermal permeability and tortuosity.
The difference between the two curves is slight, which leads us to conclude that the optimized
values of the thermal permeability and inertial factor are correct. This study has been carried
out, in the frequency bandwidths (1.5 - 2.5) kHz and has also given good results.

3. Modified Biot theory

When the structure of a porous material is not rigid, the equivalent fluid model, on which
the previous sections are based, no longer applies because the waves propagate in both the

148 Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices



Transient Acoustic Wave Propagation in Porous media 23

Figure 12. Experimental setup of acoustic measurements.
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Figure 13. Experimental incident signal (solid line) and experimental transmitted signal (dashed line).
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Figure 14. Minima of the inverse problem.

skeleton and the saturating fluid. The fluid-structure interactions then play an essential role
in the propagation. The study of theses effects has been largely developed by Biot [40, 41]
for applications in the domain of oil exploration since 1950. This semi-phenomenological
theory provides a rigorous description of the propagation of acoustical waves in porous
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Figure 15. Comparison between the experimental transmitted signal (solid line) and the simulated
transmitted signals (dashed line) using the reconstructed values of k′0 and α0.

media saturated by a compressible viscous fluid. Such diphasic materials are supposed to
be elastic and homogeneous. Biot’s theory was initially introduced for petroleum prospecting
and research. Due to its very general and rather fundamental character, it has been applied
in various fields of acoustics such as geophysics, underwater acoustics, seismology, ultrasonic
characterization of bones, etc. Cancelous bone is a porous material consisting of a matrix
of solid trabeculae filled with soft bone marrow. The interaction between ultrasound and
bone is highly complex. Modeling ultrasonic propagation through trabecular tissue has
been considered using porous media theories, such as Biot’s theory. This theory derives
the equations of motion for each phase (i.e. the solid frame and the fluid) based on energy
considerations which include the inertial, potential and viscous coupling between the two
phases. For an isotropic porous medium, three different bulk modes are predicted, i.e. two
compression waves and one shear wave. One compressional wave, the so-called wave of
the first type or fast longitudinal wave, and the transverse wave are similar to the two bulk
waves observed in an anisotropic linear elastic solid. The other longitudinal wave, called a
wave of the second kind, or slow wave, is a highly damped and very dispersive mode. It is
diffusive at low frequencies and propagative at high frequencies. In this section, the direct
and inverse scattering problems for the ultrasonic propagation in porous material having an
elastic frame are solved [42–46]. An experimental application on human cancelous bone is
discussed [42, 43].

3.1. Model

The equations of motion of the frame and fluid are given by the Euler equations applied to
the Lagrangian density. Here −→u and

−→
U are the displacements of the solid and fluid phases.

The equations of motion are:

ρ̃11(t) ∗
∂2−→u
∂t2 + ρ̃12(t) ∗

∂2−→U
∂t2 = P

−→∇ .(
−→∇ .−→u ) + Q

−→∇ (
−→∇ .

−→
U )− N

−→∇ ∧ (
−→∇ ∧−→u ),

ρ̃12(t) ∗
∂2−→u
∂t2 + ρ̃22(t) ∗

∂2−→U
∂t2 = Q

−→∇ (
−→∇ .−→u ) + R

−→∇ (
−→∇ .

−→
U ). (39)
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wherein P, Q and R are generalized elastic constants which are related, via gedanken
experiments, to other, measurable quantities, namely φ (porosity), K f (bulk modulus of the
pore fluid), Ks (bulk modulus of the elastic solid) and Kb (bulk modulus of the porous skeletal
frame). N is the shear modulus of the composite as well as that of the skeletal frame. The
equations which explicitly relate P, Q, and R to φ, K f , Ks, Kb, and N are given by

P=
(1−φ)(1−φ− Kb

Ks
)Ks + φ Ks

K f
Kb

1−φ− Kb
Ks
+φ Ks

K f

+
4
3

N, Q=
(1−φ− Kb

Ks
)φKs

1−φ− Kb
Ks
+φ Ks

K f

, R=
φ2Ks

1−φ− Kb
Ks

+ φ Ks
K f

.

The Young modulus and the Poisson ratio of the solid Es, νs and of the skeletal frame Eb, νb
depend on the generalized elastic constant P, Q and R via the relations:

Ks =
Es

3(1 − 2νs)
, Kb =

Eb
3(1 − 2νb)

, N =
Eb

2(1 + νb)
. (40)

The temporal operators ρ̃11(t), ρ̃12(t) et ρ̃22(t) are the operators of mass coupling between
fluid and structure and are given in the high frequency range by [47]:

ρ̃11(t) = ρ11 +
2φα∞

Λ

( ρ f η

πt

)1/2
, ρ̃12(t) = ρ12 −

2φα∞

Λ

( ρ f η

πt

)1/2
,

ρ̃22(t) = ρ22 +
2φα∞

Λ

( ρ f η

πt

)1/2
.

Biot coefficients ρmn, are the "mass factors" and are connected to the densities of solid (ρs) and
fluid (ρ f ) by ρ11 + ρ12 = (1 − φ)ρs and ρ12 + ρ22 = φρ f , ρ12 = −φρ f (α∞ − 1).

3.1.1. Longitudinal waves

As in the case of an elastic solid, the wave equations of dilatational and rotational waves can be
obtained using scalar and vector displacement potentials, respectively. Two scalar potentials
for the frame and the fluid Φs and Φ f

−→u =
−→∇Φs,

−→
U =

−→∇Φ f .

In this case the equations 39 become for a propagation along the x axis:(
ρ11 ρ12
ρ12 ρ22

)
∂2

∂t2

(
Φs
Φ f

)
+

2φρ f α∞

Λ

√
η

ρ f

(
1 −1
−1 1

)
∂3/2

∂t3/2

(
Φs
Φ f

)
=

(
P Q
Q R

)
∂2

∂x2

(
Φs
Φ f

)
,

(41)

The result of solving this system of equations is the existence of two distinct longitudinal
modes called slow mode and fast mode. The system (41) can be expressed on the basis of slow
and fast waves Φ1 and Φ2 respectively by:

∂2

∂x2

(
Φ1
Φ2

)
=

(
λ̃1(t) 0

0 λ̃2(t)

)(
Φ1
Φ2

)
,
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where λ̃1(t) and λ̃2(t) are operators of time corresponding to the eigenvalues of the system
(41). Their expressions are given by:

λ̃1(t) =
1
2

(
τ1 −

√
τ2

1 − 4τ3

)
∂2

∂t2 +
1
2

⎛⎝τ2 −
τ1τ2 − 2τ4√

τ2
1 − 4τ3

⎞⎠ ∂3/2

∂t3/2

− 1
4

⎛⎝ τ2
2√

τ2
1 − 4τ3

− (τ1τ2 − 2τ4)
2

2(τ2
1 − 4τ3)3/2

⎞⎠ ∂

∂t
,

λ̃2(t) =
1
2

(
τ1 +

√
τ2

1 − 4τ3

)
∂2

∂t2 +
1
2

⎛⎝τ2 +
τ1τ2 − 2τ4√

τ2
1 − 4τ3

⎞⎠ ∂3/2

∂t3/2

+
1
4

⎛⎝ τ2
2√

τ2
1 − 4τ3

− (τ1τ2 − 2τ4)
2

2(τ2
1 − 4τ3)3/2

⎞⎠ ∂

∂t

with:

τ1=R′ρ11+P′ρ22−2Q′ρ12, τ2= A
(
P′ + R′ + 2Q′) , τ3=

(
P′R′ − Q′2

) (
ρ11ρ22 − ρ2

12

)
,

and τ4= A
(

P′R′ − Q′2
)
(ρ11+ρ22−2ρ12) .

Coefficients R′, P′ and Q′ are given by: R′ = R
PR−Q2 , Q′ = Q

PR−Q2 , and P′ = P
PR−Q2 .

The system of equations (41) shows that the slow and fast waves obey the same propagation
equation developed in the framework of the equivalent fluid model (equation 13). The
eigenvectors (1, �̃1(t)) and (1, �̃2(t)) associated with the eigenvalues λ̃1(t) et λ̃2(t) link the
potential solid and fluid Φs and Φ f , respectively to slow and fast waves Φ1 and Φ2 by the
following relations: (

Φs
Φ f

)
=

(
1 1

�̃1(t) �̃2(t)

)(
Φ1
Φ2

)
, (42)

the analytical expressions of temporal operators �̃1(t) and �̃2(t) are given by:

�̃1(t) =
τ1 − 2τ5 −

√
τ2

1 − 4τ3

2τ7
+

t−1/2

4τ2
7
√

π
×⎡⎣⎛⎝τ2 − 2τ6 −

τ1τ2 − 2τ4√
τ2

1 − 4τ3

⎞⎠ 2τ7 +

(
τ1 − 2τ5 −

√
τ2

1 − 4τ3

)
2τ6

⎤⎦ ,

�̃2(t) =
τ1 − 2τ5 +

√
τ2

1 − 4τ3

2τ7
+

t−1/2

4τ2
7
√

π
×⎡⎣⎛⎝τ2 − 2τ6 +

τ1τ2 − 2τ4√
τ2

1 − 4τ3

⎞⎠ 2τ7 +

(
τ1 − 2τ5 +

√
τ2

1 − 4τ3

)
2τ6

⎤⎦ ,
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where

τ5 =
(
R′ρ11 − Q′ρ12

)
τ6 = A

(
R′ + Q′) , τ7 =

(
R′ρ12 − Q′ρ22

)
.

For a slab of cancellous bone occupying the region 0 ≤ x ≤ L, the incident pi(t) and
transmitted pt(t) fields are related in the time domain by the transmission scattering operator
T̃ given by Eq. 31. In the frequency domain, the expression of the transmission coefficient
T (ω), which is the Fourier transform of T̃ is given by [42]

T (ω) =
jω2ρ f c0F4(ω)

(jωρ f c0F4(ω))2 − (jωF3(ω)− 1)2 , (43)

where

Fi(ω) = (1 + φ (�i(ω)− 1))
√

λi(ω)
Ψi(ω)

sinh
(

l
√

λi(ω)
) 2

Ψ(ω)
, i = 1, 2.

F3(ω) = ρ f c0

(
F1(ω) cosh

(
l
√

λ1(ω)

)
+F2(ω) cosh

(
l
√

λ2(ω)

))
, F4(ω)= F1(ω)+F2(ω).

The functions λ1(ω), λ2(ω), �1(ω) and �2(ω) are the Fourier transform of λ̃1(t), λ̃2(t), �̃1(t)
and �̃2(t), respectively. The coefficients Ψ1(ω), Ψ2(ω) and Ψ(ω) are given by

Ψ1(ω) = φZ2(ω)− (1 − φ)Z4(ω), Ψ2(ω) = (1 − φ)Z3(ω)− φZ1(ω),

Ψ(ω) = 2(Z1(ω)Z4(ω)− Z2(ω)Z3(ω)),

and the coefficients Z1(ω), Z2(ω), Z3(ω) and Z4(ω) by

Z1(ω) = (P + Q�1(ω))λ1(ω), Z2(ω) = (P + Q�2(ω))λ2(ω),

Z3(ω) = (Q + R�1(ω))λ1(ω), Z4(ω) = (Q + R�2(ω))λ2(ω).

3.2. Ultrasonic characterization of human cancellous bone using the Biot theory:
Inverse problem

Osteoporosis is a degenerative bone disease associated with biochemical and hormonal
changes in the ageing body. These changes perturb the equilibrium between bone apposition
and bone removal, resulting in a net decrease in bone mass. This leads to a modification
of the structure (porosity, trabecular thickness, connectivity etc.) and, to a lesser extent,
the composition (mineral density) of the bone. These changes result in a decrease of the
mechanical strength of bone and in an increase of the risk of fracture. Osteoporosis mainly
affects the trabecular bone (located at the hip, vertebrae or heels for instance). Early clinical
detection of this pathological condition is very important to insure proper treatment. The
primary method currently used for clinical bone assessment is based on x-ray absorptiometry,
and measures total bone mass at a particular anatomic site. Because other factors, such
as architecture, also appear to have a role in determining an individual’s risk of fracture,
ultrasound is an alternative to X-rays that has generated much attention. In addition to
their potential for conveying the architectural aspects of bone, ultrasonic techniques also may
have advantages in view of their use as a nonionising radiation and inherently lower costs,
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compared with x-ray densitometric methods. Although ultrasonic methods appear promising
for noninvasive bone assessment, they have not yet fulfilled their potential. Unfortunately, a
poor understanding of the ultrasound interaction with bone has become one of the obstacles
preventing it from being a fully developed diagnostic technique. Despite extensive research
on the empirical relationship between ultrasound and the bulk properties of bone, the
mechanism of how ultrasound physically interacts with bone is still unclear. Since trabecular
bone is an inhomogeneous porous medium, the interaction between ultrasound and bone is a
highly complex phenomenon. Modelling ultrasonic propagation through trabecular tissue has
been considered using porous media theories, such as Biot’s theory. As seen in the previous
section, within the framework of the modified Biot theory, the propagation of ultrasonic waves
in a slab of cancellous bone is conditioned by many parameters: porosity φ, tortuosity α∞,
viscous characteristic length Λ, fluid viscosity η, Young’s modulus of the elastic solid Es,
Young’s modulus of porous skeletal frame Eb, Poisson’s ratio of the elastic solid νs, Poisson’s
ratio of the porous skeletal frame νb, the solid density ρs, the bulk modulus of the saturating
fluid K f and the fluid density ρ f . It is therefore important to develop new experimental
methods and efficient tools for their estimation. The basic inverse problem associated with the
slab of cancellous bone may be stated as follows: from measurements of the signal transmitted
outside the slab, find the values of the medium’s parameters. Solving the inverse problem
for all the Biot parameters using only the transmitted experimental data is difficult, if not
impossible. To achieve this task, requires more experimental data for obtaining a unique
solution. For this reason, in this contribution we limit the inversion to the five parameters:
Eb, νb, φ, α∞ and Λ. In our previous paper [42], we studied the sensitivity of transmitted
waveforms to variations of φ, α∞ and Λ. The sensitivity of Eb and νb has been examined in
Ref. [43]

As an application of this model, some numerical simulations are compared with experimental
results. Experiments are performed in water using two broadband Panametrics A 303S plane
piezoelectric transducers with a central frequency of 1 MHz in water, and diameter of 1cm.
400 V Pulses are provided by a 5058PR Panametrics pulser/receiver. Electronic interference
is removed by averaging 1000 acquisitions. The experimental setup is shown in Fig. 9.
The parallel-faced samples were machined from femoral heads and femoral necks of human
cancellous bone. The liquid in the pore space (blood and marrow) is removed from the bone
sample and substituted by water. The size of the ultrasound beam is very small compared to
the size of the specimens. The emitting transducer insonifies the sample at normal incidence
with a short (in time domain) pulse. When the pulse hits the front surface of the sample, a
part is reflected, a part is transmitted as a fast wave, and a part is transmitted as a slow wave.
When any of these components, travelling at different speeds, hit the second surface, a similar
effect takes place: a part is transmitted into the fluid, and a part is reflected as a fast or slow
wave. The experimental transmitted waveforms are travelling through the cancellous bone in
the same direction as the trabecular alignment (x direction). The fluid characteristics are: bulk
modulus K f = 2.28 GPa, density ρ f = 1000Kgm−3, viscosity η = 10−3Kg.m.s−1. Consider a
sample of human cancellous bone M1 (femoral neck) of thickness 11.2 mm and solid density
ρs = 1990Kgm−3. The Young’s modulus Es = 13GPa and Poisson ratio νs = 0.3 of the solid
bone are taken from the literature [48]. Figure 9 shows the experimental incident signal. The
inverse problem is solved by minimizing the function U(φ, α∞, Λ, Eb, νs) given by:

U(φ, α∞, Λ, Eb, νb) =
i=n

∑
i=1

(pt
exp(x, ti)− pt(x, ti))

2,
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wherein pt
exp(x, ti)i=1,2,...n is the discrete set of values of the experimental transmitted signal

and pt(x, ti)i=1,2,...n the discrete set of values of the simulated transmitted signal. A large
variation range is applied of each estimating parameter value in solving the inverse problem.
The variation range of the parameters is ; α∞ ∈ [1, 2], Λ ∈ [1, 200]μm, φ ∈ [0.5, 0.99],
ν ∈ [0.1, 0.5] and Eb ∈ [0.5, 5]GPa. The variations of the cost function with the physical
parameters present one clear minimum corresponding to the mathematical solution of the
inverse problem. This shows that the inverse problem is well posed mathematically, and that
the solution is unique. The minima, corresponding to the solution of the inverse problem, are
clearly observed for each parameter. After solving the inverse problem, we find the following
optimized values: φ = 0.64, α∞ = 1.018, Λ = 10, 44μm, νb = 0.28 and Eb = 4.49 GPa.
Using these values, we present in Figs. 16-19 the variations in the discrepancy function U
with respect to two values of the inverted parameters. To show clearly the solution of the
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Figure 16. Variation of the minimization function U with the viscous characteristic length Λ and the
Young modulus of the skeletal frame Eb.
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Figure 17. Variation of the minimization function U with the the Young modulus of the skeletal frame
Eb and the tortuosity α∞.

inverse problem, the variation of U in Figs. 16-19 is given only around the minima values
of the inverted parameters. In Fig. 20, a comparison is made between the experimental
transmitted signal and the simulated transmitted signals using the reconstructed values of
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Figure 18. Variation of the minimization function U with the viscous characteristic length Λ and the
tortuosity α∞.
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Figure 19. Variation of the minimization function U with the porosity φ and the viscous characteristic
length Λ.

α∞, φ, Λ, νb and Eb. The difference between the two curves is small, which leads us to
conclude that the optimized values of the physical parameters are correct. The fast and slow
waves predicted by the Biot theory are easily detected in the transmitted signal. The slow
wave seems to be less attenuated than the fast wave. In the other applications, the slow
wave is generally more-attenuated and dispersive than the fast wave. We usually observe
the opposite phenomena for cancellous bone samples; this can be explained by the different
orders of magnitude of the physical parameters (high porosity, low tortuosity...etc). Let us now
solve the inverse problem for sample M2 (femoral neck) of thickness 12 mm. Using another
sample of cancellous bone (femoral head) M2 of thickness 10.2 mm. The results after solving
the inverse problem are: φ = 0.72, α∞ = 1.1, Λ = 14.97μm, νb = 0.22 and Eb = 3.1GPa. In
Fig. 21, we compare the experimental transmitted signal to the transmitted simulated signal
using reconstruct values of the physical parameters. The correlation between the two curves
is excellent. The simulated transmitted signals obtained using optimized values (Figs. 20 and
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Figure 20. Comparison between the experimental transmitted signal (solid line) and the simulated
transmitted signals (dashed line) using the reconstructed values of α∞, φ, Λ, νb and Eb (sample M1).
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Figure 21. Comparison between the experimental transmitted signal (solid line) and the simulated
transmitted signals (dashed line) using the reconstructed values of α∞, φ, Λ, νb and Eb (sample M2).

21) reproduce correctly the experimental transmitted signals. This leads us to conclude that
this method is well adapted for the characterization of cancellous bone.
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