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1. Introduction

Two decades ago it was discovered that the adult mammalian brain contains neural stem
cells (NSCs) and neural precursor cells (NPCs) capable of producing new neurons and glial
cells [1-3]. This has led to a great deal of research to understand the biology of these cells
and to determine signalling pathways that can be targeted to promote repair of the dam‐
aged nervous system. There are two primary regions in the adult mammalian brain that
contain adult NSCs/NPCs. These are the subventricular zone (SVZ) lining the lateral walls of
the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus.
NPC fate is regulated by intrinsic (e.g. transcription factors and signalling mediators) and
extrinsic (e.g growth factors and extracellular matrix) factors which involve effects on prolif‐
eration, migration and differentiation of new neurons and glial cells.

This review will highlight the major signalling cascades involved in neuronal fate from birth
to integration. It will begin with a discussion of pathways involved under normal physio‐
logical conditions, which will be followed by discussion of changes to these signalling cas‐
cades following neural damage due to injury or disease. Finally, there will be a more
focused examination of the roles of suppressor of cytokine signalling (SOCS) molecules and
related pathways in the context of signalling in adult neurogenesis under basal conditions
and following neural damage.
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2. Adult neurogenesis

2.1. Hippocampal neurogenesis

NPCs in the SGZ become neurons of the granular cell layer of the dentate gyrus in the hip‐
pocampus. In the SGZ, the most immature NPCs (Type 1) are radial and horizontal NPCs
that transition to intermediate progenitors (type-2a, 2b and 3) and then to immature granule
neurons which become dentate granular neurons. These then make large mossy fibre projec‐
tions with CA3 pyramidal neurons [4].

2.2. SVZ neurogenesis

The SVZ produces NPCs that form neuroblasts which migrate along the rostral migratory
stream and become neurons in the olfactory bulb. These new neurons primarily become GA‐
BAergic granule neurons that provide lateral inhibition between mitral and tufted cells. A mi‐
nority  of  the  new  neurons  become  periglomerular  neurons  that  are  involved  in  lateral
inhibition between glomeruli, and a small number of these cells are dopaminergic. Similar to
the SGZ, there is a progression of NPC development in the SVZ. Slowly proliferating astro‐
cytes in the SVZ (Type B cells) are the NSCs and these generate the highly proliferative transit-
amplifying Type C cells.  These then generate post-mitotic neuroblasts (the Type A cells)
destined for the olfactory bulb via migration along the rostral migratory stream (RMS) [5-7].

3. Signalling cascades regulating NPC fate under basal conditions

NPCs from the dentate gyrus and SVZ have the potential to differentiate into neurons and
glial cells. Multiple signalling pathways are activated to produce a neuron from NSCs.
These cascades can involve both intrinsic and extrinsic factors as the NSC is created, mi‐
grates, and finally integrates into its final location.

3.1. Proliferation and neuronal fate

Many pathways important for embryonic neural development are conserved in adult neuro‐
genesis. The Wnt pathway, for example, is a key regulator of proliferation and differentiation
in development and a key regulator of adult hippocampal neurogenesis [8]. Wnt signalling re‐
sults in the activation of the GSK3β/β-catenin that leads to the increased expression of Neu‐
roD1 and promotes neuronal differentiation in NSCs [9]. Activation of Wnt, Sonic Hedgehog
(Shh), Notch, and the Sox family of genes, in particular Sox2, are also important for the forma‐
tion and proliferation of NSCs [10-12]. At early stages of differentiation, Sox2 is required for
neuronal fate; while downregulation of Sox9 by miR-124 is required for neuronal differentia‐
tion [13, 14]. Other Sox members are important for neuronal specification, including Sox3, Sox 4
and Sox 11 [15-19]. Notch signalling is important for maintaining NSCs/NPCs, however this is
dependent on the mitotic state of NSCs/NPCs [20]. Bone morphogenic protein (BMP) signal‐
ling inhibits neuronal differentiation; however expression of noggin and neurogenin-1 (Ngn1)
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in the SVZ and SGZ can obstruct this cascade [21-23]. Inhibition of the BMP pathway increases
neurogenesis initially, however it results in depletion of the NSC pool leading to decreased
neurogenesis [24]. In the dentate gyrus, the RNA-binding protein FXR2 regulates neurogene‐
sis by reducing the stability of noggin mRNA leading to an increased activation of the BMP
pathway [25]. Proliferation in the SVZ is under epigenetic control via histone HZAX phoso‐
phorylation which can limit proliferation and overall neurogenesis [26].

Proneural proteins, basic-helix-loop-helix (bHLH) transcription factors also control neuronal
fate commitment of NPCs. Type C cells of the SVZ fated to become GABAergic interneurons
in the olfactory bulb express Ascl1 [27]. Ngn2 and Tbr2 are expressed in dorsal SVZ progeni‐
tors that become glutamatergic juxtaglomerular neurons [28], while Sp8 is required for par‐
valbumin-expressing interneurons in the olfactory bulb [29]. In the SGZ, Neurog2 and Tbr2
are expressed in NPCs destined to become glutamatergic neurons in the hippocampus [27,
30, 31], while over-expression of Ascl1 produces oligodendrocytes [32].

Neurotrophic growth factors have been studied extensively in the SVZ. Many, including,
epidermal growth factor (EGF), transforming growth factor (TGF), and vascular endothelial
growth factor (VEGF) can augment SVZ progenitor proliferation and migration of newly de‐
rived cells into structures beside the lateral ventricles; however these cells primarily differ‐
entiate into oligodendrocytes [33-36]. Fibroblast growth factor-2 (FGF-2) signalling promotes
proliferation in both the SVZ and SGZ [37-39]. FGF-2 and TGF synthesis and secretion can
be augmented by ATP, which can increase proliferation, and provide a potential explanation
for the reduced neurogenesis in purinergic receptor knockout mice (P2Y1) [40, 41]. Other
factors also play a role in neurogenesis, including neuregulin-1, which has been implicated
in dentate gyrus neurogenesis in addition to having antidepressant effects [42] and Growth
Hormone (GH) which augments EGF and FGF2-induced proliferation [43]. Growth factor
signalling often leads to activation of Akt through phosphoinositide-3 kinase (PI-3K); one
negative regulator of this pathway is the phosphatase and tumour suppressor PTEN, which
has a role in regulating neurogenesis as demonstrated by increased proliferation and differ‐
entiation in mutant mice [44]. Furthermore, IGF-2 also regulates proliferation in the dentate
gyrus in an Akt-dependent manner [45].

The gp130-associated cytokines, ciliary neurotrophic factor (CNTF) and leukemia inhibitory
factor (LIF), activate Janus kinase (JAK/signal transducer of transcription 3 (STAT3)), mito‐
gen activated protein (MAP) kinase and PI-3K/Akt pathways following ligand binding.
These cytokines have been shown to regulate NSC proliferation and differentiation [46-49].
Specifically in the dentate gyrus, the activation of STAT3 from CNTF appears to be essential
for the formation and maintenance of the NSCs [50]. The role of the JAK/STAT pathway will
be discussed in more detail later. The MAPK pathway is important for neurogenesis as dem‐
onstrated by conditional knockdown of extracellular signal-related kinase 5 (ERK5) which
limits neuronal differentiation and neurogenesis resulting in impaired contextual fear ex‐
tinction and remote fear memory [51, 52].

Other molecules shown to have a role in controlling neuronal differentiation include Prese‐
nilin-1 (PS1), which is the catalytic core of the aspartyl protease gamma-secretase. Reduction
of PS1 enhances differentiation, primarily through its transducers the EGF receptor and β-
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catenin [53]. Interferon-γ, which signals via STAT1, and interferon-β which does not, both
inhibit cultured adult NPC proliferation, but only interferon-γ promotes neuronal differen‐
tiation [54, 55].

3.2. Migration and integration

Migration from the SVZ along the RMS involves long distances and multiple pathways [56]
For example, it is dependent on Shh signalling, as evident by a decrease of neuroblasts in
the olfactory bulb following Hedgehog signalling interruption [11]. Shh is a chemoattractant
cue extrinsic to the neuroblast that guides migration to the olfactory bulb. Neurotrophic
growth factor signalling is also important for migration, in particular insulin-like growth
factor (IGF-1) null mice show an abundance of neuroblasts in the SVZ that have failed to mi‐
grate to the olfactory bulb [57]. Guidance cues from EphB2/ephrin-B2 pathways also enable
formation of the chain migration from the SVZ to the olfactory bulb [58]. Recently, endocan‐
nabinoid signalling has been shown to regulate migration and neurogenesis in both the SVZ
and dentate gyrus [59, 60]. Other molecules involved in this migration include polysialated
neural cell adhesion molecule (PSA-NCAM) [61-63], Slit-Robo [64] and integrins [65, 66].
Many of these factors signal via the Rho kinase pathway, which is a downstream regulator
of NPC migration [67]. In addition adult NPCs express a range of chemokine receptors and
chemokines are expressed in different brain regions, with the highest levels in the olfactory
bulb, suggesting an as yet largely unexplored role for chemokines in regulating basal adult
NPC migration [68].

The migration distance for new neurons from the SGZ is relatively short as they travel into
the granular layer above the SGZ, where guidance molecules may control this movement.
NMDA receptor signalling is required for the proper migration of newborn granular cells in
the dentate gyrus [69]. This is achieved through the activation of Disrupted-in-schizophre‐
nia (DISC1), as neurons without DISC1 migrate further into granular layer and into the mo‐
lecular layer [69, 70]. DISC1 also controls the dendritic maturation of newborn granule cells
through GABA depolarization of NKCC1 and activation of the Akt-mTOR pathway [70, 71].

New neurons must integrate into existing circuitry or they will not survive. The vast majority
of new neurons do not survive past 4 weeks. Interestingly, NMDA receptors expressed in neu‐
roblasts along the RMS are crucial to the integration of these neurons in existing olfactory bulb
circuitry [72]. Glutamate is released from astrocyte-like cells that surround the neuroblasts.
NMDA receptor activation in newly-born dentate gyrus granule cells also increases survival.
Initial GABA depolarization plays a role in the maturation of neurons in the dentate gyrus and
olfactory bulb [73, 74]. This depolarization and subsequent Ca2+ influx are required for den‐
drite initiation and elongation [75]. This process involves coordinated expression of the GABA
receptor subunit alpha2 that controls the maturation of the new neurons [76]. In addition, ag‐
rin signalling is necessary for integration and survival of newborn neurons in the olfactory
bulb, as demonstrated by a loss of agrin leading to improper synapse formation while an over‐
expression of agrin results in an increase in dendritic spines [77].

Neurotrophin signalling has important role in the survival and integration of new neurons.
Brain-derived growth factor (BDNF) binding to the TrkB receptor tyrosine kinases increases
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the number and survival of NSCs in the SVZ and olfactory bulb [78-80]. Similarly, knock‐
down of TrkB receptors and disruption of BDNF signalling in dentate gyrus progenitors
leads to shorter dendrites and reduced spine formation, culminating in a lack of survival
[81]. Fibroblast growth factor (FGF-2) has a role in neurogenesis and memory consolidation
in this context [39].

Intrinsic factors are also necessary for the maturation and survival of newly born neurons.
In the dentate gyrus, Prox1 [18], NeuroD [82, 83] and Kruppel-like factor 9 [84] play impor‐
tant roles in survival. In the SVZ, Pax6 and Dlx-2 influence neuronal fate, leading to the pro‐
duction of dopaminergic periglomerular cells in the olfactory bulb [85-87]. New neurons in
the dentate gyrus rely on cyclic response element binding protein (CREB) signalling for ma‐
turation and integration into the network. Interestingly, CREB activates miR-132 which reg‐
ulates dendrite maturation in newborn dentate gyrus granular neurons [88]. The collapsin
response mediator protein-5 (CRMP5) is expressed in both the SVZ and dentate gyrus and
CRMP5-/- mice show an increase in proliferation and neurogenesis in addition to displaying
an increase in apoptosis of granular cells in both the olfactory bulb and dentate gyrus [89].

4. Signalling cascades regulating NPC fate following neural damage

Neurogenesis and gliogenesis are known to be initiated following brain damage, such as is‐
chemia, seizures, traumatic injury and neurodegenerative diseases [90-92]. However, these
new neurons and glia usually do not effectively replenish those that were lost. Many of the
normal signalling cascades are altered following injury. Below is a discussion of the major
changes in these cascades that influence neuronal fate of the NSCs generated in the SVZ and
SGZ following injury or disease.

4.1. Brain injury

A traumatic lesion to the brain cortex results in an increase in proliferation of NSCs in the
SVZ, although varied locations and degrees of injury have resulted in an incongruity of re‐
sults across the literature [93-98]. Nonetheless, it is generally agreed that the increase in pro‐
liferation results in an increase in neurogenesis at the SVZ [99]. Expression of growth factors
such as BDNF, FGF2, GDNF, IGF-1 and VEGF are increased following ischemia and exoge‐
nous application further augments NSC proliferation and survival [100-105]. Shh expression
is also upregulated in the SVZ following ischemia, potentially playing a role in the increase
of proliferation, while Wnt expression does not change [106, 107]. Phosphorylated CREB is
upregulated following ischemia and induces hippocampal neurogenesis [108].

Following proliferation these cells must migrate and integrate to damaged cortical tissue.
The majority of research on ectopic migration from the SVZ has been performed following
an ischemic insult and has demonstrated that cells do reach the injured striatum [90,
109-114]. It appears that the cells no longer migrate in a chain formation and carry on indi‐
vidually, interestingly, at the expense of the RMS population [109, 115]. This change in mi‐
gration is the direct result of chemoattractive cues expressed from the injury site.
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Chemokines and their receptors can attract neuroblasts from the RMS, for example it has
been shown that Stromal cell-derived factor-1 (CXCL12) and its receptor CXCR4 are upregu‐
lated at the injury site [116, 117]. Expression of several chemokines and their receptors is up‐
regulated on adult NPCs by inflammatory cytokines, such as interferon-γ and TNF-α [68].

Migration is also altered following an epileptic seizure: the NSCs migrate along the RMS
more quickly, while in the dentate gyrus there is faster integration and maturation [118,
119]. There are morphological changes to the hippocampal region including mossy fibre
sprouting, dispersion of the granular cell layer, and ectopically migrated dentate granule
cells in the hilus (reviewed in [120]).

When cells do migrate to the correct location they must differentiate into neurons to recover
function of neurons lost. Unfortunately, this does not appear to be consistent. Recent work on
ischemia has demonstrated that new neurons from the SVZ are found in the cortex near the le‐
sioned area, while injury of the somatosensory cortex showed the generation of astrocytes and
microglia/macrophages without any new neurons [98, 121]. Other work has found the produc‐
tion of astrocytes and oligodendrocytes near the injury site as a result of expression of repress‐
ors of neuronal fate [122, 123]. For example, the BMP antagonist, chordin, and the transcription
factor Olig2 both induce glial expression in neuroblasts at the injury site [124, 125]. However,
following ischemia, pro-neuronal transcription factors are expressed in primate progenitors in
the SGZ, including Emx2, Pax6 and Ngn2 [126]. Recently it has been shown that following thir‐
ty and sixty days after stroke, Ascl1/Mash1 expressing cells in the ischemic striatum gave rise to
GABAergic neurons and mature oligodendrocytes [127]. Even when a NSC differentiates into
a neuron, the survival of these neurons is very low. Recent work has demonstrated that the
Ras-related GTPase, Rit, is an important component in the survival of young granular cells in
the dentate gyrus following a brain injury. Rit-/- mice show a marked increase in new neuron
death following injury [128]. Recently, the small non-coding RNA molecule, miR-124a, was
shown to be altered following stroke. Interestingly, it can mediate stroke induced neurogene‐
sis via the Notch signalling pathway [129]. Inhibition of the Notch pathway increases neuro‐
genesis after spinal cord injury in zebrafish resulting in higher proliferation and more motor
neurons [130]. Lentiviral expression of Wnt3 increased neurogenesis following focal ischemia
and improved functional recovery [131].

4.2. Neurodegenerative diseases

Reports on neurogenesis in neurodegenerative diseases are highly dependent on the disease
model used. Variations in transgenic mice and other drug induced models are the most
probable cause for the conflicting results. In many models of Alzheimer’s disease, Parkin‐
son’s disease and Huntington’s disease there is impaired neurogenesis (reviewed in [132]).
Alzheimer’s disease (AD) is characterized by degeneration of basal forebrain cholinergic
neurons in the cortex and hippocampus from the deposition of neurofibrillary tangles and
amyloid-β plaques [133]. The neuropathologic hallmark of AD is the amyloid-β plaques;
however small oligomeric amyloid-β appears to be the noxious component. Neurogenesis
can be both increased and decreased in AD, depending on the transgenic model used (re‐
viewed in [132]). Early in the disease, oligomeric amyloid-β may transiently promote the
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generation of immature neurons from NPCs. However, reduced concentrations of multiple
neurotrophic factors and higher levels of FGF2 seem to induce a developmental arrest of
newly generated neurons. Further, there is a down-regulation of Olig2 and over-expression
of Ascl1 caused by amyloid-β that switches the cell fate to death [134, 135]. Generally, there
is a decrease in proliferation and survival of NSCs in the dentate gyrus and SVZ with AD. A
better understanding on the effects of amyloid-β on NSC proliferation and maturation is
needed to improve this decrease in neurogenesis.

Parkinson’s disease (PD) is the outcome of the loss of dopaminergic neurons in the substan‐
tia nigra of the midbrain (reviewed in [136]). In transgenic mouse models, there is a decrease
in newly generated neurons in both the dentate gyrus and olfactory bulb [137, 138]. Altera‐
tions in neurogenesis have been linked to a decrease in Notch1 and Hes5 expression [138].
Lack of proliferation could be the explanation for a lack of migration of NSCs to the dam‐
aged regions in PD and AD [139]. Along these lines, manipulations that increase prolifera‐
tion also demonstrate migration, for example intraventricular injection of clustering ephrin-
A1-Fc increased proliferation in the SVZ, followed by migration to the striatum and
differentiation into dopaminergic neurons in a rodent model of Parkinson’s disease [140].
Furthermore, exogenous application of EGF and FGF2 showed similar results [141]. Exciting
research in salamanders has shown regeneration of dopamine neurons following ablation
involving neurogenesis in quiescent cells. This activation is due to the loss of dopamine,
demonstrating a control of dopamine signalling maintaining homeostasis [142]. Replace‐
ment of dopaminergic neurons relies on NSC differentiation into the proper neuronal fate.
Recent studies have elucidated the transcription factors necessary to produce dopaminergic
neurons. The combination of Ascl1/Mash1, Nurr1 and Lmx1a result in the generation of func‐
tional dopaminergic neurons from mouse and human fibroblasts [143]. Other studies have
shown that Foxa2 in combination with Nurr1 can also induce the production of nigral (A9)-
type midbrain neurons from NPCs [144].

Other neurodegenerative diseases such as Huntington’s disease have shown a decrease in
neurogenesis. NPC proliferation is decreased in Huntington's disease in both the SGZ and
SVZ, with some reports of reduced numbers of newly born neurons (reviewed in [132]). In a
rat model of Huntington's disease, SGZ progenitor cell proliferation is decreased due to an
increase in Sox2-positive quiescent stem cells and a decrease in CREB signalling [145].

Overall, further investigation is needed to clarify the changes in signalling pathways follow‐
ing neurodegenerative disease. One pathway that has been extensively studied both in basal
neurogenesis and after injury is the suppressor of cytokine signalling (SOCS) family of pro‐
teins. The following section will discuss research involving the SOCS proteins and related
pathways.

5. SOCS molecules and cytokine signalling pathways

As discussed in the previous section, a diversity of signalling cascades are involved in regu‐
lating neuronal cell proliferation, differentiation and survival. However, JAK-STAT signal‐
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ling seems to be one of the central pathways in the regulation of adult neurogenesis. Since
its discovery twenty years ago, this pathway has been studied extensively due to its key
roles in modulating many different physiological processes through responses to various
regulatory molecules [146].

5.1. JAK/STAT signalling

The JAK-STAT pathway can be activated by a range of cytokines, growth factors and hor‐
mones. In the regulation of adult neurogenesis, activation of this pathway is carried out by a
group of neuroregulatory cytokines. Members of this cytokine group include CNTF, LIF and
cardiotrophin 1 (CT-1), all of which belong to the interleukin 6 family of cytokines. These cyto‐
kines initiate JAK-STAT activation by binding and signalling through the LIF receptor-β
(LIFRβ)/ glycoprotein 130 (gp130) receptor complex. The receptor complex bound by CNTF
differs slightly in that it has a third extracellular receptor component, the CNTF receptor-α
(structurally related to gp130), that is held to the membrane via a glycosylphosphoinositol
[147].

Cytokine binding results in the dimerization of LIFRβ and gp130 receptors to form a com‐
plex [148]. This initiates autophosphorylation and activation of JAK proteins which are asso‐
ciated with the intracellular domains of the LIFRβ and gp130 receptors [149]. Members of
the JAK protein family include JAK1, JAK2, JAK3 and TYK2. Cytokines signalling through
the LIFRβ/gp130 pathway have been found to activate at least JAK1, JAK2 and TYK2 [150].
In terms of the CNS, only JAK1 and JAK2 expression has been found at significant levels
[151]. JAK2 is highly expressed in the developing brain compared to JAK1, thus, a role for it
in the regulation of neurogenesis in the developing brain has been suggested [151].

After activation, JAKs phosphorylate tyrosine residues in the intracellular domains of LIFRβ
and gp130. These phosphorylated residues become binding sites for SH2 domain containing
proteins such as STAT. STAT proteins are a family of transcription factors comprised of
STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6 [152]. Upon binding to the ac‐
tivated receptor complex, STAT proteins are phosphorylated by JAKs resulting in their di‐
merization. Dimerized STAT proteins are now able to translocate into the nucleus and
induce gene expression of target neural genes such as glial fibrillary acidic protein (GFAP),
peripherin and vasoactive intestinal peptide [46]. Other SH2 domain containing proteins can
also bind the activated LIFRβ/gp130 receptor complex to activate the Ras/MAPK and
PI-3K/Akt signalling pathways [49].

The LIFRβ/gp130 pathway is essential for the regulation of astrogliogenesis in the develop‐
ing and adult brain. In cultured cortical precursors, CNTF, LIF and CT-1 all promote astro‐
cyte formation through LIFRβ/gp130 activation [153-155]. Integral to this pathway is
signalling via STAT3, as highlighted by the observation that STAT3 activation in neural
stem cells induces glial differentiation, while its inhibition promotes a neuronal fate [156,
157]. Also, in neuroepithelial cells, STAT3 activation promotes astrogliogenisis via LIF in‐
duced bone morphogenetic protein 2 expression [158]. In addition to regulating astroglio‐
genesis, STAT3 induction by CNTF was found to be essential in the maintenance of the SGZ
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neurogenic niche [50]. Further, it has an important role in the positive regulation of reactive
astrocytes in the injured CNS [159].

An important aspect to cytokine signalling via a pathway such as JAK-STAT is the need for
its downregulation following activation. Thus far, JAK-STAT signalling is known to be neg‐
atively regulated by protein inhibitors of activated STATs (PIAS), the SH2-containing pro‐
tein tyrosine phosphatases (SHPs) and suppressors of cytokine signalling (SOCS) proteins
[160]. In this section, SOCS proteins will be the focus of discussion as the negative regulation
of the JAK-STAT signalling pathway by SOCS has several effects on the regulation of neuro‐
genesis and NPC fate.

5.2. The suppressors of cytokine signalling

The SOCS family consists of eight members, namely, SOCS1-7 and cytokine-inducible Src
homology 2 (SH2) protein (CIS). They are characterised by a central SH2 domain, a C-termi‐
nal SOCS box and a variable N-terminal domain. In addition to these, SOCS1 and SOCS3
also contain a small kinase inhibitory domain. CIS was the first member of this protein fami‐
ly to be cloned. It is also unique to the rest of the SOCS family as a result of its SH2 domain
which differs in a few amino acids from most all other known SH2 domains [161].

SOCS expression is induced following activation of the JAK-STAT pathway. This initiates a
classic negative feedback loop whereby the SOCS proteins activated by JAK-STAT signal‐
ling now go on to inhibit it. SOCS proteins achieve downregulation of signalling by binding
to tyrosine phosphorylated proteins via their SH2 domain. The exact mechanism by which
signalling inhibition is achieved varies depending on the SOCS protein in question. For ex‐
ample, SOCS1 and SOCS3 both work to block the kinase activity of activated JAK proteins.
In the case of SOCS1, this is achieved by directly binding and blocking access to the activat‐
ed JAK. In the case of SOCS3, this is achieved by its binding to the activated gp130 receptor
such that STAT proteins can no longer dock onto the phosphorylated tyrosine residues and
be activated by JAK. One mechanism of action for SOCS2 is by blocking STAT access to the
activated receptor [162].

SOCS proteins are also able to regulate activity of target proteins, including other SOCS pro‐
teins, through interaction with their SOCS box [163, 164]. Interestingly, SOCS2, SOCS6 and
SOCS7 have the potential to interact with all members of the SOCS protein family including
themselves [164]. In terms of SOCS2, when expressed at high levels, it is able to inhibit the
action of SOCS1 and SOCS3 by targeting them for proteasomal degradation [164]. This has
also been proposed as a mechanism for the dual action of SOCS2 on GH signalling as ob‐
served in the overgrowth phenotypes of SOCS2 knockout and overexpressing mice descri‐
bed below [165].

Signalling via the JAK-STAT pathway has an important role in neural precursor prolifera‐
tion and differentiation [153, 166-168]. Following the discovery that SOCS proteins regulate
the JAK-STAT pathway, the next obvious step was to examine them for possible roles in the
nervous system. In doing so, analysis of the SOCS family gene expression in the developing
mouse forebrain brought SOCS2 into the spotlight [168]. The genes SOCS1 – SOCS3 and CIS
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were found to be expressed at all ages (E10 to P25) with a common peak in expression be‐
tween E14 and P8. However, the level of SOCS2 expression was much higher in comparison.
The spatial pattern of SOCS2 expression also distinguished it from the other SOCS genes,
with moderate to high levels of expression in neurogenic regions and in newborn neurons.
In the adult, SOCS2 was maintained in the CA3 region of the hippocampus and at a moder‐
ate level in the dentate gyrus, compared to other SOCS genes whose expression was not lo‐
calized, if expressed at all under basal conditions. SOCS2 expression was also present in the
cerebral cortex and other regions such as the olfactory bulb, forebrain and cerebellum. Inter‐
estingly, SOCS2 was first upregulated at the time of neuronal differentiation, which is be‐
tween the developmental stages E10 and E12, suggesting a role for SOCS2 in neural
precursor differentiation [168].

6. SOCS2 in the brain

This interesting spatiotemporal expression of SOCS2 instigated further research into its pos‐
sible role in neuronal development. The generation of the SOCS2 knockout (SOCS2-/-) and
SOCS2 overexpressing transgenic (SOCS2Tg) mice has been instrumental in the functional
characterisation of SOCS2 [169, 170]. SOCS2-/- mice display an overgrowth phenotype where
adult mice are up to 40% heavier than their wild-type counterparts, mainly attributed to an
increase in organ size and bone length [170]. This phenotype suggested an involvement of
SOCS2 in the negative regulation of GH, a regulator of postnatal growth. To address this hy‐
pothesis, SOCS2Tg mice were generated [169]. Interestingly, SOCS2Tg mice also display an
enhanced growth phenotype, indicating a potential dual action of SOCS2 where at high lev‐
els it may enhance rather than inhibit growth hormone signalling [169].

In-vitro, neural stem cells from SOCS2-/- mice show a marked reduction in the number of neu‐
rons generated [171], as opposed to SOCS2Tg mice which show an increase in neuron number
[172-174].  Additionally,  PC12 cells  and neural cells  from SOCS2Tg mice demonstrate in‐
creased neurite outgrowth in tissue culture [171, 174-176]. GH is an inhibitor of neural differen‐
tiation  and  its  negative  regulation  by  SOCS2  is  evident  by  the  reduction  in  neuronal
differentiation in neural stem cell cultures of SOCS2-/- mice [171, 174]. The importance of GH/
SOCS2 signalling in neuronal differentiation can be illustrated by their involvement in the reg‐
ulation of the Ngn1 basic helix-loop-helix transcription factor [171]. Ngn1 has an important
role in promotion of neurogenesis by at the same time inhibiting glial differentiation [177]. Im‐
portantly, Ngn1 is subject to inhibition by GH and this inhibition is overcome by SOCS2 over‐
expression [171]. Thus, a model has been proposed where GH and SOCS2 regulate neural stem
cell differentiation through the modulation of Ngn1 expression [178].

GH binds and signals through the GH receptor (GHR) which belongs to the class I super‐
family of cytokine receptors. Like the LIFRβ/gp130 complex, signal transduction is carried
out through the JAK-STAT pathway. GH binding activates GHR resulting in JAK activation.
JAK2 is the major contributor to GH signalling and it phosphorylates tyrosine residues on
the GHR that become binding sites primarily for STAT5a or STAT5b. Activated STAT5 then
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induces SOCS gene expression [179]. JAK2 may also activate STAT1 and STAT3, however
this can be cell type specific [180, 181]. One mechanism by which SOCS2 may block STAT5
activation is via its binding to phosphorylated tyrosine residues at the STAT5 binding site
on the GHR [182].

SOCS2 can also regulate signalling via the EGF receptor (EGFR) [175, 176]. The main physio‐
logical target for EGFR is EGF. EGFR primarily activates and signals through the Ras/MAPK
pathway [183]. In terms of the neuronal effects of EGF, it has been shown to enhance neurite
outgrowth and survival of different populations of cultured neurons [175, 183]. Relevant to
this review, it also has an important role in neurogenesis. As described above, in the adult
SVZ and dentate gyrus, EGF regulates neural precursor cell proliferation [37]. The impor‐
tance of this role is evident when, in response to brain injury, there is an expansion of neural
stem cell numbers in the SVZ as a result of an increased responsiveness to EGF due to EGFR
upregulation [184]. Important for SOCS2 interaction, EGF also activates STAT5, a process in‐
volving the Src tyrosine kinase [185-187]. Overexpression of SOCS2 in PC12 cells inhibited
this EGF induced STAT5 phosphorylation [176]. The EGFR was also constitutively phos‐
phorylated at the Src binding site, Tyr845, in SOCS2 overexpressing PC12 cells. It was there‐
fore proposed that SOCS2 competitively bound to Tyr845 and blocked its dephosphorylation
by the phosphatase SHP2 to allow prolonged Src activation and enhancement of neurite out‐
growth [176].

However, while SOCS2 regulated SVZ-derived neurogenesis in a GH dependent manner
during development, in the adult SVZ it appears to regulate neurogenesis via regulation of
erythropoietin signalling [188]. Further, the mechanism by which SOCS2 regulates adult
hippocampal neurogenesis is different and does not appear to involve GH or erythropoietin,
although Epo transiently enhanced SGZ NPC proliferation [189, 190]. Hippocampal neuro‐
genesis was studied under control and voluntary exercise conditions (to enhance basal hip‐
pocampal neurogenesis) in wildtype, SOCS2Tg and GHR-/- mice. Mice of all 3 genotypes had
similar basal levels of neurogenesis and equivalently increased neurogenesis in response to
exercise at early timepoints (8 days) aimed at measuring extent of NPC proliferation. How‐
ever, at later timepoints (35 days) aimed at examining newborn neuron survival, there was a
50% increase in the survival of adult hippocampal neurons in SOCS2Tg mice, under basal
conditions and following voluntary exercise. Additionally, SOCS2Tg mice performed better
than wildtype animals in the Morris Water Maze which probes hippocampal-dependent
cognition [190]. This was an exciting result, as it identified SOCS2 as a potential therapeutic
target that could enhance the survival of newly born neurons following brain injury. How‐
ever, given that GHR-/- mice showed no differences in adult hippocampal neurogenesis
compared to wildtype, the mechanism by which SOCS2 promotes survival in this case re‐
mains to be determined. One possible explanation for this increase in neuronal survival in
SOCS2Tg mice may be that the enhanced neurite outgrowth observed in SOCS2Tg neurons
may aid functional integration into existing circuitry and the consequent maturation and
survival of neurons.
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7. Roles of other SOCS proteins in the CNS

Other SOCS proteins also have roles in the modulation of signalling in the adult CNS. Other
than SOCS2, SOCS3 is the best functionally characterised SOCS protein thus far. SOCS3
plays a role in the regulation of neural stem cell fate. Its overexpression in neural stem cells
has been shown to inhibit astrogliogenesis and promote neurogenesis through the inhibition
of STAT3 transcriptional activity [156]. More recently, SOCS6 involvement in neuronal dif‐
ferentiation was also established. Exogenous IGF1 was found to enhance neurite outgrowth
and dendritic branching of neural stem cells through the induction of SOCS6 expression.
The same phenotype was produced independently of IGF-1 by SOCS6 overexpression alone.
Similar to SOCS2, SOCS6 is activated through the JAK2/STAT5 pathway, however, in this
case it is activated through signalling via the IGF receptor. Activated STAT5 induces SOCS6
expression, which goes on to inhibit STAT5 mediated signalling following the classic nega‐
tive feedback loop [191]. SOCS7 also plays a major role in the brain with SOCS7 null mice
exhibiting severe hydrocephalus in early adulthood [192]. While the mechanism by which
this occurs has not been elucidated, given the close relationship of ependymal cells and the
ventricular space to NPCs in the SVZ, it is tempting to speculate that SOCS7 may also regu‐
late adult NPC biology.

8. SOCS proteins and CNS injury

SOCS2, SOCS3 and SOCS6 all seem to have potential for use as therapeutic targets involving
regulation of NPCs following CNS injury. As described earlier, SOCS2 overexpression in‐
creases the survival of newly born neurons in the adult brain under basal, physiological con‐
ditions. It would therefore be very interesting to look at the effects of SOCS2 overexpression
under injury conditions in order to determine whether this phenotype would aid in func‐
tional recovery. Similarly, neurogenesis in an SOCS6 overexpressing system under basal
and injury conditions should be examined. SOCS3 does not appear to affect neurogenesis
per se but instead negatively regulates the proliferative and self-renewal effects of LIF on
neural precursor cells [193].

SOCS3 has been studied the most extensively under various neural injury conditions, usual‐
ly in concert with effects on neuroinflammation and astrocytes [194-196]. SOCS3 expression
is induced or upregulated in various brain regions including hippocampus and lateral ven‐
tricles in response to CNTF administration [197], ischemic stroke [198, 199] and seizure,
which also showed transient downregulation of hippocampal SOCS2 expression but no up‐
regulation of SOCS1 [200]. Conversely, after transient forebrain ischemia, SOCS2 expression
was upregulated in the hippocampus, not only in astrocytes but also a subset of nestin posi‐
tive NPCs [201].

Expression of SOCS molecules following CNS damage has functional consequences. It was
proposed that a major contributor to the poor axonal regeneration after injury was a com‐
promised responsiveness to injury-induced growth factors and cytokines [202]. For example,
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it was suggested that the transient neuroprotective effect of CNTF on injured neurons was
due to CNTF induced negative regulation of cytokine signalling by upregulation of SOCS
proteins. Use of a cyclic AMP analogue as an inhibitor of SOCS expression enhanced CNTF
induced signalling [203], identifying a new route through which the outcome of neurotrau‐
ma treatments may be improved. Whether such an approach will also regulate and potenti‐
ate effects of cytokines on NPCs remains to be determined. Further, SOCS3 deletion resulted
in an enhancement of axonal regeneration in retinal ganglion cells post optic nerve injury in
a mouse model, by lifting its inhibitory effects on JAK-STAT signalling [202]. Similarly,
PTEN deletion enhanced axon regrowth post injury [204]. PTEN is a negative regulator of
signalling via the mammalian target of rapamycin (mTOR) which can be activated through a
number of means, one of which being the PI-3K/Akt pathway [205]. Interestingly, much
more robust axonal regrowth is achieved upon a simultaneous deletion of PTEN and SOCS3
through a synergistic activation of mTOR and STAT3 signalling pathways [206]. SOCS3 also
inhibits the beneficial effects of LIF-mediated oligodendrocyte survival following demyeli‐
nation, with enhanced STAT3 activation and survival of oligodendrocytes from SOCS3 null
mice [207].

Thus, it is apparent that there are many aspects to signalling in the processes of adult neuro‐
genesis. The JAK-STAT signalling pathway is one important player, although it is apparent
that SOCS proteins can regulate pathways other than JAK/STAT in a cell type dependent
manner. The regulation of JAK-STAT signalling by SOCS proteins has enhanced our under‐
standing of the mechanisms of adult neuro- and astrogliogenesis under basal and injury
conditions and has opened avenues into the search for potential therapeutic targets for CNS
repair.
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