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1. Introduction

RTKs are often deregulated in human malignancies, contributing to cancer development
and progression. Deregulation of RTKs leads to aberrant receptor activity resulting in in‐
creased cell proliferation, inhibition of apoptosis, invasion, and enhanced tumor metastases.
Because RTKs are membrane proteins, they represent attractive targets for cancer therapy,
with a number of agents already approved for clinical use.

c-MET gene, located on chromosome 7q21-q31, encodes a single precursor protein and is
post-transcriptionally digested and glycosylated. The mature receptor is composed of a 50
kDa extracellular α-chain and a transmembrane 140 kDa β-chain, which are linked by disul‐
fide bonds [1]. The MET β-chain contains homologous domains that shared with other pro‐
teins, including a semaphorin (Sema) domain, a PSI domain (in plexins, semaphorins and
integrins), four IPT repeats (in immunoglobulins, plexins and transcription factors), a trans‐
membrane domain, a juxtamembrane domain, a tyrosine kinase domain and a carboxy-ter‐
minal tail region [2, 3].

The transforming property of c-MET was initially described in a human osteosarcoma cell
line after chemically induced mutagenesis [4]. In this in vitro model, c-MET was found to be
constitutively activated by translocation at (1;7), resulting in fused sequences of c-MET gene
on chromosome 7q31 to the translocated promoter region on chromosome 1q25 [5]. Since
then, support for c-MET signaling in human carcinogenesis comes from data of the cell cul‐
ture [6], mice [7, 8], and sporadic and hereditary forms of renal carcinoma, where germline
and somatic missense mutations were identified in c-MET’s kinase domain [9, 10]. Further‐
more, c-MET activity plays a significant role in promoting tumor invasion and metastasis
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[11, 12]. In summary, c-MET regulates embryonic development and play important roles in
the carcinogenesis, tumor progression, and a variety of cellular processes, including migra‐
tion, proliferation, morphogenesis, and angiogenesis [13, 14].

HGF is predominantly secreted by mesenchymal cells, and c-MET is widely expressed on
the surface of epithelial cancer cells [15]. Homodimerization of c-MET after binding to HGR
leads to transphosphorylation of cytoplasmic tyrosine kinase domain at two specific sites
(Y1234 and Y1235) and activation of down-stream signaling [16]. These events are essential
during embryogenesis, and also play a critical role in normal tissue homeostasis of the hepa‐
tocytes, renal tubule cells, and myoblasts [17].

The phosphorylation of two tyrosine residues within COOH terminus (Y1349 and Y1356) is
necessary and sufficient to mediate biological effects induced by of the c-MET activation
[18]. These two residues recruit a number of adapter proteins, including Gab1, Grb2, Shc
and the p85 subunit of phosphatidylinositol-3 kinase (PI3K) [17]. The involvement of di‐
verse effectors allows the activation of different downstream pathways, including PI3K-Akt
signaling, Ras-mitogen-activated protein kinase (MAPK) pathways, signal transducer and
activator of transcription proteins (STATs) and the nuclear factor-kB (NF-kB) complex [17].
These signaling pathways are important during embryogenesis and in normal tissue homeo‐
stasis, such as cell proliferation, differentiation, transformation, migration and apoptosis.

Accumulating data have demonstrated that crosstalk between c-MET and other RTKs may
contribute to tumor progression in some of human cancers [19-21]. As a result, evaluation of
c-MET expression status and its crosstalk partners of RTKs may identify a subset of c-MET-
positive cancer patients who may require co-targeting therapy.

2. Role of c-MET in human cancers

Overexpression of c-MET has been reported in different subtypes of lung cancer, including
adenocarcinoma (67%), carcinoid (60%), large cell carcinoma (57%), squamous cell carcino‐
ma (57%), and small cell lung cancer (SCLC) (25%) [22]. In terms of functional activity, posi‐
tive staining could be demonstrated in the subtypes of adenocarcinoma (44%), large cell
carcinoma (86%), squamous cell carcinoma (71%), carcinoid (40%), and SCLC (100%), re‐
spectively, using antibody for phospho-c-MET at the Y1003 (c-Cbl binding site). On the oth‐
er hand, positive staining was observed in 33% of adenocarcinomas, 57% of large cell
carcinoma and 50% of SCLCs using antibody for autophosphorylation of c-MET at the
Y1230/1234/1235 site [22]. Importantly, missense germ-line mutations in the tyrosine kinase
domain of c-MET have been described in patients with hereditary papillary renal carcinoma
[9]; whereas sporadic mutations in the tyrosine kinase, juxtamembrane, or semaphorin do‐
mains of c-MET have been detected in gastric cancer, HCC and SCLCs [23-25]. Concerning
biologic significance, activation of HGF/MET signalling pathway was shown to promote cell
invasiveness in vivo and trigger tumor metastases through angiogenic pathways [26]. In ad‐
dition, amplification of c-MET has been detected in the carcinomas of the stomach, esopha‐
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gus, and colorectum, non–small-cell lung cancer, and glioblastoma, and is usually associated
with acquired resistance to anticancer drugs-gefitinib or erlotinib [27-32].

Altered HGF secretion was reported in both solid and hematologic malignancies. Both tu‐
mor and mesenchymal cells are responsible for increased HGF production, leading to para‐
crine and/or autocrine activation of c-MET by HGF [33, 34, 35]. The enhanced c-MET
signaling is tumorigenic and could induce tumor metastasis in athymic nude mice [11]. As a
result, HGF and/or c-MET overexpression were suggested to be a prognostic biomarker for
cancer patients [36-38], although not all studies got the same conclusion [39, 40].

3. Role of c-MET-related RTKs in cancer

In addition to c-MET, coexpression of c-MET and related RTKs was shown to have prognos‐
tic relevance in some human cancers [41-45]. For example, RON and MET were overex‐
pressed in 55 % and 56 % of human ovarian cancer, respectively, and 42 % of them have co-
expression of RON and MET (P < 0.001) [41]. Coexpression of RON/MET was associated
with more aggressive phenotype of node-negative breast cancer patients. The 10-year dis‐
ease-free survival in RON-/MET- breast cancer is significantly higher than that of RON
+/MET+ group (79.3 % vs. 11.8 %) [42]. Furthermore, both MET and EGF family receptors
are overexpressed in different human cancers. Coexpression of c-MET and HER2 were ob‐
served in breast cancer and cholangiocarcinoma, and is usually associated with poor prog‐
nosis [43]. Similarly, coexpression of c-MET and HER2 could be detected in gastric cancer,
and activation of c-MET further increases the resistance to EGFR inhibitor-Lapatinib [44, 45].

4. Overexpression of c-MET as a prognostic indicator for urothelial
carcinoma of the bladder

High levels of c-MET expression have been correlated with metastatic progression of tumors
and poor survival in patients with carcinomas of the breast, extrahepatic biliary tract, stom‐
ach, endometrum, liver, colorectum, and kidney [46-53]. c-MET was also reported to play a
positive role in the tumorigenesis of human bladder [54, 55]. For example, expression of c-
met mRNA tended to positively correlate with differentiation of cancer cell lines in the ab‐
sence of point mutation [55]. Expression of Met was positively associated with histologic
grade, stage classification, tumor size, and nodular tumor growth (P < 0.05, respectively),
and is an independent indicators for poor long-term survival (P = 0.04) [55]. Furthermore,
pY1349 c-Met was found to be a prognostic marker in predicting metastasis-free and surviv‐
al of bladder cancer in a large cohort study of 133 non-metastatic specimens of bladder can‐
cer [56]. Taken together, c-met proto-oncogene plays an important role in the progression of
bladder carcinogenesis. Evaluation of Met expression could identify a subset of bladder can‐
cer patients who may require a more intensive treatment targeting strategy.
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5. The signaling pathway of c-MET

5.1. c-MET-related signaling pathways

The signaling for growth depends on RAS-MAPK signaling pathway and plays an essential
role in morphogenesis and epithelial-to-mesenchymal transition that results from loss of in‐
tracellular adhesion via cadherins, focal adhesion kinase, and integrins, in association with
alteration of cell shape [57]. Activation of HGF/c-MET axis prevents cell apoptosis through
PI3 kinase and subsequent Akt signaling events [58-60]. The crosstalk of c-MET and PI3K-
Akt pathway with RAS-MAPK pathway has been implicated in patient survival [61, 62].

5.2. Crosstalk with other membrane proteins or receptor tyrosine kinases

c-MET is known to interact with other membrane proteins on the cell surface [63], including
laminin receptor-α6β4 integrin, semaphorin receptors of plexin B family, and v6 splice var‐
iant of hyaluronan receptor-CD44 [63, 64]. The crosstalk between c-MET and membrane pro‐
teins modulates the activation of both c-MET and its partners and allows for integration of
signals present in the extracellular environment [65]. Crosstalk between c-MET and epider‐
mal growth factor receptor (EGFR) has been implicated in several biological systems [66].
Furthermore, the crosstalk of c-MET with other RTKs regulates different physiological
and/or pathological situations additively or synergistically. This interaction promotes trans-
phosphorylation of kinase of each other by directly binding or transducing through their
downstream signaling pathways indirectly. We review the potential role of c-MET and relat‐
ed RTKs, including RON, EGFR, Axl and platelet derived growth factor receptor-alpha
(PDGFR-α), in urothelial carcinoma of the bladder, either independently or in combination
in vivo (crosstalk) (Fig. 1).

6. RON

Recepteur d’Origine Nantais (RON) is a MET RTK subfamily member. Its ligand is macro‐
phage-stimulating protein (MSP) which is expressed by renal tubular cells [67-69]. Activa‐
tion of RON induces apoptotic resistance, superoxide anion production, and phagocytosis of
macrophages through different molecules and related signaling pathways, i.e. Src, ERK, p38
and PI3K/AKT, which are related to tumorigenesis [70-72]. The crosstalk between c-MET
and RON has been reported in different in vitro experimental models, and has been con‐
firmed in the human cancers of the liver, ovary, breast and urinary bladder.

Heterodimerization plays a pivotal role in initiating the crosstalk and activation of related
signal transduction pathways. Follenzi et al., showed that activated c-MET directly cross-
phosphorylates RON, and c-MET/RON heterodimmer activates the catalytic region of c-
MET at Y1234/Y1235 and RON at Y1238/Y1239, respectively (Figure 1A). Moreover, both
signal transducer docking sites of c-MET at Y1349/Y1356 and RON at Y1353/Y1360 are gen‐
erated for downstream signaling molecules. Mutation of RON suppresses the transforming
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phenotype induced by c-MET [73]. In contrast, RON is specifically trans-phosphorylated by
MET, but not by EGFR or HER2; and MET-specific kinase inhibitors also suppress the phos‐
phorylation of RON [41]. In addition to HGF, other cytokines, including EGF, interleukin-1,
interleukin-6 and tumor necrosis factor alpha (TNF- α), are able to induce the expression of
both MET and RON in HCC, suggesting that MET and RON are regulated by similar cyto‐
kine networks [42].

Overexpression of RON increases the growth, motility and anti-apoptosis of cancer cells in
vitro [74]. In primary human bladder cancer, overexpression of RON is detected in 32.8 % of
the tumors, and 23.3 % of these positive tumors also showed high levels of MET expression
as well. In addition, co-expressed RON and MET was significantly associated with de‐
creased overall survival (P= 0.005) or metastasis-free survival (P = 0.01) [74]. Overexpression
of RON and MET seems to be a universal event in uroepithelial cells [75]. These data sup‐
port the potential significance of RON/MET crosstalk, and the occurrence as a biomarker in
selection of appropriate treatment strategy for cancer patients.

7. EGFR

The EGFR (HER1 or ErbB-1 in humans) belongs to RTKs of ErbB family which consists of
EGFR, HER2/c-neu (ErbB-2), Her3 (ErbB-3) and Her4 (ErbB-4) four subfamily members. EGF
is the ligand of EGFR [76]. EGFR signaling pathway participates in the growth and progres‐
sion of urothelial cancers. Mutations affecting EGFR expression or activity may initiate a
cascade of events leading to autonomous cell proliferation, migration, invasion and apopto‐
sis inhibition, leading to tumor progression [77, 78].

The crosstalk between EGFR and MET has been reported during development and tumori‐
genesis. Cooperative action of MET and EGFR controls the number of nephron (the func‐
tional unit of the kidney) and maintains the duct morphology during kidney development
[79]. Three underlying mechanisms of crosstalk between MET and RTK have been reported:
(1) Trans-phophorylation and activation: Both RON and EGFR can bind with MET, and
form heterodimeric receptor complex to activate both tyrosine kinases through trans-phos‐
phorylation. The crosstalk of EGFR or RON with c-MET was confirmed by co-immunopre‐
ciptation assay (Figure 1A) [66, 80]; (2) c-MET activates EGFR through transcriptional
activation of the ligand EGF: c-MET increases the production of EGF through Ras/Erk sig‐
naling-mediated promoter activation. EGF then is transported out of the cell to bind with
EGFR in an autocrine or paracrine manner (Figure 1B) [81]; (3) EGFR activates c-MET
through Ras/Erk MAPK signaling pathway to activate metalloproteinasea (TIMP)-3 which
then cleavages the c-MET at ectodomain (Figure 1C). The truncated c-MET protein promotes
the proliferation and cell transformation [82, 83].

Naik et al., reported that positive staining for EGFR, HER2 and EGF could be detected in
23%, 60% and 47% of primary bladder cancer specimens, respectively [84]. The HER2/neu
gene amplification and protein overexpression were demonstrated in high grade, invasive
bladder cancer [85]. Overexpression of EGFR/ERBB2 correlates with higher tumor grading/
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stage and poorer clinical outcome in bladder cancer patients [86, 87]. These evidences sup‐
port the selection of EGFR as a molecular marker for diagnosis and/or prognosis of bladder
carcinoma [88, 89]. Recently, EGFR inhibitor Iressa has shown a strong protective efficacy
through cell cycle regulation in carcinogen induced rat bladder cancer model [90]. There‐
fore, EGFR, vascular endothelial growth factor (VEGF), mTOR and their-related signaling
molecules are excellent therapeutic targets, in combination with cytotoxic chemotherapy, in
the design of bladder cancer treatment [91]. Overexpression of RON and EGFR, as well as
their crosstalk, has been reported in various human bladder cancer cell lines [74, 92]. It is
noteworthy to clarify the potential of RTK co-targeting in the application of EGFR inhibitors
in bladder cancer therapy.

8. AXL

AXL is a member of TAM RTK family, including AXL, Tyro3 and Merk. It has a unique
structure of extracellular region that juxtaposes IgL and FNIII repeats [93, 94]. The protein S
and Gas6 (growth-arrest-specific protein 6) are ligands for TAM receptor [95]. Gas6/AXL
controls diverse cellular functions, including proliferation, survival, migration and anti-in‐
flammation through different signaling pathways [96]. Gas6/AXL stimulates cell prolifera‐
tion through MEK/Erk signaling pathway [97]. Gas6/AXL activates the PI3K/AKT and p38
signaling pathways to enhance the cell survival and migration, respectively [98, 99].
Gas6/AXL also suppresses Toll-like receptor and cytokine receptor signaling in innate im‐
mune cells through regulation of STAT1 [100, 101]. Overexpression of AXL has been report‐
ed in mesothelioma, NSCLC, breast carcinoma, and bladder cancer [20, 96, 102]. However,
AXL can be activated by a ligand-independent manner when AXL interacts with adjacent
cells in which AXL was overexpressed, suggesting that overexpression of AXL may be acti‐
vated per se through auto-activation [103].

9. PDGFR-α

PDGF, a ligand of PDGFR-α and -β, results in auto-phosphorylation and signaling transduc‐
tion of PDGFR [104]. PDGF/PDGFR signaling is involved in the development of various tis‐
sues, and is essential for epithelial-mesenchymal interaction during metamorphic skin
remodeling, mesenchymal cell migration and proliferation [105]. In PDGF-α knock-out
mice, neural tube and brain are abnormally accompanied by defect of the nervous system
[106]. PDGF contributes to the development and progression of cancer by autocrine or para‐
crine signaling, and further promotes tumorigenesis through proliferation, angiogenesis and
tumor stromal interaction [107].

In huamn uroepithelial cells, c-MET is frequently co-expressed with AXL, PDGFR-α, discoi‐
din domain receptor tyrosine kinase 2 (DDR2), and/or insulin-like growth factor I receptor
(IGF1R). Overexpression of AXL and PDGFR-α has been detected in various human cancers,
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and is associated with invasiveness and/or metastasis of carcinoma of the breast, kidney and
bladder [20, 108, 109]. Overexpression of c-MET/PDGFR-α was demonstrated in all of 9 hu‐
man bladder cancer cell lines tested [110]. We identified that both AXL and PDGFR may be
c-MET related RTKs in a cDNA microarray analysis [20]. In sharp contrast to crosstalk be‐
tween c-MET and RON or EGFR, both AXL and PDGFR do not directly bind with c-MET,
and is transcriptionally activated by mitogen activated protein kinase/extracellular signal-
regulated kinase (MEK/Erk) signaling pathway (Figure 1B) [20].

9.1. The relationship among environmental carcinogens, c-MET and RTKs

The environmental carcinogens, mainly from cigarette smoking, play important roles in the
bladder cancer development, specifically urothelial carcinoma [111, 112]. Cigar smoking,
pipe smoking, and secondhand smoke are implicated as risk factors for urothelial carcino‐
ma. The incidence of urothelial cancer is approximately 4 times higher in smokers compared
with non-smokers [113]. It is also reported that 50 % of all bladder cancers in men and 30 %
in women are due to cigarette smoking [114]. All these evidences suggest that smoking is
the most important risk factor for bladder cancer development. Genetic damage is the major
cause of smoking-related cancer induction by which normal cellular pathways are altered to
trigger cell growth and induce tumor formation [115]. In addition to bladder cancer, lung
cancer formation is also induced by genetic modifications mostly caused by tobacco smok‐
ing [116]. Genetic mutations and amplifications in RTK related signaling, such as c-MET,
EGFR, ErbB2, c-Kit, VEGFR, PI3K, and PTEN, contribute to lung cancer development by es‐
caping from normal growth control and transforming into a malignant phenotype [117, 118].
Several autocrine loops, including stem cell factor (SCF)/c-Kit, IGF-I/IGF-IR, and HGF/c-
MET, lead to the activation of PI3K/Akt signaling pathway and promote the cell growth,
survival, and chemotherapy resistance in lung cancer. During lung cancer development,
RTKs and their downstream effectors are selectively up-regulated. It is intriguing to clarify
whether crosstalk of c-MET with RTKs in bladder cancer is also related to smoking. Alto‐
gether, it is noteworthy to clarify the relationship among smoking, c-MET, RTKs and blad‐
der cancer development in the further study.

10. Conclusion and future direction

Overexpression of multiple RTKs has been reported in many human cancers, including
bladder cancer. Cross-connection among individual signaling pathway activated by each
RTK forms the signaling networks, which may complicate the development of anticancer
strategies. With discussion above, more attention is focused to identify the prognostic tar‐
gets and development of the targeted therapy for bladder cancer. In this review, we describe
the current knowledge of interaction between c-MET and related RTKs. On the basis of com‐
plicated signaling network, the multimodal strategies should include systemic chemo- or bi‐
ological therapies in combination with surgery and/or radiation applicable for invasive/
metastatic bladder cancers [91]. Diverse therapeutic strategies have been developed to inhib‐
it the HGF/c-MET signaling, including anti-HGF antibodies, HGF antagonists, anti-c-MET
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antibodies, and c-MET tyrosine kinase inhibitors. The c-MET pathway inhibitors have been
reported to block the activities of other related tyrosine kinases. For example, MP470, a
RAD51 inhibitor, suppresses the activity of c-MET and PDGFR [119]. MK-2461 suppresses
the activity of both c-MET and RON [120]. BMS-777607 inhibits the activity of c-MET, RON
and AXL [119, 121]. Furthermore, Foretinib, an oral multi-kinase inhibitor, inhibits the c-
MET activity and its related RTKs (RON, EGFR, AXL and PDGFR) [122, 123]. Altogether,
these inhibitors have potential to be used for bladder cancer therapy in the future. Coopera‐
tive action of c-MET with RON, EGFR, AXL and PDGFR-α has been reported to play impor‐
tant roles in bladder cancer progression, and thus deserves further investigation as the co-
targeting therapy candidates. Understanding of the mechanisms underlying crosstalk of c-
MET with RTKs is indispensible in the development of novel strategies against urothelial
bladder cancer.

Figure 1. The crosstalk between c-MET and related receptor tyrosine kinases

A. Trans-phosphorylation by other RTKs. The ligands, such as HGF, MSP and EGF, activate
the MET, RON and EGFR, respectively, through tyrosine phosphorylation. The activated re‐
ceptors (MET, RON or EGFR) cross talk with other RTKs through trans-phosphorylation. B.
Activation of other RTKs by c-MET through transcriptional regulation. HGF activates the c-
MET and downstream Ras/Erk signaling pathway through tyrosine phosphorylation. Ex‐
pression of PDGFR, AXL and EGF was enhanced through transcriptional regulation.
Overexpression of PDGFR and AXL enhances their binding with cognate ligands (PDGF
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and GAS6) and activation of their downstream signaling pathways. Overexpression of EGF
further enhances the activity of EGFR in an autocrine or paracrine manner. C. Metalloprotei‐
nase cleavage regulates c-MET activation. EGF induces the phosphorylation of EGFR and
activation of Ras/Erk signaling, and promotes the MET ectodomain shedding by cleavage of
TIMP3 sensitive metalloproteinase.
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