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1. Introduction

Symbioses with beneficial microorganisms constitute the universal and ecologically highly
effective strategy of adaptation of plants towards nearly all types of environmental challenges.
Representatives of many groups of fungi and bacteria participate in plant-microbial symbioses
(PMS) wherein they can colonize the plant surfaces, tissues or intra-cellular compartments
using two basic adaptive strategies: nutritional and defensive. Construction of niches for
hosting the symbiotic microbes involves the complicated developmental programs imple-
mented under the joint control by plant and microbial partners and based on the cross-
regulation of their genes.

Legume plants (family Fabaceae) are known to form symbioses with extremely broad
range of beneficial soil microorganisms (BSM), representing examples of almost all plant-
microbe mutualistic systems. Different groups of beneficial microbes improve host miner-
al nutrition, acquisition of water, promote the plant development and offer protection
from pathogens and pests. For ecology and agriculture, the most important beneficial le-
gume symbioses are arbuscular mycorrhiza (AM) and root nodule (RN) symbiosis. These
symbioses demonstrate high level of genetic and metabolic integrity, compared with oth-
er interactions of legumes with plant growth-promoting rhizosphere bacteria (PGPR)
and/or beneficial endophytic bacteria.

Highintegrity of AM and RN symbioses implies highly specific mutual recognition of partners,
formation of special complex symbiotic compartments and integration of partners’ metabolic
pathways. In the symbioses, legume plant plays a role of the organizing center of the system
as it performs functions of coordination and regulation of all developmental processes. During
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last decade, a significant progress has been achieved in revealing the genetic bases of symbioses
formation and functioning, so the knowledge of the plant genetic control over symbioses can
effectively facilitate breeding new varieties of legumes that are needed for modern sustainable
agriculture. In this chapter, we describe the present state of the developmental genetics of
legume symbioses and depict the potential to organize the multi-component symbioses to be
used for optimizing the broad spectrum of plant adaptive functions and to improve the
sustainability of legume crop production.

2. Mechanisms of positive effect of BSM on the environment and health
and yield of the legume plant

2.1. Legume-rhizobia Root-Nodule (RN) symbiosis

Leguminous plants are able to grow in the soil/substrate without any combined nitrogen due
to the fixation of atmospheric nitrogen by symbiotic nodule bacteria (collectively called
rhizobia). In collaboration with rhizobia, legumes make a large contribution to the global
nitrogen balance in natural and agricultural ecosystems [1]. Nitrogen fixation occurs within
special plant organs, root nodules (in some associations stem nodules are also formed).
Development of these organs represents a well-organized process based on the tightly
coordinated expression of specialized symbiotic plant and bacterial genes. The legume nodules
provide an ecological niche for bacteria, as well as structure for metabolic/signal exchange
between the partners and for the control of symbionts by the hosts [2].

Family Fabaceae contains 17000-19000 species divided between three sub-families (Caesalpi-
nioideae, Mimosoideae and Papilionoideae) and more than 700 genera of world-wide distri-
bution [3]. With a single exception (Parasponia: Ulmaceae), the ability for symbioses with
rhizobia is restricted to Fabaceae, although in eight related dicotyledonous families (Rosid I
clade) an ability to form nodules with the nitrogen-fixing actinomycete Frankia is known [4].

By contrast to legumes, their nitrogen-fixing microsymbionts do not constitute a taxonomically
coherent group of organisms. The majority of rhizobia belong to the a-proteobacteria assigned
into the Rhizobiaceae family solely on the basis of their ability to nodulate the legumes (e.g.
Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, Sinorhizobium). Recently some (-
proteobacteria (close to Burkholderia, Cupriavidus, Pseudomonas and Ralstonia) and even some
Y-proteobacteria have been discovered that can form nitrogen-fixing nodules with the legumes
[5]. All these bacteria vary enormously in their overall genome organization, location of
“symbiotic” (sym) genes and their molecular organization and regulation [6, 7].

Root-nodule symbiosis is well known as highly specific plant-microbe interaction. Ac-
cording to the early surveys of symbiotic specificity [8], legumes were suggested to com-
prise a range of taxonomically restricted cross-inoculation groups within which the free
cross inoculation occurs, while the species from different groups do not cross-inoculate.
The best studied examples of this classification are represented by four cross-inoculation
groups: “Trifolium — Rhizobium leguminosarum bv. trifolii”, “Pisum, Vicia, Lathyrus, Lens —
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R. leguminosarum bv. viciae”, “Galega — R. galegae”, “Medicago, Melilotus, Trigonella — Sino-
rhizobium meliloti, S. medicae”. However, it was demonstrated later [9, 10] that such strict-
ly defined specificity is limited to the herbage papilionoid legumes growing in temperate
zones and representing the “Galegoid complex”.

The specificity of legume-rhizobia interactions is expressed just during the pre-infection stage
when rhizobia recognize the roots of appropriate host plants and colonize their surfaces. The
interaction starts when the root-excreted signals, in particular, flavonoids, activate the
rhizobial nodulation genes (nod/nol/noe) [11]. These genes control the synthesis of lipochitoo-
ligosaccharidic (LCO) nodulation factors (Nod factors, NFs) which induce the early stages of
RN symbiosis development [12-14]. NFs represent the unique group of bacterial signal
molecules not known outside legume-rhizobia symbiosis. They are among the most potent
developmental regulators: their effect is expressed at concentrations of 10— 102 M only. The
core structure of these molecules, common for all rhizobia species, consists of 3-6 residues of
N-acetylglucosamine and of a fatty acid (acyl) chain. The type of symbiotic specificity is
dependent mainly on the chemical modifications in NF structures [11]. However, a sufficient
role in the host specificity of RN symbiosis may also be implemented by the interactions
between bacterial surface molecules (some polysaccharides and proteins) [15, 16] and the
lectins located on the root hair surfaces [17].

The main enzyme of nitrogen fixation in nodules is a nitrogenase that has a complex structure
[18, 19]. Synthesis of nitrogenase (the enzyme catalysing reduction of N, into NH,") and other
proteins involved in nitrogen fixation is induced in bacterial cells after they differentiate into
a specific form called bacteroids. Bacteroids are embedded into a membrane structure named
symbiosome, which formation as well as bacteroid differentiation is induced by plant [20].
These symbiosomes are organelle-like units of plant cell responsible for nitrogen fixation [21,
22]. Peri-bacteroid membrane (PBM) that surrounds bacteroids is an active interface of RN
symbiosis where exchange of metabolites between symbionts occurs [23].

A pronounced differentiation is typical for rhizobia-infected plant cells, such as an increase in
internal membrane structures participating in the PBM formation and biosynthetic processes.
Polyploidization and chromatin decondensation are typical for these cells correlating with an
elevated transcription activity [24]. Biochemically plant cell differentiation is expressed as a de
novo synthesis of many proteins including leghaemoglobin and nodule-specific isozymes of
carbon and nitrogen metabolism [25]. Leghaemoglobin binds oxygen actively ensuring its
transport towards symbiosomes (which are characterised by the intensive respiration necessa-
ry to support energy consuming nitrogen fixation) and microaerobic conditions inside the nod-
ules (required for the nitrogenase activity). The carbon and nitrogen metabolic enzymes
responsible for the energy supply to nitrogenase and for the assimilation of fixed nitrogen are
nodule specific [26]. Organic nitrogenous compounds formed from N, fixation are transported
to the upper parts of the plant either as amides (mainly asparagine (Asn), but also glutamine
(GIn)) or as ureides (allantoin and allantoate), so that legumes can be classified as amide or ure-
ide exporters according to the compounds they use for the mobilization of fixed nitrogen [27].

Rhizobial cells also undergo differentiation, but its level varies in different legume species. The
terminal bacteroid differentiation (when bacteroids increase their size and DNA content and
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lack the capacity to divide) is specific for legumes belonging to the inverted repeat-lacking
clade (IRLC) such as Medicago, Pisum, or Trifolium, whereas bacteroids in the non-IRLC
legumes, such as Lotus, show no sign of terminal differentiation as they maintain their normal
bacterial size, genome content, and reproductive capacity [28]. The same rhizobia strains that
form symbiosis with both IRLC and non-IRLC legumes have different bacteroid differentiation
fates in the two legume types. It was demonstrated that in Medicago and probably in other
IRLC legumes, the nodule-specific NCR peptides act as symbiotic plant effectors to direct the
bacteroids into a terminally differentiated state [29]. Possibly, IRLC legumes use nodule-
specific NCR peptides to dominate the endosymbionts: NCR peptides interfere with many
aspects of the bacteroid metabolism to allow the efficiency of the nitrogen fixation process to
be optimized, for example, by stimulation enlargement and polyploidization of bacteroids [30].
Also, the peptides could be part of a mechanism to avoid the “cheating” of rhizobia that could
use host resources to accumulate carbon storage compounds instead of fixing nitrogen [29],
which is often observed in the non-IRLC legumes but not in the IRLC [30].

It was also found that nodules where terminal bacteroid differentiation takes place are
more efficient in terms of energy use. Oono and Denison [31] reported that legume spe-
cies with terminal bacteroid differentiation (such as peas (Pisum sativum L.) and peanuts
(Arachis hypogaea L.) invest less in nodule construction but have greater fixation efficiency
when compared to species with reversible bacteroid differentiation (such as beans (Pha-
seolus vulgaris L.) and cow peas (Vigna unguiculata (L.) Walp.). This effect is probably due
to genomic endoreduplication of the bacteroids and full contact of single undivided bac-
teroid with peribacteroid membrane (some reproductive bacteroids can lose contact with
PBM after they divide). Still, this is not known if these useful features of terminal bacte-
roids differentiation in some legumes could be transferred into other legume species. In
work of van de Velde et al. [29], expression of NCR genes in nodules of Lotus japonicus
(Regel.) K. Larsen (with normally reversible bacteroid differentiation) was sufficient to in-
duce bacteroid morphologies reminiscent of terminally differentiated bacteroids of Medi-
cago truncatula Gaertn. But, no positive effect on nitrogen fixation efficiency was
reported, probably because there are much more regulatory genes needed to make bacte-
roids work propertly in such a heterologous system.

2.2. Arbuscular Mycorrhiza (AM)

Arbuscular mycorrhiza (AM) is formed by at least 80% of contemporary terrestrial plants with
fungi of phylum Glomeromycota. The Glomeromycota are unique as the only monophyletic
mycorrhizal fungus lineage that has co-evolved with land plants throughout their history.
They are obligate biotrophs that colonize plant roots obtaining photosynthates, such as
carbohydrates (hexoses), and niches for both their growth and reproduction. The AM is
evolved more than 400 million years ago and was considered to play a decisive role in plants
achieving a terrestrial existence [32-34]. The AM is supposed to be “the mother of plant root
endosymbioses” [35]. Since legumes originated long after AM, about 60 million years ago [36],
itmay be assumed that all of them have the potential to produce this type of symbioses. Lupinus
is the only known genus where this ability had apparently been lost [37-39].
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Specificity of AM symbiosis is relatively low [34]. Symbiosis establishment starts with
molecular dialogue between the partners. Plant roots release sesquiterpenes (also known as
inducers of parasitic plant seed germination) as well as different phenolic compounds,
including flavonoids, which induce fungal hypha growth and branching [40, 41]. Similar to
rhizobia, AM-fungi produce signal molecules termed Myc factors (mycorrhization factors)
[42], which can be recognized by the plant. They are a mixture of several lipochitooligosac-
carides, the structure of which is close to that of rhizobial Nod factors, but is presumably more
universal for different plant-fungus combinations [43]. Both sesquiterpenes and Myc factors
are released constitutively and in the absence of physical contact with symbiotic partner [44].

The AM-fungi penetrate the root to colonize inner cortical cells. Plant plays an active role in
fungus hosting inside the root tissues using cellular mechanisms similar to those used during
rhizobial invasion, such as nucleus reposition, cytoplasm aggregation, special cytoskeletal
tunnel assembly and symbiotic membrane formation (reviewed in: [45]). A special intracellular
compartment of AM providing tight metabolic exchange between the partners is arbuscule,
which is highly branched fungal hypha surrounded by membrane of plant origin [34] similar
to symbiosome of RN symbiosis [35, 46].

Inner-root and outer parts of mycelium remain bound with arbuscules and are a single
continuum via which the fungus is able to translocate mineral nutrient and water from the soil
into the root system [47]. Thus, well developed AM-symbiosis allows plant growing well in
nutrient-poor and drought-affected soils, increases its resistance against pathogens and pests
and heavy metals, and improves soil structure (see below).

Phosphorous (P) is one of the mineral nutrients essential for the plant growth (constitut-
ing up to 0.2% of the dry weight of the plant cell) and development. It plays the diverse
regulatory, structural, and energy transfer roles and consequently is required in signifi-
cant amounts [48, 49]. The plants can acquire soluble forms of phosphorous directly
from soil through the plant specific phosphate transporters (PTs). The dominant availa-
ble forms in soil (orthophosphate ions, P;) are very poorly mobile because of the abun-
dance of cations such as Ca*, Fe* and AI** [50]. In such environments where inorganic
phosphorous is the predominant form in soil, a range of root adaptations, most of them
primarily involved in mobilization and assimilation of phosphorous, are described in-
cluding plant dependence on arbuscular mycorrhizas (see for review: [34, 51]). In most
cases there is a preferential uptake via fungal hyphae (the mycorrhizal uptake pathway)
[52]. Studies employing radioactive tracers to track hyphal P; uptake from soil have
shown considerable AM contributions to phosphorous uptake [53-55]. The process in-
volves several fungal transport systems some of which have an extremely high affinity
for P; [56].

After transporting into hyphae, the major part of P; is polymerized by polyphosphate kinase
into polyphosphates (poly-P), the linear chains of P;. The granules rich in poly-P together with
phosphorous-containing esters are packed into the cylindrical vacuoles which are transported
along the hyphae by tubulin fibrils. After reaching the arbuscules, phosphorous compounds
are destroyed by phosphatases and the released P; cross the partners’ interface [56-58]. The
arbuscule is the site of phosphate transfer from fungus to plant. It is well documented that
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plants possess many classes of phosphate transport proteins, including those which are
expressed only in AM symbiosis [59-61]. It was discovered that five plant and one fungal PT
genes are consistently expressed inside the arbusculated cells [60]. A plant phosphate trans-
porter MtPt4 was shown to be expressed specifically on the peri-arbuscular membrane in
Medicago truncatula [62].

The mycorrhizal P; uptake pathway is controlled by the plant host. Many results suggest
that the plant phosphorous status is a major regulator controlling induction/repression of
plant PT genes at both the soil-root interface and the inner-root symbiotic interface
[63-65]. It was shown that high phosphorous concentrations counteract the induction of
the mycorrhizal P; transporter genes by phospholipid extracts from mycorrhizal roots
containing the mycorrhiza signal lysophosphatidylcholine [65]. The efflux of P; probably
occurs in coordination with its uptake and the fungus, on its side, might exert the con-
trol over the amount of P; delivered to the plant [66].

Although P; acquisition receives more attention, the important advances in investigations on
nitrogen uptake by AM-fungi have been made in recent years. AM-fungi directly uptake
ammonium (NH,*), nitrate and amino acids [67] with preference to NH," [68]. The first step in
the nitrogen uptake requires the activity of specific transporters located at the interface
between the soil and extraradical mycelium. A fungal transporter gene (GintAMT1) involved
in the process and having high affinity with NH," was characterized [68].

Inorganic nitrogen that was taken up by the extraradical mycelium should then be incorpo-
rated into the amino acids and translocated to the intraradical mycelium, mainly as arginine
(Arg) since this is the predominant free amino acid in the external hyphae [69]. The glutamine
synthetase/glutamate synthase (GS/GOGAT) cycle is possibly responsible for a subsequent
NH," assimilation in AM extraradical hyphae [70, 71], although the involvement of glutamate
dehydrogenase has not been experimentally excluded. Arg similar to Poly-P is stored and is
translocated along hyphae in vacuoles and is later released to the plant apoplast [66].

A mycorrhizal-specific NH,* transporter LjAMT2,2 has been revealed recently in transcrip-
tomic analysis of Lotus japonicus roots upon colonization with Gigaspora margarita. The gene
has been characterized as a high-affinity AMT belonging to the AMT2 subfamily. It is strongly
up-regulated and exclusively expressed in the mycorrhizal roots, but not in the nodules, and
transcripts have preferentially been located in the arbusculated cells [72].

The plants colonized by AM-fungi have been demonstrated to manifest an increased re-
sistance to attack of some pathogenic microorganisms, such as fungi, nematodes, bacte-
ria, phytoplasma, and plant viruses (reviewed in: [73]) as well as to plant feeding insects
[74, 75]. However, it is still unknown whether such increased resistance to pathogens is a
consequence of improved plant overall fitness or it is due to the specific defense respons-
es induced by AM-fungi.

Actually, a range of processes occurring as a result of pathogen invasion (plant defense
responses) also takes place in mycorrhized root tissues. They include the signal percep-
tion, signal transduction and defense-related gene activation [76-80]. The elements of hy-
persensitive responses have been observed to take place at both compatible and non-
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compatible combinations of plants with AM-fungi; reactions similar to the “oxidative
burst” are typical for AM during fungus penetration into the epidermal cell [81]. In AM,
as in other compatible biotrophic interactions, the defense-like response appears to be
weak and occurs transitorily during the early phases of colonization, suggesting that the
suppression of plant defense responses by the fungal signals may contribute to success-
ful, compatible AM fungal colonization [76, 82]. AM-fungi are known to alter both con-
stitutive and induced defenses in foliar tissues [83-85].

Drought stress is a major agricultural constraint in the semi-arid tropics. In most cases
symbiosis with AM-fungi has been shown to increase host plant growth rates during drought
stress and plant resistance to drought. Several mechanisms explaining this phenomenon have
been proposed: an influence of AM on plant hormone profiles, increasing intensity of gaseous
exchange and photosynthesis in leaves, direct water transport via fungal hyphae from soil into
the host plant, enhanced water uptake through improved hydraulic conductivity and increas-
ing leaf conductance and photosynthetic activity, nitrate assimilation by fungal hyphae,
enhanced activity of plant enzymes involved in defence against oxidative stress, plant osmosis
regulation, and changes in cell-wall elasticity (reviewed in: [86-89]).

The AM fungal hyphae grow into the soil matrix and create conditions conducive to the
formation of microaggregates and then their packing into macroaggregates due to production
copious amounts of the glycoprotein glomalin [90, 91]. Through AM-fungi-mediated effects
on soil structure, it seems logical to suggest that AM colonization of a soil might affect its
moisture retention properties and, in turn, the behaviour of plants growing in the soil,
particularly when it is relatively dry [88].

AM-fungi were found to play an important role in heavy metal detoxification and the estab-
lishment of vegetation in strongly polluted areas (see for review: [92]). Fungal strains isolated
from old zinc wastes also decrease heavy metal uptake by plants growing on metal rich
substrates, limiting the risk of increasing the levels of these elements in the food chain [93].
Phytoremediation of metal contaminated areas attracts the increasing interest as a cheaper
alternative to chemical methods, more friendly for environment and nondestructive to soil
biota. The effectiveness of the bioremediation techniques depends on the appropriate selection
of both the plant and the fungal partners. Plants conventionally introduced in contaminated
areas disappear relatively soon, while those appearing during natural succession are better
adapted to harsh conditions. Much more stable are plants that appear on the wastes sponta-
neously, but, it takes a long time till they establish and form stable communities. Symbiotic
partners selected on the basis of such research are often the best choice for future phytoreme-
diation technologies [93-96]. Introduction of plants from xerothermic grasslands into the soils
contaminated with industrial metal rich wastes is supposed to be a new solution for waste
revegetation [97]. Further improvements can be obtained by optimization of diverse micro-
biota including various groups of rhizospheric bacteria and shoot endophytes [92].

2.3. Associations of roots with Plant Growth-Promoting Rhizobacteria (PGPR)

Plant Growth Promoting Rhizobacteria (PGPR) are the taxonomically diverse group including
different bacteria (Arthrobacter, Azospirillum, Bacillus, Enterobacter, Pseudomonas, Paenibacillus,
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Streptomyces) and even some archaea [98]. The PGPR are inhabitants of soil in the vicinity of
plant roots and are dependent on consuming root exudates. Many PGPR are able to attach to
root surfaces and to AM and other fungal hyphae. The PGPR provide several benefits affecting
the host plant either directly (due to mineral nutrient improvement and stimulation of root
development) or indirectly (due to defence of plants from soil-borne pathogens and improving
host tolerance to abiotic stresses).

Similar to rhizobia, Azospirillum possess nitrogenase and therefore is able to fix atmos-
pheric nitrogen. In the early papers, plant growth promoting activity was attributed
mainly to associative nitrogen fixation. A broad distribution of cereal-Azospirillum associ-
ations was identified (reviewed in: [99]). It was demonstrated later, however, that a par-
tial role in these plant-PGPR associations was due to phytohormone auxin (indole-3-
acetic acid, TAA) synthesis [100] which improves the root growth and assimilatory
capabilities and hence aids nitrogen uptake by plants. In spite of absence of the visible
anatomic differentiation in root-Azospirillum associations, its development involves a
range of molecular interactions some of which may be common to endosymbiotic associ-
ations with rhizobia. Moreover, there is a visible taxonomic relatedness between Azospir-
illum and Bradyrhizobium genera. Thus, azospirilla and those slow-growing rhizobia
might originate from a common Azospirillum-like ancestor (see for review: [101, 102]).

Many PGPR are able to solubilize sparingly soluble phosphates, usually by releasing che-
lating organic acids. Phosphate solubilizing bacteria (PSB) have been identified, but their
effectiveness in the soil-plant system is unclear. The ability of an inoculated PSB to sup-
ply phosphopous to plant may be limited, either because the compounds released by
PSB to solubilize phosphate are rapidly degraded or because the solubilized phosphate is
re-fixed before it reaches the root surface [103].

The best studied examples of bacteria providing efficient defense from phytopathogens are:
Pseudomonas (P. fluorescens, P. chlororaphis, P. putida), Bacillus (B. cereus, B. subtilis) and some
Serratia (e.g., S. marcescens) species. Many of these bacteria are capable of preventing attacks
by pathogenic fungi, nematodes and bacteria [98, 104, 105]. Diverse mechanisms may be
involved in host protection offered by PGPR.

The best studied mechanism is the competitive exclusion of pathogens often related to their
direct suppression by the bacterial antibiotic substances: phenazine-1-carboxamide, 2,4-
diacetylphloroglucinol, kanosamine, oligomycin A, oomycin A, pyoluterin, pyrrolnitrin,
xanthobaccin, zwittermycin A, volatile dyes (HCN) and cyclic lipopeptides [98, 104, 105].

An important mechanism for the suppression of pathogens by biocontrol microbes may result
from competition for iron or other metals, that involves bacterial siderophores which may
possess much greater affinities for ferric ions than those for fungal siderophores [104, 105]. The
value of siderophores in biocontrol effects under natural conditions is predominantly associ-
ated with their ability to induce forms of systemic resistance in plant [98, 106].

Competitive exclusion of pathogens by PGPR is best achieved when the bacteria exhibit high
root-colonizing activity. Application of the technique of genetic labeling with Green Fluores-
cent Protein (GFP) suggested that these bacteria do not regularly colonize the root interiors,
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and only rarely they can be observed inside the outer root tissues [98]. Most PGPR cells are
concentrated on the root surface where the micro-colonies [98, 104] or bio-films are formed
[107]. Since the interactions of plants with root-associated bacteria are not specific, the bacteria
will colonize the roots of a broad spectrum of hosts. Specificity of the defensive association
may be expressed however, at the point when antimicrobial compounds are being synthesized
and this does not always correlate with bacteria taxonomy; many strains of Bacillus and
Pseudomonas which possess plant-protective properties have close relatives amongst phyto-
pathogenic types [106, 108, 109].

Microscopic observations demonstrated that suppression of fungi may be correlated with
bacterial attachment to pathogen hyphae. As a result of this attachment, some PGPR strains
commence their biocontrol functions by behaving as hyper-parasites of pathogenic fungi. This
suppression may be related to the production of bacterial enzymes which destroy the pathogen
cell walls [104, 105, 110, 111].

Sometimes the biocontrol activities of PGPR do not correlate with intensive colonization of
host roots and plant protection results from only a small number of bacteria cells. This occurs
when PGPR inoculation induces the systemic resistance mechanisms that make the root non-
accessible by pathogens. Initially this effect of PGPR was called ISR (Induced Systemic
Resistance) and was attributed exclusively to nonpathogenic systems [112]; SAR (Systemic
Acquired Resistance) reactions, by contrast, were considered to be typical for the interactions
with plant pathogens. Nevertheless, it was later found that the reactions of both types occur
in either pathogen or nonpathogen systems and are distinguished by the nature of their
endogenous elicitors (reviewed in: [106, 113]). The conventional SAR reaction is characterized
by an accumulation of salicylic acid as signal molecules and pathogenesis-related proteins (PR-
proteins), whereas ISR reaction is based on signal transduction pathways regulated by
jasmonates and ethylene. The systemic defence responses of both types may be elicited
exogenously by PGPR cells attached to the roots or penetrating their outer tissues. Some
molecules produced by PGPR (cell wall and cyclic lipopolysaccharides, flagella components,
exoenzymes, phytohormones, type Ill secretion system (TTSS) effectors, siderophores, salicylic
acid, and toxins) may be perceived by the plant and elicit a defensive response [106].

It has been reported that PGPR which produce an enzyme which is involved in the catabolism
of 1-aminocyclopropane-1-carboxylate (ACC) — the ACC deaminase, can lower ethylene
concentration in a developing or stressed plant, protecting it against the deleterious effects of
ethylene induced stress and facilitating the formation of longer roots [114, 115]. This demon-
strates that ethylene is negative regulator of plant interaction with PGPR.

Despite relatively low specificity of plant associations with PGPR, plant genotype has been
shown to influence their effectiveness (i.e. genetic integration exists between the partners), and
a series of genome loci (QTL) was identified controlling its quantitative variation [106, 116,
117]. The most pronounced plant species-specificity has been observed in the manifestation of
ISR reactions caused by PGPR [118, 119].

Both highly effective direct promotion of plant growth and biocontrol may be due to an ability
of the host to regulate PGPR functions by modulating the composition of root exudates. Root-

175



176

Plant Breeding from Laboratories to Fields

excreted organic acids, but not sugars, are optimal for support of different types of PGPR
[120-122]. Additionally, some plants (including the legumes, pea and alfalfa) regulate their
PGPR functions by exudating specialised signals from the roots which mimic the bacterial
“quorum sensing” regulators required for root colonization and antifungal activities [123].
These observations suggest that improvement of biocontrol functions in root-PGPR associa-
tions may be achieved via manipulations with the bacterial and plant host genotypes.

2.4. Mutually beneficial associations of plants with endophytic bacteria

Healthy naturally propagated plants grown in the field or in pot cultures are colonized by
populations of endophytic bacteria. The spectrum of endophytic bacteria isolated from the
roots of various plants covers a wide range of species; representatives of the genera Pseudo-
monas, Bacillus or Streptomyces are most frequently encountered as endophytes (reviewed in:
[124]). Newly developed molecular methods enable complete analyses of the diversity of
culturable and non-culturable bacteria [125]. Most of the known genera include some phyto-
pathogenic endophytes. Endophytes and pathogens both possess many similar virulence
factors (reviewed in: [124]).

Some endophytes are seed-borne, but others have mechanisms for colonizing plants that have
yet to be elucidated [126]. Although there are occasional poorly substantiated reports of
intracellular colonization of bacteria providing a consistent and effective increase in the
productivity of crops, it is still considered that the intercellular apoplastic space is the most
suitable niche for endophytes [127]. It is suggested that many bacterial ‘endophytes’ may not
colonize the living tissues, but occupy protective niches in dead surface tissues or closely
adhering soil of rhizosheaths. Consistent entry of endophytes into living root tissues in the
field is supposed to require a bacterial capability to hydrolyse the hydrophobic incrustations
of the walls of epidermal, hypodermal, endodermal, and other cortical cells [128].

Plant associations with endophytic bacteria can increase plant growth and promote gen-
eral development or improve plant resistance to pathogens and other environmental
stresses enhancing the host’s ability to acquire nutrients, or by production of plant
growth-regulating, allelopathic or antibiotic compounds [127, 129]. Sometimes improved
plant resistance can be linked to induced systemic resistance caused by bacterial elicitors
coming from the endophyte [130].

It is necessary to study the natural associations between bacterial endophytes and their hosts
for the purposes of employing such systems most productively in sustainable agriculture [127].
Delivery of endophytes to the environment or agricultural fields should be carefully evaluated
to avoid introducing plant, animal and human pathogens [131].

2.5. Synergistic effect of microbes in rhizosphere

Microorganisms in the rhizosphere are under the influence of root exudates and plant as a
whole as well as of interspecies interactions with each other. Many fungi including AM-fungi
can interact with different bacterial species which frequently attach to fungal mycelium
(reviewed in: [103, 132, 133]). For those bacteria known to stimulate mycelial growth of
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mycorrhizal fungi and/or enhance root mycorrhization the term “mycorrhiza-helper-bacteria’
has been proposed [133, 134]. Particularly, the bacteria may encourage growth of AM-fungi at
the perisymbiotic stage of development, which precedes the establishment of a direct contact
of the microsymbiont with the plant root [103, 135]. On the other hand, AM-fungi directly
modify the environment due to mycelial exudation [136], forming the so-called “mycorrhizo-
sphere’ [137]. In addition, the stimulation of root exudation as a result of interactions with AM-
fungi leads to qualitative and quantitative changes of the bacterial community in the
rhizosphere (reviewed in: [103, 132]).

Synergistic effect between RN and AM symbioses of legumes was described by many authors
[95, 138-142]. AM formation is known to promote nodule development and nitrogen fixation
by rhizobia, in particular, by means of improvement of mineral (predominantly phosphorous)
host plant nutrition (see for review: [103]). AM-fungi also manifest synergism during interac-
tions with PGPR (both indigenous and introduced), which perform biocontrol, nitrogen
fixation, and phosphate mobilization during double and complex inoculation [103, 132]. The
synergetic effect of plant inoculation by rhizobia and PGPR (Azospirillum, Bacillus, and
Pseudomonas) is well known. In particular, it is associated with PGPR production of indole-3-
acetic acid, which encourages nodule formation [103, 143]. Triple inoculation of a model
legume Anthyllis cytisoides with PGPR, AM-fungi and rhizobia was shown to be the most
effective approach for revegetation in mediterranean semi-arid ecosystems [94].

Thus, the potential of microbial synergism allows us to speak about high prospects of bio-
technologies focused on creation multicomponent symbioses (MCS) that increase the fertility
and quality of agricultural legume and nonlegume crops. At the same time, the results of
experiments with plant symbioses with AM-fungi, rhizobia and PGPR, including multimi-
crobial systems, show the important role of physiological and genetic adaptation of microor-
ganisms to local environmental conditions [92, 94, 95, 144]. Hence, during the development of
such biotechnologies, it is recommended to use a complex of local microbial isolates adapted
to particular environmental conditions.

3. Plant genetic control over development and functioning of mutualistic
symbioses of legumes

3.1. Legume genes involved in development of RN and AM symbioses

The complex developmental processes which lead to the formation of intercellular and sub-
cellular symbiotic compartments in RN and AM symbioses are controlled by both macro- and
microsymbiont. Genetic systems of the symbionts are highly integrated, because some genes
and gene products of one partner can switch certain genetic programs in another partner, still
the development and function of the symbioses is reliant to the greatest extent on the plant.
Developmental genetics of RNS is now well described because both plants and nodule bacteria
can be subjected to genetic analysis during nitrogen-fixing nodule formation and functioning.
There has been less investigation of AM systems. Mainly this is due to the difficulties encoun-
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tered in culturing AM-fungi, caused by their obligate symbiotic lifestyle and impossibility of
using selective media. Additionally, genetic analysis of AM fungi is more complex because of
their heterokaryotic nature and lack of sexual process [34, 145].

The plant genes involved in development of RN and AM symbioses may be divided into
two groups, according to approach which was used for the gene identification. The first
group, Sym genes [146], had been identified with the use of formal genetic analysis
(started from selection of plant mutants defective in nodule development). The other
group of genes comprises nodulins (from nodule) [147], mycorrhizins (from mycorrhiza)
[148, 149], and symbiosins (from symbiosis) [149, 150]. These genes were identified by mo-
lecular genetic methods, through identification of proteins and/or RNAs synthesized de
novo in root nodules (nodulins) or roots colonized by AM fungi (mycorrhizins). The
genes whose expression is induced during the development of both endosymbioses, RNS
and AM are called symbiosins [150].

Genes of these groups are suspected to play different roles in the processes which may be
referred collectively as “management of microsymbionts” inside plant roots. Specifically, the
products of some nodulin genes represent the structural elements of newly constructed
temporary compartments developed during symbiosis [151]. The other nodulin genes may
play essential roles in modulating the hormonal status of the developing nodules [152, 153].
Resently, in silico and microarray-based transcriptome profiling approaches have allowed
identification of nodulins, mycorrhizins and symbiosins, which are being activated in response
toan AM fungal signal, or by either rhizobial or AM fungal stimulus, respectively [149]. Several
hundred genes were found to be activated at different stages of either symbiosis, with almost
100 genes being co-induced during nodulation and in AM formation. These co-induced genes
representing the common evolutionary bases of AM and nodular symbioses can be associated
with those cellular functions which are required for symbiotic efficiency, such as the facilitation
of nutrient transport across the perisymbiotic membranes that surround the endosymbiotic
bacteroids in root nodules and the arbuscules in AM roots [150]. However, it should be
remembered that although most of the nodulins/mycorrhizins/symbiosins were already
cloned and sequenced, functions for many of them have been identified only preliminary using
the sequence data of the encoding genes and location of the gene products in the symbiotic
compartments.

Still, most of nodulins, mycorrhizins and symbiosins seem to play a subordinate role in the
regulatory scheme of symbiosis, nevertheless being indispensable for its functionality and
stability. In turn, the major, regulatory role in realization of symbiotic programmes is to be
assigned to Sym genes. These genes, in contrast to nodulin genes, are usually not expressed
outside symbiotic structures and there are many examples of the high functional and sequence
homologies between them in different legumes. First genes of this group had been identified
using the spontaneous mutants from natural legume populations [154] and afterwards using
the experimentally induced mutants defective in nodulation or nitrogen fixation (Nod~ and
Fix” phenotypes) [155]. Afterwards, it was demonstrated that mutations in some of these genes
also affect the ability of plant to form AM [148]. The presence of such common genes necessary
for both AM and RN symbioses development suggested that both endosymbioses were more
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closely related than it was suspected before. The cloning and sequencing of the common
symbiotic genes helped to understand that AM and RN symbioses share the overlapping
signaling pathways, which probably were established during evolution the AM symbiosis and
was recruited afterwards into the RN symbiosis development [35].

The large sizes of genomes of crop legumes (e.g. soybean Glycine max (L.) Merr. and pea) in
which the formal genetics of symbioses was initially developed, as well as low capability for
genetic transformation, complicate greatly the cloning of symbiotic genes, analysis of their
primary structures and the gene manipulations. Therefore, in early 1990s the new legume
species, Lotus japonicus [156] and Medicago truncatula [157, 158] have been introduced in studies
as model plants. These species are characterized by small genomes (470 — 500 Mb; [159]) and
can easily be genetically transformed [158, 160-162]. In addition, the short lifecycle and high
seed productivity made them attractive and convenient model objects for studying molecular
bases of RN and AM symbioses.

Genetic analysis in model legumes as well as in crop legumes was started with experimental
mutagenesis. Large-scale programs of insertion, chemical and X-rays mutagenesis, performed
by different research groups, resulted in generation of numerous symbiotic mutants in L.
japonicus and M. truncatula [163, 164] which allowed researchers to identify and characterize
aseries of Sym genes. The genes involved at the initial stages of nitrogen-fixing symbiosis (early
Sym genes) were of primary interest, allowing dissection of the mechanisms by which the NF
signal is perceived and transduced by host plants [165]. It turned to be that after the perception
of NF, the nodulation process follows the same signalling pathway as AM does, with slight
differences, though.

3.2. Common Symbiosis Pathway (CSP)

The data obtained during the last fifteen years allowed reconstruction the symbiotic signaling
pathway which starts in RN and AM symbioses with recognition the Nod and Myc factors,
respectively, and goes on as the signal transduction inside the root. In legumes Nod and Myc
factors are most likely perceived by specific receptor complexes [35]. The receptor for NF is
considered to be a heterodimer composed of at least two LysM containing receptor kinases
[166-168]. Alike, receptor for Myc factor (which is not known yet) also supposed to be consisted
of similar receptor kinases, or even include one or more kinases participating in Nod factor
signaling [169]. The system of receptor kinases perceiving signal molecules of microsymbionts
seems to be complicated, with some receptor complexes being necessary not only for starting
the interactions, but also on later stages, during penetration bacteria into the root cortex
through root hair. Moreover, some receptor kinases could non-specifically bind Nod and Myc
factors, which results in intensified growth of lateral roots [43, 169]. Probably, the diversity of
receptor kinases should complement the variability of soil microorganisms and increase the
specificity of interactions with mutually beneficial ones.

After the first step of reception of Nod or Myc factor, the symbiotic signal is being transmitted
to the common pathway, named Common Symbiosis Pathway [170]. The first player in this
pathway is LRR-receptor kinase, or SymRK (symbiotic receptor kinase), which is required for
both RN and AM symbioses development [171, 172]. The ligand for this receptor kinase is not
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known yet. Interestingly, the activity of this kinase is also required for proper progression of
late symbiotic stages, at least for rhizobial infection [173]. SymRK kinase domain has been
shown to interact with 3-hydroxy-3-methylglutaryl CoA reductase 1 (HMGR1) from M.
truncatula [174], and an ARID-type DNA-binding protein [175]. These results suggest that
SymRK may form protein complex with key regulatory proteins of downstream cellular
responses. Symbiotic Remorin 1 (SYMREM1) from M. truncatula and SymRK-interacting E3
ligase (SIE3) from L. japonicus have also been shown to interact with SymRK [176, 177].

The symbiosis receptor kinase SymRK acts upstream of the Nod and Myc factor-induced
Ca? spiking in the perinuclear region of root hairs within a few minutes after NF application
[178]. Perinuclear calcium spiking involves the release of calcium from a storage compartment
(probably the nuclear envelope) through as-yet-unidentified calcium channels. To date it is
known that the potassium-permeable channels might compensate for the resulting charge
imbalance and could regulate the calcium channels in plants [179-183]. Also, nucleoporins
NUP85 and NUP133 (to date described only in Lotus) are required for calcium spiking,
although their mode of involvement is currently unknown. Probably, NUP85 and NUP133
mightbe a part of specific nuclear pore subcomplex that plays a crucial role in the signal process
requiring interaction at the cell plasma membrane and at nuclear and plastid organelle-
membranes to induce a Ca?" spiking [184, 185]. Recently, the third constituent of a conserved
subcomplex of the nuclear pore scaffold, NENA, was identified as indispensable component
of AM and RN endosymbiotic development [186].

The calcium spiking is characteristic for both RN and AM symbioses formation [187].
These Ca* spikes are supposed to activate a calcium- and calmodulin-dependent protein
kinase (CCaMK) that is also required for NF signaling and AM development [188]. This
kinase contains an autoinhibition domain, removing of which leads to a spontaneous ac-
tivation of downstream transcription events and induction of nodule formation in the ab-
sence of rhizobia [189]. Thus, CCaMK appears to be a general manager for both
symbioses activating different cascades of signaling for N,-fixing symbiosis and AM in
response to different Ca*" spiking, because the next steps of nodulation signaling are in-
dependent from those of AM: the mutations in downstream Sym genes do not change
the mycorrhizal phenotype of the legume. Interestingly, mutations in any Sym genes do
not influence the defense reactions, suggesting that signaling pathways of mutualistic
symbioses and pathogenesis are sufficiently different.

The calcium-calmodulin-dependent protein kinase (CCaMK) is supposed to be also involved
in legume interactions with PGPR and/or endophytic bacteria as it was shown using inocula-
tion of M. truncatula by P. fluorescens that MtDMI3 gene (encoding for CCaMK) regulates
intercellular root colonization by bacteria as well as expression of some plant housekeeping
genes known earlier as mycorrhizins [190].

The CCaMK is known to form a complex with CYCLOPS, a phosphorylation substrate, within
the nucleus [35]. cyclops mutants of Lotus severely impair the infection process induced by the
bacterial or fungal symbionts, and are also defective in arbuscule development [149]. During
RNS, cyclops mutants exhibit the specific defects in infection-thread initiation, but not in the
nodule organogenesis [191], indicating that CYCLOPS acts in an infection-specific branch of
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the symbiotic signaling network [35]. Cyclops encodes a protein with no overall sequence
similarity to proteins with known function, but containing a functional nuclear localization
signal and a carboxy-terminal coiled-coil domain.

It is supposed that CCaMK with help of CYCLOPS probably phosphorilates the specific
transcription factors already present in cell: NSP1 and NSP2, which influence the changes of
expression in several genes related to the symbiosis development [192, 193]. The activity of
these proteins leads to the transcriptional changes in root tissues, for instance, increasing the
level of early nodulins ENOD40, ENOD11, ENOD12, ENODS5, which are known to be the
potential regulators of infection thread growth and nodule primordium formation [165, 194,
195). Also, the changes in cytokinin status of plant are detected, followed by up-regulation of
genes encoding for RN symbiosis-specific cytokinin receptors [196-198]. Moreover, transcrip-
tion regulators NIN and ERN are to be induced specifically downstream of the early NF
signaling pathway in order to coordinate and regulate the correct temporal and spatial
formation of root nodules [199-202].

The presented genes are responsible for the signal cascade which is aimed to induce the
nodulin, mycorrhizin and symbiosin genes responsible for building the symbiotic struc-
tures and implementing their biochemical functions. It is supposed that the signaling
pathway did not appear de novo in legumes when they become able to form nodules, but
was developed from already existed system of AM formation into which the novel, nod-
ule-specific genes were recruited. Still, new genes had been involved in RN symbiosis
development, especially those encoding the receptors recognizing hormones (e.g. cytoki-
nins) and hormone-like molecules (Nod factors).

3.3. Autoregulation of symbioses formation

Autoregulation of symbiosis development is an important process that takes place after
successful mutual partners’ recognition and signal exchange. For RN symbiosis, it is con-
sidered that legume host controls the root nodule numbers by sensing the external and
internal cues. A major external cue is the soil nitrate, whereas a feedback regulatory sys-
tem in which earlier formed nodules suppress further nodulation through shoot-root
communication is an important internal cue. The latter is known as the autoregulation of
nodulation (AON), and is believed to consist of two long-distance signals: a root-derived
signal that is generated in infected roots and transmitted to the shoot; and a shoot-de-
rived signal that inhibits nodulation systemically [203, 204]. Therefore, AON represents a
strategy through which the host plant can balance the symbiotrophic N nutrition with
the energetically more “cheap” combined N nutrition.

Recent findings on autoregulation of nodulation suggest that the root-derived ascending
signals to the shoot are short peptides belonging to the CLE peptide family [205, 206]. The
leucine-rich repeat receptor-like kinase HAR1 of Lotus and its homologues in M. truncatula and
P. sativum (SUNN and Sym29, respectively) mediate AON and also the nitrate inhibition of
nodulation, presumably by recognizing the root-derived signal [207-210]. Other genes, like
ASTRAY, KLAVIER and TML in Lotus, and RDN1 in M. truncatula, are also supposed to play
a sufficient role in AON [211-214].
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Very little is still known about the plant regulation of mycorrhization process. In split-root
systems on alfalfa (Medicago sativa), inoculation of one half of a split-root system with the
fungus Glomus mosseae significantly reduced later AM colonization on the other half. A similar
suppressive effect on mycorrhization was observed after inoculation with Sinorhizobium
meliloti [215]. Furthermore, prior addition of purifed rhizobial Nod factors on one half
signifcantly reduced mycorrhization on the other half of the split-root system, and reciprocally,
prior mycorrhization on one side suppressed nodule formation on the other side of the split-
root system. Together these data point to a common autoregulation circuit for both symbioses
[210]. It was suggested that Nod factor signaling, as well as mycorrhizal Myc factor signaling,
induces expression or post-translation processing of CLE peptides, which likely function as
ascending long-distance signals to the shoot [210]. Also, it was demonstrated that mutations
in HARI of Lotus and corresponding orthologues in other legumes increase both nodulation
and mycorrhization suggesting the shared role of these orthologous genes in controlling the
rate of root colonization by microsymbionts. Thereby, not only the local signal transduction
(CSP) but the systemic autoregulation is common for the RN and AM symbioses.

3.4. Next stage of development the genetics of symbioses

The next-coming step of development the genetics of symbioses is studying gene networks on
intergenomic level, i.e. the coordinated expression of plant and microbe genes. For AM, with
use of the new molecular approaches, in particular transcriptomics, a series of AM fungal genes
has been identified, having altered expression levels during the AM formation [216-219]. Still
it is not well studied at which stages of fungal-plant interaction the complementary partners’
genes are induced or repressed, and so the use of plant mutants impaired at different steps of
AM development might be a challenging approach to reveal the pattern of plant and fungal
genetic cooperation [220]. The same research aimed at identification of plant-rhizobial gene
interactions with the use of plant and microbe mutants is also in progress.

It has been recently observed that Medicago truncatula showed significantly lower efficiency of
nitrogen fixation than its close relative Medicago sativa L. [221]. The number of nodules formed
on the roots of M. truncatula was less than that of M. sativa, and the nitrogen fixation measured
on plants at the beginning of flowering (as well as specific N, fixation (ugN h™ mg nodule™))
was significantly lower. The reasons for the low efficiency in nitrogen fixation were partially a
result of low relative efficiency (electron allocated to N, versus H"), and slow nitrogen export
from nodules in M. truncatula when compared to M. sativa. This might be connected with a
low malate concentration in the nodule tissue of M. truncatula, and thus insufficient carbon
provision for asparagine formation (fixed nitrogen is to be added to malate to form asparagine)
[221]. Therefore, Sulieman and Schulze [221] suggest that improvement the malate formation
in M. truncatula nodules could help improving the effectiveness of nitrogen fixation.

According to these data, genes encoding for enzymes of malate synthesis should be good
candidates for markers to be used as selection and breeding aimed at improvement of
symbiotic properties in M. truncatula. But, in different species potential markers of symbiotic
effectiveness could be found among genes of different functional groups. Our original data on
sequencing alleles of symbiotic genes in pea (Pisum sativum) varieties with different symbiotic
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effectiveness suggest that polymorphism of genes belonging to CSP does not correspond to
symbiotic properties of pea varieties analysed (Zhukov V.A., unpublished results). Perhaps,
good candidates for markers of symbiotic effectiveness could be found during large-scale
screening by transcriptome sequencing in different pea genotypes, which is now underway in
our laboratory.

4. New approaches of application of mutually beneficial plant-microbe
systems in sustainable agriculture

4.1. Development of multicomponent inocula containing BSM

An existence of plant genes [148, 150, 222] and their molecular products [223] common for both
AM and RN symbioses led to a conclusion that system of legume symbiotic genes should be
considered as a single whole, controlling the development of a tripartite symbiosis (legume
plant + AM fungi + rhizobia). This fact along with the demonstration of synergistic activity in
beneficial soil microbes (reviewed in: [103]) and a suggestion that plant genetic systems
controling the development of RN and, probably, of some other beneficial plant-microbe
associations evolved on the basis of that of AM [35] have great importance for the application
of tripartite or even multi-partite symbiotic systems in low-input sustainable environmentally-
friendly agrotechnologies.

The use in sustainable agriculture of inocula based on beneficial soil microbes as described
above allows the improvement crop productivity with decreased doses of mineral fertilizers
and pesticides (reviewed in: [224, 225]). These days the majority of commercial inocula contain
pure cultures of single microorganisms and only occasionally multiple combinations. There
are several objections to the use of mono-inoculation. Firstly, endemic microbial communities
are stable and the introduced microbe may be allowed to occupy a very small niche in the
whole community or even get lost in a first week after introduction. Secondly, genetic material
in microbes is very plastic, and consequently strains introduced into natural ecosystems can
rapidly lose their beneficial traits. Thirdly, the existence of microbial cooperation in the
rhizosphere [103] as well as in natural synergistic associations of different microbes including
those between AM fungi and their endocellular or superficial symbionts [103, 132] question
the possibility and expediency of applying mono-inoculants and even use of the term ‘mono-
inoculation” itself. Finally, plants possess relatively stable genomes and this fact contributes
significantly to the effectiveness of symbiosis [226]. Therefore, for industrial plant production
in sustainable systems we should use plants having highly effective interactions with all kinds
of beneficial soil microbes, which can encourage the development of multiple niches hosting
microbes and regulating their activity. For this it is necessary to develop new multi-component
microbial inocula which increase the content and biodiversity of beneficial soil microbes in
agricultural land.

There is experimental evidence of the effectiveness of simultaneous inoculation of legumes
with AM fungi and nodule bacteria leading to increased productivity and quality of the yield,
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e.g. groundnut [138], pea [139-141, 227], albaida (Anthyllis cytisoides) [95], and soybean [142].
The effect achieved equalled or exceeded that achieved with mineral fertilizers [140, 141, 227].
The effect also exceeded that of mono-inoculation with AM fungi or with rhizobia either in
model experiments or under field conditions [139, 140, 142]. In long-term experiments in a
desertified Mediterranean ecosystem, it was found that simultaneous inoculation with AM
fungi and rhizobia enhanced the establishment of key plant species and increased soil fertility
and quality; increased soil nitrogen content, organic matter content, and soil aggregate
hydrostability and enhanced nitrogen transfer from nitrogen-fixing to non-fixing species
associated with the natural succession of the plants [95].

There is an example of application of triple inoculum (AM fungi, rhizobia and PGPR) to the
legume A. cytisoides which was successful only when the microorganisms used were isolated
from local environment [94]. In collaboration with an innovation company “Bisolbi-Inter”
(Russian Federation) the All-Russia Research Institute for Agricultural Microbiology (AR-
RIAM), Saint-Petersburg, Russian Federation, has developed technology for the production
and application of a new multifunctional biopreparation BisolbiMix [228] containing a
complex of the most effective isolates of endosymbiotic microbes (AM fungi and rhizobia) and
associative bacteria (PGPR) from the collection held at ARRIAM. A non-sterile substrate-
carrier which is derived from washing-filtration by-products of a sugar-beet factory contains
its own microbial community including all the above groups of beneficial microbes. The
preparation can be formulated into a seed dressing (not effective for all the crop plants tested)
or granules. The efficacy of BisolbiMix was demonstrated in field trials with legumes, e.g. pea
[227] or non-legumes such as wheat, pumpkin and potato (Chebotar V.K. et al., unpublished
results). The use of microbial formulations containing rhizobia for non-legumes seems to be
sensible because it is known that nodule bacteria which do not form nodules on a non-host
legume as well as non-legume roots can operate as PGPR [229, 230]. Thus, the selection of
rhizobia with both PGPR activity and efficient symbiotic nitrogen fixation should be advan-
tageous in crop rotations or intercropping systems using legumes and non-legumes.

It is possible, therefore, to develop effective multi-microbial inoculants, but it is necessary to
use local communities of beneficial microbes because this exploits the natural biological and
genetical adaptations of the partners to their environment [94, 231].

4.2. Breeding for improving legume symbiotic effectiveness

During development of plant-microbe systems for low-input sustainable ecologically friendly
plant cultivation it is necessary to be guided by conclusions of EC experts about global
productivity of legumes (http://www.grainlegumes.com/aep/; http://ec.europa.eu/research/
biosociety/food_quality/projects/002_en.html) for sustainable agriculture. The use of legumes
in agriculture is leading to: improved soil fertility and increased diversity of crops and soil
microbial communities; reductions in the use of non-renewable natural resources; decreased
negative effects from intensive agrotechnologies on the natural environment due to decreased
requirement for mineral fertilizers and pesticides and decreased production of animal protein
and associated wastes; local production of pollution-free food and forage; and a more stable
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income for the agricultural producers. This is why it is necessary to breed legumes which have
highly effective interactions with beneficial soil microbes.

For more than twenty five years the authors” laboratory has specialized in the genetics of
plant-microbe interactions using pea (P. sativum L.) as a model plant. Our experience for
improving the effectiveness of beneficial plant-microbe systems with pea is consequently
given as an example. At the same time, the authors’ team knows only single record of
other activity of this nature: genetic variability of onion (Allium spp.) has been shown
with respect to its responsiveness to AM fungi inoculation which indicate that onion
breeding for improving efficacy of associations with AM fungi is possible [232]. The ne-
cessity for this sort of plant breeding is also considered, mainly with respect to the effec-
tiveness of RN symbiosis [233-236].

4.3. Analysis of genetic variability of pea with respect to its effectiveness of interactions
with beneficial soil microbes

A high level of genetic variability was demonstrated in analyses of the symbiotic effectiveness
under double inoculation with AM fungi and nodule bacteria of 99 land-races and outclassed
heritage cultivars of P. sativum from the collection N.I. Vavilov’s All-Russia Research Institute
of Plant Industry, Saint-Petersburg, Russian Federation, of different geographical origin [139,
141]. In a few genotypes considerable increases in plant dry weight (about 300 %), seed
productivity (more than 650%), phosphorus and nitrogen content (more than 900 and more
than 300 %, respectively) were observed. The most promising highly symbiotically effective
genotypes and those with low symbiotic potential were included in the Pea Genetic Collection
(ARRIAM) to be used for experiments studying the functioning of tripartite/multipartite
symbiosis. Types identified as highly symbiotically effective genotypes were involved in
breeding programmes to create commercial pea cultivars with great potential for interactions
with beneficial soil microbes (in collaboration with All-Russia Institute of Leguminous and
Groat Crops (ARILGC), Orel, Russian Federation).

The most promising highly symbiotically effective pea genotypes previously selected and dif-
ferent commercial pea cultivars created without consideration of symbiotic effectiveness were
involved in three-year field trials (Orel district) [227]. Seed productivity and plant dry weight
were chosen as the main criteria for the evaluation of symbiosis effectiveness in legume crops.
The double (actually multiple, see above comments on the nature of AM fungi) inoculation was
shown to increase seed productivity and plant dry weight in most of the pea genotypes studied
and sometimes this could exceed the effect of mineral fertilizers. The effectiveness of legume
breeding to improve the symbiotic potential of legume cultivars was proven therefore under
field conditions and the genotypes to be used in such breeding programmes were identified.
The genotype K-8274 (non-commercial) was selected as a standard of symbiotic effectiveness.
Additionally, it was demonstrated that highly effective genotypes can be also found among
commercial pea cultivars created without consideration for effectiveness of interactions with
beneficial soil microbes. Taking into account that most commercial legume cultivars have acci-
dentally lost their abilities for symbiotrophic nutrition without selective pressure during
breeding of intensive crops, the latter constitutes a very important finding for plant breeders
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and gives them the possibility for concurrent generation of cultivars with required pea plant
architecture, other agriculturally important traits and high effectiveness of interactions with all
types of beneficial soil microbes in a single breeding programme.

4.4. Breeding to improve pea symbiotic effectiveness

In order to cultivate plants with improved symbiotic potential a special breeding nursery was
created in the experimental trials ground of ARILGC on land where for the 5 years before
nursery establishment mineral fertilizers had not been applied. To reduce the incidence and
severity of root pathogens a 6-field crop rotation was used where cultivation of winter wheat
was followed by peas. The multi-component preparation BisolbiMix was used for the inocu-
lation of test plants.

Using the breeding nursery as well as a breeding protocol developed from long-term collab-
oration of ARRIAM with ARILGC the first (in the whole history of legume breeding) pea
cultivar “Triumph” having increased potential of interactions with beneficial soil microbes
was intentionally created [237]. It arose as a result of crossing a commercial cultivar ‘Classic’
(donor of agriculturally important traits) and the genotype K-8274 (donor of symbiotic
effectiveness trait) and subsequent individual selection of genotypes with high productivity
and capacity for supporting various beneficial microbes.

The cultivar “Triumph” is of middle stem height, semi-leafless and has stable productivity un-
der different climate conditions, it is comparatively resistant to root rots and pests. Its produc-
tivity is not lower than those of the productivity standards for Orel district using the
conventional production technologies and 10% greater in comparison with the standard culti-
vars when inoculated with BisolbiMix. As a result of two-year state trials (2007-2008) the pro-
ductivity of “Triumph” was shown to be comparable with those of standard regional cultivars
enabling recommendation for commercial cultivation in the Central region of Russian Federa-
tion (unpublished results). Thus, the innovative concept of the authors’ research team for plant
breeding (applicable not only for legumes, but also for non-legumes) is bearing its first fruits.

5. Conclusions

Intimate associations of beneficial soil microbes with the host plants described above in detail
are applicable in sustainable crop production if taken either separately or in combination.
Many authors are now recognizing the need for using the multi-microbial plant inoculants
and the advantages of using the indigenous plants (or varieties of local breeding) and microbes.

The authors’ team proposes its own concept which offers fundamentally new approaches to
plant production. Firstly, it is necessary to consider plant genetic systems controlling interac-
tions with different beneficial soil microbes in unison. Secondly, plants used as a component
of this complex plant-microbe system controlling its effectiveness should be bred to improve
the effectiveness of interactions with all types of beneficial soil microbes. Increases of plant
biomass production due to plant-microbe symbiosis should be used as the main parameter for
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an evaluation of plant effectiveness in interactions with beneficial soil microbes. The plant
production should be done with inoculation composed of multi-component microbial inocula
consisting of AM fungi, rhizobia, PGPR and/or beneficial endophytic bacteria. Finally, taking
into consideration the importance of legumes for global agriculture, greater emphasis should
be placed on plant-microbial systems in the development of low-input agro-biotechnologies
enabling wider cultivation of leguminous crops.

Molecular markers are considered to be a convenient tool to facilitate breeding via MAS
(marker-assisted selection) approach. But, search for suitable markers that are associated with
symbiotic effectiveness trait is rather complicated problem. To our knowledge, there was no
direct link between sequences of symbiotic genes and symbiotic effectiveness, and there are
only a few examples of successful use of QTL analysis in legumes to trace loci associated with
some symbiotic traits in pea [238] and Lotus [239]. So there’s a gap between molecular genetic
bases of symbioses development, from one side, and effective functioning the symbiotic
systems in field conditions, from the other side. In our opinion, substantial improvement of
methods of molecular genetics and bioinformatics, such as next-generation sequencing and
proteome analysis, could help to build a bridge between fundamental and applied science in
this area, and to improve the sustainability of the legume crop production.
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