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1. Introduction

Fractional Brownian motion (fBm) was first introduced within a Hilbert space framework by
Kolmogorov [1], and further studied and coined the name ‘fractional Brownian motion’ in
the 1968 paper by Mandelbrot and Van Ness [2]. It has been widely used in various scientific
fields, most notability in hydrology as first suggested in [3]. It also plays an important role
in communication technology by enriching the queuing theory in terms of simulating real
network traffic.

In recent years, it has been steadily gaining attention in the area of finance, as it appears that
the traditional stochastic volatility model driven by ordinary Brownian motion implies geo‐
metric time-decay of the volatility smile, which is much faster than in what we see in real
market data (which has a hyperbolic decay). Such stylized feature is called the volatility per‐
sistence, see [4] for detail discussion about the statistical test for the existence of long-range
memory (author has also proposed a robust extension of the R / S  statistics for that particu‐
lar purpose). Several modeling approaches have been suggested capturing this persistence
in conditional variance either via a unit-root or long memory process. In order to keep the
pricing-framework largely intact, it is more interesting to study the long memory process,
and fBm has a particular good match due to its similarity to the ordinary Brownian motion
and its Gaussian properties.

In this chapter, we will outline several approaches to simulate fractional Brownian motion
with H >1 / 2 , including the exact methods and approximate methods, where the Hurst In‐
dex H  is a parameter used in literature to generalize Brownian motion into fractional Brow‐
nian motion, first made popular by Benoit Mandelbrot, which we will give a detail
definition in Definition 1.1. We also provide a brief introduction of the truncated fractional
Brownian motion (long-memory model in continuous time) as proposed in [5,6].
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1.1. Financial motivation and backgrounds

Numerous empirical studies have pointed out that, in options markets, the implied volatility
back-out from the Black-Scholes equation displays volatility skews or smiles; the smile ef‐
fect, which is well known to practitioners, refers to the U-shape price distortion on the im‐
plied volatility surface.

In Hull and White [7] and Scott [8], they have proposed this feature of volatility to be cap‐
tured by stochastic regime, known as the stochastic volatility model:
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Here, S(t) is the asset price and σ(t) is the instantaneous volatility at time t, and {B 1(t), B 2(t)}
are ordinary standard Brownian motions. Hull and White [7] have shown that, the price of
European option at time t  of exercise date T is the conditional expectation of the Black
Scholes option pricing formula where the constant volatility from the original formula is re‐
placed by the quadratic average over the period t, T  :

σt,T
2 = 1

T - t ∫t
T σ 2(u)d (u) (2)

Such models are successful at capturing the symmetric smile and skewness of the implied
volatility by imposing relations between the driving Brownian motions in (1) (symmetric
smile is explained by independence while skewness can be explained by linear correlation).

Due to the temporal aggregation effect evident in (2), however, the smile effect deteriorates
along with time-to-maturity since the temporal aggregation gradually erases the conditional
heteroskedasticity; in the standard stochastic volatility setup, this particular decay is much
faster than what is observed in market data. The phenomenon of slow decaying volatility
smile is known as the volatility persistence (long-range dependence of volatility process). This
phenomenon is particularly poignant for high frequency data, for which the conditional var‐
iance process displays near unit-root behavior.

Furthermore, we emphasize the existence of such phenomenon collaborated by large quanti‐
ties of researches, pointing out that the conditional volatility of asset returns also displays
long range dependence: [9-12] have discussed extensively the evidence of such phenomenon
in empirical data. Bayesian estimation in [13] of stochastic volatility models shows similar
patterns of persistence.

Motivated by this inadequacy, long-memory process was deemed more appropriate enrich‐
ment for this purpose. Hence, fractional Brownian motion is a prime candidate among all
long-memory process given its tractability and similarity with the ordinary Brownian mo‐
tion: both the fractional Brownian motion and ordinary Brownian motion are self-similar
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with similar Gaussian structure. For discussions of estimation and evidence of the long-
range dependence in conditional variance of asset returns, the reader is referred to [10] and
section 3.1 of [14].

Now, we provide a formal definition of fractional Brownian motion (fBm). We adopt the
definition as given in [15].

Definition 1.1 Let H ∈ (0,1) be a constant. A fractional Brownian motion {BH (t)}t≥0 with
Hurst index H  is a continuous and centered Gaussian process with covariance function

� B H (t)B H (s) = 1
2 (t 2H + s 2H − | t − s | 2H ) (3)

In particular, for H = 1
2  , it reduces to the ordinary Brownian motion with� B H (t)B H (s) =min(t , s) .

From equation (3) we have the following properties:

1. B H (0)=0 and E B H (t) =0 ,  ∀ t ≥0 .

2. B H (⋅ ) has stationary increment: B H (t + s) - B H (s) has the same distribution as B H (t)
for any s, t ≥0 .

3. B H (⋅ ) is self-similar, meaning that B H (Tt) has the same distribution law as
(T )H B H (t) .

4. B H (⋅ ) is a Gaussian process with the variance E B H (t)2 = t 2H ,  ∀ t ≥0 .

5. B H (⋅ ) has continuous trajectories.

Fractional Brownian motions are divided into three very different categories:

H < 1
2 ,  H = 1

2 ,  H > 1
2  . This is of particular importance because there is a deterministic differ‐

ence between the case of H < 1
2  and H > 1

2  , as we introduce the mathematical notion of long-
range dependence.

Definition 1.2 (Long-range dependence) A stationary sequence {Xn}n∈N
 exhibits long-range

dependence if the autocovariance function γ(n)≔ cov(X k , X k +n) satisfies

lim
n→∞

γ(n)
cn -α =1 (4)

This can be written as (n)~|n|-α ,

In this case, for some constants c and α∈ (0,1) , the dependence between X k  and X k +n de‐
cays slowly as n →∞ and

∑n=1
∞ γ(n)=∞
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If we set X k = B H (k ) - B H (k - 1) and X k +n = B H (k + n) - B H (k + n - 1) and apply equation (3),
we have

γH (n)= 1
2 (n + 1)2H + (n - 1)2H - 2n 2H

where γH (n)=  cov(B H (k ) - B H (k - 1), B H (k + n) - B H (k + n - 1)) . In particular,

lim
n→∞

γH (n)

H (2H - 1)n 2H -2 =1

Therefore, we conclude that: for H >1 / 2 , ∑n=1
∞ γH (n)=∞ , and for H <1 / 2 , ∑n=1

∞ |γH (n)|<∞ .
Hence, only in the case of H >1 / 2 , fractional Brownian motions display long-memory de‐
pendence.

As pointed out in [16], large lags difference between γ(⋅ ) may be difficult to estimate in
practice, so that models with long-range dependence are often formulated in terms of self-
similarity. Self-similarity allows us to extrapolate across time scales and deduce long time
behavior from short time behavior, which is more readily observed.

Because we are interested in capturing the long-memory phenomenon observed in financial
markets, the rest of this chapter will only concern the case of H >1 / 2 .

1.2. Stochastic integral representation

In the original paper [2], Mandelbrot and van Ness represent the fBm in stochastic integral
with respect to the ordinary Brownian motion:

B H (t)= 1

Γ(H +
1
2

) (∫-∞0 (t - s)H -
1
2 - (-s)H -

1
2 dB(s) + ∫0

t(t - s)H -
1
2  dB(s)) (5)

where Γ(⋅ ) is the gamma function.

They have also included an alternative representation of the fBm which is the basis of the
model in [5,6]:

B̂H (t)= ∫0
t (t - s)H -

1
2

Γ(H +
1
2

) dB(s) (6)

This version of fBm is ‘truncated’ in the sense that the integration from negative infinity to
zero in equation (5) is truncated. We will refer to the model (6) as the ‘truncated fractional
Brownian motion’ in the rest of this chapter. As pointed out in [2], the representation (6) was
first proposed by Paul Lévy to define the fBm by the Riemann-Liouville fractional integral,
while the original integral in equation (5) is the Weyl fractional integral.
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The definition (6) of fBm is in general not asymptotically covariance-stationary, even though
it retains self-similarity. For further technical discussion and rigorous definition of the trun‐
cated fractional Brownian motion, we refer the reader to [5].

Given the difference, if one employs analytical tools such as Malliavin calculus should be
applied with care and note the differences between the two versions of fBM. [17] offers an
in-depth discussion of the theoretical differences.

2. Fractional brownian motions in financial models

We first look at several examples that utilize the fractional Brownian motions in the realm of
financial modeling.

2.1. Asset price model

In the previous section, we mention that the motivation of fBms in finance models is to cap‐
ture the long-range dependence in the volatility process. However, it is worth discussing the
possibility of applying it to the asset process itself.

In practice, it is considered that an asset process driven by fBm will result in arbitrage. The
idea is that, since for H ≠1 / 2 , B H (t) is not a semimartingale in continuous time, the asset
process described by B H (t) violates the NFLVR (no free lunch with vanishing risk), a weak‐
er version of arbitrage, and thus doesn’t admit an equivalent martingale measure according
to Theorem 7.2 of [18]. Such findings and construction of arbitrage can be found in Rogers
[19].

In contrast, Cheridito [20] has given multiple classes of trading strategies that allow various
level of arbitrages (NFLVR, arbitrage in the classical sense and strong arbitrage) under fBm
driven assets, and shown that the arbitrages are all eliminated if the inter-transaction time is
not zero, i.e., the classes of strategies become arbitrage-free. Such assumption is reasonable
in practice, given the physical limit and non-zero transaction cost. For more information on
arbitrage theory and its generalization, the reader is referred to [18-20].

2.2. Stochastic volatility model

As we have mentioned in the introductory section, the main motivation for fBm is to capture
the volatility persistence, the stylized feature observed in empirical data. There are several
prominent models involving a volatility process with fBm. Here, we just outline several of
them.

2.2.1. Long-memory continuous model

In [5, 6], Comte and Renault consider the following stochastic volatility model driven by
fBm:

Fractional Brownian Motions in Financial Models and Their Monte Carlo Simulation
http://dx.doi.org/10.5772/53568

57



( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( )
0

ˆ

x t

H

dS t
rdt t dB t

S t

t e

dx t kx t dt dB t

s

s s

n

=
ì
ï
ï

+

=
ï
í

= - +

ï
ï
ïî

(7)

where the log-volatility term follows a fractional-OU process driven by the truncated fBm
(6). The asset price process follows a geometric Brownian motion with volatility persistence.

Although Mandelbrot [2] deemed it as signifying the origin too heavily, the model (7) is eas‐
ier and more robust than the ordinary fBms from the perspective of simulation. A simula‐
tion example is explored in Section 5.

2.2.2. Affine fractional stochastic volatility model

In [21], Comte et al. assume that the squared-volatility process follows

σ 2(t)=θ + X (α)(t) (8)

where X (α)(t) is defined by the fractional integral:

X (α)(t)= ∫-∞
t (t - s)H -1/2

Γ(H + 1 / 2) x(s)ds (9)

Similar treatment of the fractional integration is outlined in [5]. The affine structure in (8) is
similar to the one originally studied by Duffie et al. [22].

The affine structure is adopted for the extra tractability, and thus better suited for practical
option pricing and hedging than the original idea (7). In fact, Comte et al. [21] have shown
that this model can better depict the difference between the short and long memory proper‐
ties in the resulting option prices.

2.2.3. Martingale expansion

Fukasawa [23] adopts and expands the asymptotic expansion technique first proposed by
Yoshida [24] of European option prices around the Black-Scholes equation by means of per‐
turbation technique and partial Malliavin calculus. It is shown that the logarithm of the asset
process can be expressed as

lnSt =Zt = rt - 1
2 ∫0

t g(Y s
n)2ds + ∫0

t g(Y s
n) θdW s

' + 1 - θ 2dW s

with

Y s
n = y + ϵnW s

H ,  W t
H = ∫0

t KH (t , s)dW s
'
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Here, r  is the riskless rate, θ∈ ( - 1,1) , y∈ℝ is a constant, (W , W ') is a 2-dimensional stand‐
ard (independent) Brownian motion, ϵn →0 is a deterministic sequence for n →∞ , and g(⋅ )
is the stochastic volatility process which is an adapted process for the minimal filtration.

Note that W t
H  is a fractional Brownian motion with Hurst index H, where KH

t (t , s) is the
kernel of the stochastic integral representation over a finite interval of Brownian motion. Ac‐
cording to [15], pertaining to our interest, for the case of H >1 / 2 , the kernel has the follow‐
ing expression:

KH (t , s)= cH s 1/2-H ∫s
t(u - s)H -3/2u H -1/2du

where

cH ={ H (2H - 1)
β(2 - 2H , H - 1 / 2) }1/2

Then, according to Corollary (2.6) of Fukasawa [23], the implied volatility can be expressed
as

σ{1− ϵn
2 ρ13d2} + o(ϵn)=aT H −1/2log(K / S ) + σ + bT H +1/2 + o(ϵn) (10)

where d2 is the typical argument in the N (d2) of the Black-Scholes formula, and

ρ13 =
2θg '(y)cH

' T H

g (y)  ,  σ = g(y),  a =
θg '(y)cH

'

σ ϵn,  b = - a(r - σ 2

2 ) (11)

Equation (10) can be seen as an approximation ϵn is the model parameter calibrated from
market data. This shape of this approximation remains largely stationary, to check the accu‐
racy of the approximation, we have no means but performing Monte Carlo simulation of
fBm.

3. Simulation with exact methods

First, we look at methods that completely capture the covariance structure and true realiza‐
tion of the fractional Brownian motion (fBm) or fractional Gaussian noise (fGn). Any meth‐
od described in this section has their starting point at the covariance matrix. The
approximate scheme we see later is merely numerically close to the value of fBm (or fGn) or
asymptotically coincides with it. The collection of algorithm in this section is not meant to be
exhaustive. For more algorithm and discussion, see [25].

3.1. Hosking method

The Hosking method utilizes the well-known conditional distribution of the multivariate
Gaussian distribution on a recursive scheme to generate samples based on the explicit cova‐
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riance structure. This method generates a general stationary Gaussian process with given co‐
variance structure, not limited to generating fBms.

More specifically, this algorithm generates an fGn sequence {Zk } and fBm is recovered by
accumulative sum. That is, the distribution of Zn+1 conditioned on the previous realization
Zn, …Z1, Z0 can be explicitly computed.

Denote γ(k) as the autocovariance function of the zero-mean process:

γ(k) : =�(Xn Xn+k )

where we assume for convenience that γ(0)=1.  For n, k =0,1, 2… , we have the following
recursive relationship for the (n + 1)× (n + 1) autocovariance matrix Γ(n)= {γ(i - j)}i , j=0,…,n :

Γ(n + 1)= ( 1 c(n)'

c(n) Γ(n)) (12)

= ( Γ(n) F (n)c(n)
c(n)'F (n) 1 ) (13)

where c(n) is the (n + 1) -column vector with elements c(n)k =γ(k + 1),  k =0, …, n and
F (n)= (1(i =n - j))i , j=0,…,n is the (n + 1)× (n + 1) ‘mirrored’ identity matrix

F (n)= ( 0 ⋯ 0 1
0 ⋯ 1 0
⋮ ⋰ ⋮ ⋮
1 0 0 0

)
Theorem 3.1 (Multivariate Gaussian distribution) Any multivariate Gaussian random vector
z can be partitioned into z1 and z2 with the mean vector and covariance matrix with the cor‐
responding partition:

μ =
μ1

μ2
 Σ=

Σ11 Σ12

Σ21 Σ22
 (14)

The distribution of z1 conditioned on z2 =a is a multivariate normal (z1 | z2 =a)~ N (μ̄, Σ¯ ) with

μ̄ =μ1 + Σ12Σ22
-1 (a - μ2) (15)

Σ¯ =Σ11 - Σ12Σ22
-1 Σ21 (16)

If we substitute equation (12) into the partition in (14) with Σ11 =1,  μ =0 , we have the fol‐
lowing expression for the conditional distribution:
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μn+1 =�(Zn+1|Zn, …, Z0)=c(n)'Γ(n)−1(Zn

⋮
Z1

Z0

) (17)

σn+1
2 =Var(Zn+1 | Zn, …, Z0)=1 - c(n)'Γ(n)-1c(n) (18)

With Z0 ~ N (0,1) , subsequently Xn+1 for n =0,1, … can be generated.

Taking the inverse of Γ(⋅ ) at every step is computational expensive; the algorithm proposed
by Hosking [26] computes the inverse Γ(n + 1)-1 recursively. The next result is due to Dieker
[25].

Proposition 3.1 (Hosking algorithm for simulating fGn) Define d (n)=Γ(n)-1c(n) , and apply‐
ing the blockwise method of inversion on equation (13):

Γ(n + 1)= 1
σn

2 (σn
2Γ(n)-1 + F (n)d (n)d (n)'F (n) -F (n)d (n)

-d (n)'F (n) 1
) (19)

where σn+1
2  satisfies the recursion

σn+1
2 =σn

2 -
(γ(n + 1) - τn-1)2

σn
2  (20)

with τn≔d (n)'F (n)c(n)=c(n)'F (n)d (n) . Also, the recursion for d (n + 1)=Γ(n + 1)-1c(n + 1) is
obtained as

d (n + 1)= (d (n) - ϕnF (n)d (n)
ϕn

)
where

ϕn =
γ(n + 2) - τn

σn
2

With μ1 =γ(1)Z0,  σ1
2 =1 - γ(1)2,  τ0 =γ(1)2 , μn+1, σn+1

2 , τn+1 can be readily computed, and frac‐
tional Brownian motion is recovered by the cumulative summation.

This algorithm is also applicable to non-stationary processes (see [27] for details). Even
though this algorithm is very simple and easy to understand and sample paths can be gener‐
ated on-the-fly, the complexity of this algorithm is of O(N 2) and computational (as well as
memory) expense of this algorithm grows at a prohibitive speed.
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3.2. Cholesky method

Given that we are dealing with the covariance structure in matrix form, it is natural to go
with the Cholesky decomposition: decomposing the covariance matrix into the product of a
lower triangular matrix and its conjugate-transpose Γ(n)= L (n)L (n)* . If the covariance ma‐
trix is proven to be positive-definite (the situation will be addressed in the next subsection),
L (n) will have real entries and Γ(n)= L (n)L (n)' .

Suppose that in matrix form the (n + 1)× (n + 1) product is given by

(γ(0) γ(1) γ(2) ⋯ γ(n)
γ(1) γ(0) γ(1) ⋯ γ(n - 1)
γ(2) γ(1) γ(0) ⋯ γ(n - 2)
⋮ ⋮ ⋮ ⋱ ⋮

γ(n) γ(n - 1) γ(n - 2) ⋯ γ(0)

)= (l00 0 0 ⋯ 0
l10 l11 0 ⋯ 0
l20 l21 l22 ⋱ ⋮
⋮ ⋮ ⋮ ⋱ 0
ln0 ln1 ln2 ⋯ lnn

)× (l00 l10 l20 ⋯ ln0

0 l11 l21 ⋯ ln1

0 0 l22 ⋯ ln2

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 lnn

)
It is easy to see that l00

2 =γ(0) and that l10l00 =γ(1) and l10
2 + l11

2 =γ(0) on i =1 (2nd row). For i ≥1 ,
the entries of the lower triangular matrix can be determined by

li ,0 = γ(i)
l0,0

li , j = 1
l j , j

(γ(i - j) - ∑k =0
j-1 li ,k l j ,k ),  0< j ≤n

li ,i
2 =γ(0) - ∑k =0

i-1 li ,k
2

Given independent, identically distributed (i.i.d.) standard normal random variables
(V i)i=0,…,n+1 , the fGn sequence is generated by

Zn+1 =∑k =0
n+1 ln+1,kV k

Or in matrix form, we have Z (n)= L (n)V (n) . If Γ(n) is assumed to be positive-definite, the
non-negativity of li ,i

2  is guaranteed and L (n) is guaranteed to be real. The covariance struc‐
ture of the process is captured, since

Cov(Z (n))=Cov(L (n)V (n))= L (n)Cov(V (n))L (n)' = L (n)L (n)' =Γ(n) (21)

Even though the Cholesky method is easy to understand and implement, the computation
time is O(N 3) , which renders this scheme extremely uneconomical in practice. To resolve
this problem, we will proceed to another exact method. The idea is similar to retain the same
relation as equation (21), but with a different decomposition.

3.3. Fast fourier transform method

As we have seen from the last section, using the Cholesky decomposition seems to be the
most straightforward idea to simulate Gaussian process with a given covariance structure;
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but, it also is the most rudimentary and thus slow. In order to improve upon the speed, the
idea of utilizing the fast Fourier transform (FFT) was proposed by Davies and Harte [28] and
further generalized by Dietrich and Newsam [29].

Similar to the idea before, this method tries to find a decomposition of the covariance matrix
as Γ=GG' and the sample is generated by y =Gx for given standard normal random variable
x. Then, on the given covariance structure, we have

Cov(y)=Cov(Gx)=G Cov(x)G' =GG' =Γ

The idea is to 'embed' the original covariance matrix a circulant matrix in order to carry out
the FFT. Before we outline the idea, we shall give out some detail of the linkage between
Fourier transform and the circulant matrix.

Definition 3.1 (Circulant matrix) Circulant matrix is a special case of the Toeplitz matrix
where each row vector is shifted to the right (the last element is shifted back to the begin‐
ning of the row). In matrix form, an n-by-n circulant matrix can be written as

C =( c0 cn-1 cn-2 ⋯ c1

c1 c0 cn-1 ⋯ c2

c2 c1 c0 ⋯ c3

⋮ ⋮ ⋮ ⋱ ⋮
cn-1 cn-2 ⋯ c1 c0

)
Remark: As one can see, the first row/column completely describes the whole matrix, and it
can be put more succinctly in the following form:

c j ,k = c j-k (mod n),  where 0≤ j, k ≤n - 1

Note that the indices range from 0 to n-1 instead of the usual convention that ranges from 1
to n.

Definition 3.2 (Generating circulant matrix) We define an n-by-n generating circulant matrix
by

G =( 0 0 0 ⋯ 0 1
1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 1 0

)
By a simple calculation, we can see that the ‘square’ of the generating circulant matrix is giv‐
en by
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G 2 =( 0 0 0 ⋯ 1 0
0 0 0 ⋯ 0 1
1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 1 0 0

)
From the point of view of row and column operation of the matrix, this can be seen as each
row of the matrix being shifted one element forward, where the bumped element is replaced
to the end of the row (it can also be thought of as the whole row is shifted down and the
bumped row is placed back on top, but this is irrelevant to our interest). Arbitrary power
can be deduced accordingly; this operation has a cycle of n iterations.

The generating circulant matrix is served as our building block. Looking back at our original
circulant matrix, we have a corresponding polynomial

p(x)=c0 + c1x + c2x 2 + ⋯ + cn-1x n-1 (22)

Then, the original circulant matrix C can be expressed as

C =( c0 cn-1 cn-2 ⋯ c2 c1

c1 c0 cn-1 ⋯ c3 c2

c2 c1 c0 ⋯ ⋮ c3

c3 c2 c1 ⋯ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮ cn-1

cn-1 cn-2 cn-3 ⋯ c1 c0

)
C = p(G)=c01 + c1G + c2G

2 + ⋯ + cn-1G
n-1 (23)

This can be verified by doing the row-operation of arbitrary power on G as shown above. It
can be shown that each operation is one-element sub-diagonal compared to the previous
power.

Definition 3.3 (Fourier matrix) The Fourier matrix is introduced as

F =( 1 1 1 ⋯ 1 1
1 ξ ξ 2 ⋯ ξ n-2 ξ n-1

1 ξ 2 ξ 2×2 ⋯ ⋮ ξ n-2

1 ξ 3 ξ 3×2 ⋯ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮ ξ 2

1 ξ n-1 ξ n-2 ⋯ ξ 2 ξ

)
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Here, we define the n-th unity root as ω = e 2πi
1
n  , and ξ = ω̄ = e -2πi

1
n  is the conjugate of the uni‐

ty root.

The Fourier matrix can be defined using the positive argument ω instead of ξ. Also, as we

will see later, some definition includes the normalizing scalar 1

n
 (or 1

n  ). This is analogous

to the continuous counterpart of the Fourier integral definition F ( f )= ∫-∞
∞x(t)e -2πiftdt  or

∫-∞
∞x(t)e 2πiftdt  , as long as the duality is uphold by the opposite sign in the exponential power

in the inverse Fourier transform. This duality will be restated in the diagonalization repre‐
sentation of the circulant matrix later.

Proposition 3.2 If 1

n
 normalizes the Fourier matrix, then 1

n
F  is a unitary matrix. It is sym‐

metric (i.e., F T = F  ), and the inverse of the Fourier matrix is given by

F -1 =( n

n
F -1)= 1

n
( 1

n
F )-1 = 1

n
( 1

n
F¯T )= 1

n F¯ = 1
n ( 1 1 1 ⋯ 1 1

1 ω ω 2 ⋯ ω n-2 ω n-1

1 ω 2 ω 2×2 ⋯ ⋮ ω n-2

1 ω 3 ω 3×2 ⋯ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮ ω 2

1 ω n-1 ω n-2 ⋯ ω 2 ω

)
Proposition 3.3 If we multiply the Fourier matrix with the generating circulant matrix, we
have

FG =( 1 1 1 ⋯ 1 1
1 ξ ξ 2 ⋯ ξ n-2 ξ n-1

1 ξ 2 ξ 2×2 ⋯ ⋮ ξ n-2

1 ξ 3 ξ 3×2 ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮ ξ 2

1 ξ n-1 ξ n-2 ⋯ ξ 2 ξ

)( 0 0 0 ⋯ 0 1
1 0 0 ⋯ 0 0
0 1 0 ⋯ ⋮ 0
0 0 1 ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮ 0
0 0 0 ⋯ 1 0

)= ( 1 1 ⋯ 1 1 1
ξ ξ 2 ⋯ ξ n-2 ξ n-1 1

ξ 2 ξ 2×2 ⋯ ⋮ ξ n-2 1

ξ 3 ξ 3×2 ⋱ ⋮ ⋮ 1
⋮ ⋮ ⋱ ⋮ ξ 2 1

ξ n-1 ξ n-2 ⋯ ξ 2 ξ 1

)
This is the same as shifting (rotating) the first column to the back of the matrix, and is also
equivalent to multiplying the first row with ξ 0, the 2nd row with ξ 1 , etc. In matrix operation,
it can be seen as

FG =(ξ 0 0 0 ⋯ 0 0
0 ξ 1 0 ⋯ 0 0
0 0 ξ 2 ⋯ ⋮ 0
0 0 0 ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ 0
0 0 0 ⋯ 0 ξ n-1

)( 1 1 1 ⋯ 1 1
1 ξ ξ 2 ⋯ ξ n-2 ξ n-1

1 ξ 2 ξ 2×2 ⋯ ⋮ ξ n-2

1 ξ 3 ξ 3×2 ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮ ξ 2

1 ξ n-1 ξ n-2 ⋯ ξ 2 ξ

)=ΛF

where Λ is the diagonal matrix with the k-th diagonal Λk =ξ k ,  for 0≤k ≤n - 1 . It follows that
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FGF -1 =Λ (24)

That is, the Fourier matrix diagonalizes the generating circulant matrix with eigenvalues
{ξ k }0≤k≤n-1 .

Theorem 3.2 The circulant matrix is decomposable by the Fourier matrix, i.e.  C = F -1ΛF  with
eigenvalue matrix Λ={p(ξ k )}k =0…n-1 . Also, with equation (23), the diagonalization of C can
be written as

FCF (−1) = F (c01 + c1G + c2G
2 + ⋯ + c(n−1)G

n−1)F −1

=c01 + c1(FGF −1) + c2(FGF −1)2 + ⋯ + cn−1(FGF −1)n−1

=(p(1) 0 0 ⋯ 0 0
0 p(ξ) 0 ⋯ 0 0
0 0 p(ξ 2) ⋯ ⋮ 0
0 0 0 ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮ 0
0 0 0 ⋯ 0 p(ξ n−1)

)
Note that (FGF -1)2 = FGF -1FGF -1 = FGGF -1 = F G 2F -1 . The other powers can be deduced iter‐
atively.

This theorem gives us the fundamental theoretical framework to build up the FFT exact sim‐
ulation of fBms. The basic idea of the simulation is to embed the covariance matrix into a
bigger circulant matrix to carry out the discrete Fourier transform as outlined above (with
technique of FFT). Such technique is called Circulant Embedding Method (CEM), and is out‐
lined in Dietrich and Newsam [29] and Perrin et al. [30].

Suppose that we need sample size of N (N should be a power of 2, i.e. N =2g  for some g∈N
for the sake of convenience when facilitating FFT). Generate the N-by-N covariance matrix Γ
with entries Γ j ,k =γ(| j - k|) , where γ is the covariance function given in the definition of
fractional Gaussian noise (fGn), by

Γ =( γ(0) γ(1) ⋯ γ(N - 1)
γ(1) γ(0) ⋯ γ(N - 2)
⋮ ⋮ ⋱ ⋮

γ(N - 1) γ(N - 2) ⋯ γ(0)
)

The technique to simulate fGn with FFT is called the Circulant Embedding Method (CEM),
generalized by Davies and Harte [28], and consists of embedding this covariance matrix into
a bigger M-by-M (with M = 2N) circulant covariance matrix C such as
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C =( γ(0) γ(1) ⋯ γ(N - 1) 0 γ(N - 1) γ(N - 2) ⋯ γ(2) γ(1)
γ(1) γ(0) ⋯ γ(N - 2) γ(N - 1) 0 γ(N - 1) ⋯ γ(3) γ(2)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

γ(N - 1) γ(N - 2) ⋯ γ(0) γ(1) γ(2) γ(3) ⋯ γ(N - 1) 0
0 γ(N - 1) ⋯ γ(1) γ(0) γ(1) γ(2) ⋯ γ(N - 2) γ(N - 1)

γ(N - 1) 0 ⋯ γ(2) γ(1) γ(0) γ(1) ⋯ γ(N - 3) γ(N - 2)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

γ(1) γ(2) ⋯ 0 γ(N - 1) γ(N - 2) γ(N - 3) ⋯ γ(1) γ(0)

)
where the covariance matrix is embedded on the top left hand corner. It is sufficient to point
out that

C0,k ={γ(k),  k =0, …, N - 1 
γ(2N - k ),  k = N + 2, …, 2N - 1 

Remark: As Perrin et al. [30] have pointed out, the size M can be M ≥2(N - 1) , and the case
M =2(N - 1) is minimal embedding. For any other choice of M  , the choice of
C0,N , …,  C0,M -N +1 is arbitrary and can be conveniently chosen as long as the symmetry of
the matrix is upheld; more zeros can be padded if M is bigger to make C circulant. For the
rest of the chapter, we will concern ourselves with the case M = 2N.

From Theorem 3.2, we know that, given any circulant matrix, it can be decomposed as
C =QΛQ * , where

(Q) j ,k = 1

2N
exp (-2πi jk

2N ),  for j, k =0, …, 2N - 1 (25)

The matrix Λ is the diagonal matrix with eigenvalues

λk =∑ j=0
2N -1 c0, jexp (2πi jk

2N ),  for j, k =0, …, 2N - 1 (26)

This differs slightly from the previous definition, but similar to the continuous counterpart;
the sign of the exponential power in the Fourier transform is just conventional difference.
The approach is identical as long as the duality is maintained. That is, if written in the form
of C =QΛQ * , the sign of the exponential power of the component in Q and Λ should be op‐
posite. In the case of the previous theorem where C = F -1ΛF  , it is easy to check that F -1  and
Λ(ξ) indeed have the opposite sign in the exponential power.

It should be noted that C  is not guaranteed to be positive-definite. Davies and Harte [28]
suggest setting zero every negative value that may appear in Λ . In Perrin et al. [30], they
prove that the circulant covariance matrix for fGn is always non-negative definite, so the ap‐
proach is feasible without any modification. The reader is referred to Dietrich and Newsam
[29] and Wood and Chan [31] for more detail on dealing with this issue.
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Assuming that C  is positive definite and symmetric, the eigenvalues are positive and real.
The ‘square root’ of C  is readily formed, S =QΛ1/2Q * , where Λ1/2 is the diagonal matrix with
eigenvalues 1, λ1, …, λ2N -1 . It is easy to check that SS * =SS ' =C  . So, S  has the desired
properties we look for.

Theorem 3.3 (Simulation of fGn with FFT) The simulation of the sample path of fGn, we are
going to simulate  y =SV  , consists of the following steps:

1. Compute the eigenvalues {λk }k =0,…,2N -1 from equation (26) by means of FFT. This will

reduce the computational time from O(N 2) to O(NlogN ) .

2. Calculate W =Q *V  .

3. Generate two standard normal random variables W0 =V0
(1) and W N =V N

(1)

4. For 1≤ j < N  , generate two standard normal random variables V j
(1) and V j

(2) and let

 W j = 1

2
( V j

(1) +i V j
(2) )

W2N - j = 1

2
( V j

(1) -i V j
(2) )

1. Compute Z =QΛ1/2W  . This can be seen as another Fourier transform of the vector
Λ1/2W  :

2. Zk = 1

2N
∑
j=0

2N -1
λ jW jexp ( - 2πi jk

2N )
3. It is identical to carry out FFT on the following sequence:

( )

( ) ( )( )
( )

( ) ( )( )

10
0

1 2

1

1 2
2 2

0;
2

1, , 1;
4

;
2

1, ,2 1;
4

j
j j

j
N

N

j
N j N j

V j
N

V iV j N
Nw

V j N
N

V iV j N N
N

l

l

l

l
- -

ì
=ï

ï
ï
ï + = ¼ -
ï

= í
ï =ï
ï
ï

- = + ¼ -ï
î

Due to the symmetric nature of the sequence, the Fourier sum of {w j}  = {Zk }k =0
2N -1 is real. The

first N samples have the desired covariance structure. But, since the 2nd half of samples (N…
2N-1) are not independent of the first N samples, this sample cannot be used.

1. Recover fBm from the recursive relationship:

2. B H (0)=0;  B H (i)= B H (i - 1) + Zi-1 for  1≤ i ≤N
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4. Approximate methods

As we have seen in the previous section, the exact methods all take on the covariance struc‐
ture matrix as starting point and try to reproduce the covariance structure by different de‐
composition. That can be time and resource consuming, so rather it is preferable to have
approximation of the fractional Brownian motion that permits robust simulation.

In this section, we will start with the Mandelbrot representation due to historical reason and
move onto several other methods that provide us with better understanding of the process
and increasing robustness.

4.1. Mandelbrot representation

Recalling from Section 2.3, fractional Brownian motion permits a stochastic integral repre‐
sentation. To approximate equation (5), it is natural to truncate the lower limit from negative
infinity to some point, say at –b:

B̃H (n)=CH
(∑k =-b

0 (n - k)H -
1
2 - (-k )H -

1
2 B1(k ) + ∑k =0

n (n - k )H -
1
2 B2(k )) (27)

Note that the CH  is not the same constant term as in equation (5), because one has to re-cal‐
culate the normalizing factor due to the truncation. As pointed out in [25], the recommend‐
ed choice of b is N 3/2 . Even though this is a straightforward way to generate fractional
Brownian motion, it is rather inefficient. It is included in this section for the sake of com‐
pleteness.

4.2. Euler hypergeometric integral

fBm permits the stochastic integral form involving the Euler hypergeometric integral:

B H (t)= ∫0
t KH (t , s)dB(s) (28)

where B(s) is the standard Brownian motion and

KH (t , s)=
(t - s)H -

1
2

Γ(H +
1
2

) F2,1(H - 1
2 ; 1

2 - H ; H + 1
2 ; 1 - t

s ) (29)

is the hypergeometric function, which can be readily computed by most mathematical pack‐
ages. By discretizing (28), at each time index t j , we have

B H (t j)= n
T ∑i=0

j-1 (∫ti

ti+1KH (t j, s)ds)δBi (30)
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where δBi = T
n ΔBi and ΔBi is drawn according to the standard normal distribution. This

means that {δBi}i=1…n is the increments of a scaled Brownian motion on 0, T  with quadratic

variation  T  . The inner integral can be computed by the Gaussian quadrature efficiently.

4.3. Construction by correlated random walk

This particular algorithm proposed in [32] of constructing fBm relies on the process of corre‐
lated random walks and summation over generated paths. This is similar to the generation
of ordinary Brownian method through summation of the sample paths of normal random
walk, which is related to the central limit theorem.

Definition 4.1 (Correlated Random Walk) For any p∈ 0,1  , denote Xn
p as the correlated

random walk with persistence index p . It consists of a jump on each time-step with jump
size of either +1 or -1 such that:

• X0
p =0,  P(X1

p = - 1)= 1
2 , P(X1

p = + 1)= 1
2

• ∀n ≥1, ϵn
p ≡Xn

p - Xn-1
p  which equals either +1 or -1

• ∀n ≥1, P(ϵn+1
p =ϵn

p | σ(X k
p,  0≤k ≤n))= p

Theorem 4.1 For any m≥1, n ≥0 , we have

� ϵm
pϵm+n

p =(2p −1)n (31)

In order to add additional randomness into the correlated random walks, we replace the
constant persistence index p with a random variable  μ , and we denote the resulting corre‐
lated random walk as Xn

μ . Or, to put it more formally, denote by P p the law of X p for a
given persistence index p . Now, consider a probability measure μ on 0,1  , which we call
the corresponding probability law P μ , the annealed law of the correlated walk associated to
μ . Note that P μ≔ ∫0

1P pdμ(p) .

Proposition 4.1 For all m≥1,  n ≥0 , we have

� ϵm
μϵm+m

μ =∫
0

1

(2p −1)ndμ(p) (32)

The next result is due to Enriquez [32]. The proof is based on Lemma 5.1 of Taqqu [33].
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Theorem 4.2 For 1
2 < H <1 , denote by μ H  the probability on 1

2 , 1  with density

(1 - H )23-2H (1 - p)1-2H  . Let (X μ H ,i)i≥1 be a sequence of independent processes with probabili‐

ty law P μ H
 . Then,

LD lim
N →∞

Llim
N →∞

cH

X
Nt

μ H ,1 + ⋯ + X
Nt

μ H ,M

N H M
= BH (t) (33)

where cH = H (2H - 1)
Γ(3 - 2H )  , L stands for the convergence in law, and LD means the convergence in

the sense of weak convergence in the Skorohod topology on D 0,1  , the space of cadlag
functions on 0,1  . Here, ⋅  is the floor function and rounds the argument to the closest
integer, M is the number of trajectories of correlated random walks and N is number of time
steps.

Remark: For H=1/2, there is a similar expression (see [32]). The order of limit in equation (33)
is important, because if reversed, the sum would result in 0. Theorem 4.2 is mostly for theo‐
retical construction.

In [32], the above theorem is further simplified from double summations into a single sum‐
mation by applying Berry-Essen bound: As long as M (N ) is of order O(N 2-2H ) ,

LD lim
N →∞

cH

X
Nt

μ H ,1 + ⋯ + X
Nt

μ H ,M (N )

N H M (N )
= BH (t) (34)

In practice, any probability measure with moment equivalent to 1
n 2-2H L (n)  , where L  is a

slowly varying function, will be used. This could be shown by Karamata’s theorem, for
which further elaboration is found in [33]. In [32], three families of equivalent measures are
provided, and specifically the 2nd family of the measures (μH ,k

' )k >0 is most appropriate for

simulation purpose: For H > 1
2  , μH ,k

'  has the density of 1 -
(1 - U

1
k ) 1

2-2H

2   with the correspond‐

ing normalizing factor cH ,k
' =

cH

k
 . U  is a standard uniform random variable. The error given

by the Berry-Essen bound for H > 1
2   is given by

0.65× DH N 1-H / kM  (35)

where DH = 6(2H - 1)
(H + 1)(2H + 1)  . Here, k  serves as a control variable of order k (N )=o(N ) , and the

error term contains 1

k
  which can be seen as a way to restrict error with the price of distor‐

Fractional Brownian Motions in Financial Models and Their Monte Carlo Simulation
http://dx.doi.org/10.5772/53568

71



tion of the covariance relation in X N  , though it is advisable to keep  k ≤1 . For more discus‐
sion on the choice of k, we refer to Section 4 of [32].

Theorem 4.3 (Simulation of fBm with correlated random walk) Simulating fBm with corre‐

lated random walk for the case of H > 1
2  consists of the following steps:

1. Calculate M(N) by the tolerable error level from equation (35). Calculate NT  , where 
is the floor function, and create time-index {ti} : {1,2, …,  NT } .

2.
Simulate M independent copies of {μH ,k

j } j=1⋯M =1 -
(1 - U

1
k ) 1

2-2H

2  for M trajectories.

3. Simulate M copies of correlated random walks:

• If ti =1 , ϵ1
j =2*Bernoulli( 1

2 ) - 1,  X1
j =ϵ1

j

• If ti >1 , ϵt j

j =ϵt j -1

j *(2*Bernoulli(μH ,k
j ) - 1),  X t j

j = X t j -1

j + ϵt j

j

4. At each t j , calculate

•
B H (t j)=cH '

X
N t j

μ H ,1 + ⋯ + X
N t j

μ H ,M

N H M

Remark: For any given time-horizon T, it is easier to simulate the path of B H (1) with given
resolution N and scale it to arrive at B H (T )=T H B H (1) .

This algorithm is interesting from a theoretical point of view, since it gives us a construction
of fractional Brownian motion reflecting its ordinary Brownian motion counterpart with the
help of central limit theorem. But, in practice, it might not be fast enough for simulation pur‐
pose that requires large number of simulated paths.

4.4. Conditional random midpoint displacement

This algorithm is put forth by Norros et al. [34] and uses the similar approach to compute
the conditional distribution of the fractional Gaussian noises as we have seen in the Hosking
algorithm in Section 3.1. The difference is that this algorithm does not completely capture
the covariance of all the sample points, instead it chooses certain number of points of the
generated samples and uses a different ordering to do conditioning on (recall that, in the
Hosking method, the conditioning is done by chronological order).

Again we are interested in the stationary fractional Gaussian noises and will back out the
fractional Brownian motion on the time interval 0,1  , which can be scaled back according
to self-similarity relationship. We will first outline the idea of bisection method, which will
be expanded into the conditional mid-point replacement scheme later on.
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4.4.1. Bisection scheme and basic algorithm

In this section we adopt the notation in Norros et al. [34]: Z (t) is the fractional Brownian mo‐
tion, and X i , j is the fractional Gaussian noise of a certain interval j in a given level i .

The idea is to simulate Z (t) on the interval 0,1  . First, given Z (0)=0 and Z (1) with the
standard normal distribution of N (0,1) , we compute the conditional distribution of
{Z ( 1

2 ) | Z (0), Z (1)}~ N ( 1
2 Z (1), 2-2H - 1

4 ) . The bisection involves the indices i and j, where i
indicates the ‘level’ and j for the ‘position. Let

X i , j =Z ( j ⋅2-i) - Z (( j - 1)⋅2-i) , for i =0,1, 2, ….,  j =1, …2i

It is easy to see that, at any given level i , the interval [0,1] is divided into 2i sub-intervals.

If we denote (i - 1) th level as the ‘mother-level’, it will be divided twice finer in the next lev‐
el. So given any interval on the mother level, it is easy to observe the relationship

X i ,2 j-1 + X i ,2 j = X i-1, j (36)

Because of equation (36), it is enough to just generate X i , j for odd number j . So, let us pro‐
ceed from left to right, assuming that the sample points X i ,1, … X i ,2k   have already been

generated (k∈ {0,1, …, 2i-1 - 1}) . For the point X i ,2k +1 , we have

X i,2k+1 = e(i, k) X i,max (2k -m+1,1), …, X i,2k , X i-1,k+1, …, X
i-1,min (k+n,2i-1) ' + v(i, k )U i,k  (37)

where U i ,k  are i.i.d. standard Gaussian random variables i =0,1, …;  k =0,1, …, 2(i-1) - 1 .
Equation (37) can be rewritten as

X i ,2k +1 = e(i, k ) X i ,max(2k−m+1,1), …, X i ,2k , X i−1,k +1, …, X i−1,min(k +n,2i−1) ' + v(i, k)U i ,k =� X i ,2k +1 | X i ,max(2k−m+1,1), …, X i ,2k , X i−1,k +1, …, X i−1,min(k +n,2i−1)
(38)

v(i, k )=Var X i ,2k +1 | X i ,max (2k -m+1,1), …, X i ,2k , X i-1,k +1, …, X i-1,min (k +n,2i -1)  (39)

As mentioned before, this scheme conditions on a fixed number of past samples instead of
the whole past, where the two integers (m≥0,  n ≥1) indicate the number of the intervals the
expectation and variance are conditioned on, and is called RMD(m,n). Looking at (38) and
(39) “ X i ,max (2k -m+1,1), …, X i ,2k  ” indicates that there are at most m neighboring increments to
the left of the interval in question ( X i ,2k +1) , and “ X i-1,k +1, …, X i-1,min (k +n,2i -1) ” indicates that
there are at most n neighboring increments to the right of the interval.

Denote by Γik  the covariance matrix with X i ,2k +1 as the first entry, and
X i ,max (2k -m+1,1), …, X i ,2k , X i-1,k +1, …, X i-1,min (k +n,2i -1) as the rest of the entries. Then, we have
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Γik =Cov( X i ,2k +1, X i ,max (2k -m+1,1), …, X i ,2k , X i-1,k +1, …, X i-1,min (k +n,2i -1) )
where

Cov( x1, x2, …, xn )= (Cov(x1, x1) Cov(x1, x2) ⋯ Cov(x1, xn)
Cov(x2, x1) Cov(x2, x2) ⋯ Cov(x2, xn)

⋮ ⋮ ⋱ ⋮
Cov(xn, x1) Cov(xn, x2) ⋯ Cov(xn, xn)

)
Similar to (14)-(16), we can partition Γik  as

Γik =(Var(X i ,2k +1) Γik
(1,2)

Γik
(2,1) Γik

(2,2))
Note that Γik

(1,2) =(Γik
(2,1))' . Hence, we have

e(i, k )=Γik
(1,2)(Γik

(2,2))-1 (40)

v(i, k )=
|Γik |

|Γik
(2,2)|  (41)

By the stationarity of the increment of Z  and by self-similarity, e(i, k ) is independent of i
and k  when 2k ≥m and k ≤2i-1 - n (meaning that the sequence is not truncated by max (⋅ ) and
min (⋅ ) ), and it only depends on i only when 2i <m + 2n .

4.4.2. On-the-fly RMD(m,n) generation

Norros et al. [34] further propose that, instead of having the previous level (i-1) completely
generated first, partition and conditioning can be done ‘on-the-fly’, meaning that we can
have multiple unfinished levels going at the same time. Unlike the previous RMD(m,n)
scheme, the level here is defined differently.

First define the ‘resolution’ by δ , as the smallest interval that we will be dealing with in this
scheme. Note that this is different from the previous sub-section where at the i-th level
δ =2-i , which can be bisected finer indefinitely. In the on-the-fly RMD scheme, the minimum
interval length is defined as δ .

At each level i , the interval 0,2iδ  is split finely into interval with length of δ and X i ,k  sam‐
ples are generated on each point until all points within the interval are filled. Then, the trace
is expanded to the next level i + 1 , the interval 0,2i+1  , and this procedure can be consid‐
ered as ‘enlargement’. So, instead of having a pre-determined time-horizon and zooming in
with twice-finer resolution in the original RMD scheme, the new RMD scheme has a pre-
determined resolution and expand twice-fold the horizon at each level.

Within the same interval 0,2i  , the following rules are applied for the inner intervals:
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1. Must have n-1 (or all) right-neighboring intervals (of which, have the same length as the
mother-interval).

2. Also, there should be m (or all) left-neighboring intervals (of which, have the same
length as the interval being considered).

3. If there are intervals that satisfy both the conditions above, choose the one as left as pos‐
sible.

4. When all intervals are filled out, expand to the next level by ‘enlargement’.

Here we use

Y i , j =Z ( j ⋅2iδ) - Z (( j - 1)⋅2iδ),  i =0,1, …,  j =1,2, …  (42)

instead of X i , j to avoid confusion with the original RMD scheme notation.

Similar to the ordinary RMD, we have the following equations from the conditional distri‐
bution of multivariate Gaussian processes: The enlargement stage is defined by

Y i ,1 =� Y i ,1|Y i−1,1 + Var Y i ,1|Y i−1,1 U i ,1 = e(i, 1)Y i−1,1 + v(i, 1)U i ,1 (43)

Inner interval points are constructed similar to the ordinary RMD scheme (the right-neigh‐
boring intervals are of level i+1 instead of i-1) as

Y i ,2k +1 = e(i, k ) Y i ,max (2k -m+1,1), …, Y i ,2k , Y i+1,k +1, …, Y i+1,min (k +n,N i+1)
' + v(i, k )U i ,k  (44)

where N i+1 is the last generated increment on the (i+1)-th level. The order of splitting for the
on-the-fly scheme is given in Figure 1, where its ordinary RMD counterpart’s splitting order
is also given.

Norros et al. [34] have done an extensive comparison between on-the-fly RMD schemes in
terms of accuracy and robustness compared to the FFT and aggregate methods. On-the-fly
RMD and FFT are significantly faster than the aggregate method, and on-the-fly RMD can
generate samples with no fixed time-horizon, while for FFT the whole trace has to be gener‐
ated before it can be used. So, RMD seems superior in terms of flexibility.

4.5. Spectral method

In this subsection, we will look into the spectral method of approximating the fractional
Gaussian noises, which has the origin from spectral analysis in physics: A time-domain can
be transformed into a frequency-domain without loss of information through Fourier trans‐
form. With the typical Fourier-time series, the original input is deterministic and trans‐
formed into the spectral density that represents the magnitude of different frequencies in the
frequency domain. It is possible to extend this approach to analyzing stochastic processes.
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Though it is impossible to study all realization, it is possible to analyze in a probabilistic/
distribution sense by observing the expected frequency information contained in the autoco‐
variance function.

Figure 1. The order of splits by the ordinary RMD(m,n) scheme (top) and the on-the-fly RMD(m,n) scheme (bottom).
Note that, for the on-the-fly scheme, the order changes according to the choice of n.

Spectral density is computed for frequencies, -π ≤λ ≤π , as

f (λ)=∑ j=-∞
∞ γ( j)exp (ijλ) (45)

The γ(⋅ ) here is the autocovariance function, which can be recovered by the inverse formula

γ( j)= 1
2π ∫-π

π f (λ)exp ( - ijλ) (46)

The spectral density of the fGn can be approximated according to [25] and [35] as

f (λ)=2sin (πH )Γ(2H + 1)(1 - cosλ) |λ|-2H -1 + B(λ, H )  (47)

where
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B(λ, H )=∑ j=1
∞ {(2πj + λ)-2H -1 + (2πj - λ)-2H -1} 

Note that the domain is only -π ≤λ ≤π , since any frequency higher would only correspond
to amplitude between our desired sample points.

The problem with the above expression is that there is no known form for B(λ, H ) , Paxson
[35] proposes the following scheme for B(λ, H ) :

B(λ, H )≅ B̃3(λ, H )=a1
d + b1

d + a2
d + b2

d + a3
d + b3

d +
a3

d '
+ b3

d '
+a4

d '
+ b4

d '

8Hπ  

where

d = - 2H - 1,d ' = - 2H ,ak =2kπ + λ ,bk =2kπ - λ

Moreover, with the help of the Whittle estimator, Paxson [35] shows that

B̃3(λ, H )'' = 1.0002 - 0.000134λ (B̃3(λ, H ) - 2-7.65H -7.4)
gives a very robust and unbiased approximation for the B(λ, H ) . See Appendix A of [35]
for a detailed comparison and justification of this approximation.

With the approximation scheme for the spectral density at hand, we can now look at the
spectral analysis of a stationary discrete-time Gaussian process (fractional Gaussian noise;
fGn) X ={Xn :n =0, …, N - 1} , which can be represented in terms of the spectral density
f (λ) as

Xn = ∫0
π f (λ)

π cos (nλ)d B1(λ) - ∫0
π f (λ)

π sin (nλ)d B2(λ)

where B1 and B2 are independent standard Brownian motions and the equality is under‐

stood in terms of distribution. Define ξn(λ)= f (λ)
π cos (nλ) and fix some integer l  . After set‐

ting tk = πk
l  for k =0, …, l - 1 , we can approximate it by a simple function ξn

(l ) defined on
0, π  for 0≤n ≤N - 1 by

ξn
(l )(λ)=

f (t1)
π cos (nt1)1{0}(λ) + ∑k =0

l -1 f (tk +1)
π cos (ntk +1)1(tk ,tk +1

(λ) (48)

which is similar to the typical construction of stochastic integral.

Define the sine counterpart as θn
(l )(λ) , and then integrate both ξn

(l )(λ) and θn
(l )(λ) with re‐

spect to d B1(λ)  and d B2(λ) on 0, π  to approximate Xn . Then, we have

X̂ n
(l ) =∑k =0

l -1 f (tk +1)
l cos (ntk +1)Uk

(0) - sin (ntk +1)Uk
(1)  (49)
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where Uk
(⋅) are i.i.d. standard normal random variables. Uk

(0) and Uk
(1) are independent, as

they are resulted from integration from the two aforementioned independent Brownian mo‐
tions.

Similar to the Fourier transform approach, the fGns can be recovered by applying the FFT to
the sequence of X̂ n

(l ) efficiently to the following coefficient:

( ) ( )( )
( ) ( )

( ) ( )( )

0 1
1 1

0
1

0 1
2 1 2 1

0, 0
1 , 1, , 1
2

,

1 , 1, ,2 1
2

k k

k k
k

l k l k

k

U iU k l

a f t
U k l

l

U iU k l l

- -

-

- - - -

ì =
ï
ï + = ¼ -
ï
ï= í

=ï
ï
ï

+ = + ¼ -ïî

(50)

It is easy to check that the covariance structure of fGns can be recovered, with the help of
product-to-sum trigonometric identity, as

Cov(X̂ m
(l ), X̂ n

(l ))=∑
k=0

l−1
f (tk +1)

l cos((m−n)tk +1)

≅2∫
0

π

f (λ)
2π cos(nλ)dλ

= 1
2π ∫

−π

π

f (λ)exp(− inλ)dλ =γ(n)

Paxson [35] has also proposed another method for simulating fGns, where in [25] it was pro‐
ven to be related to (50) with the case l = N / 2  :

( ) ( )

( ) ( )0/2
/2

*

0, 0

exp , 1, , / 2 1

, / 2
2

, / 2 1, , 1

k k
k

k
N

N

k

k

R f t
i k N

N
b

f t
U k N

N
b k N N

ì =
ï
ï

F = ¼ -ï
ï= í
ï

=ï
ï
ï = + ¼ -î

(51)

Here, Rk  is a vector of exponentially distributed random variables with mean 1, and Φk  are
uniformly distributed random variables on 0,2π  independent of Rk  . This method is of or‐
der Nlog(N ) , and only one FFT is required instead of 2 times compared to the Davis-Harte
FFT method. Hence, it is about 4 times faster.
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Remark: The Paxson algorithm in (54) is improved by Dieker [25] to retain the normality of
the sequence and its relationship with the original spectral representation.

5. A numerical example: fBm volatility model

Finally, this section provides a numerical example of Monte Carlo simulation of fBm volatil‐
ity model. In Section 2.3, we have briefly mentioned the truncated fractional Brownian mo‐
tion. This section outlines the stochastic volatility model explored by Comte and Renault [6].
We follow the example given in [6], with the following setup to simulate the volatility proc‐
ess:

{ σ(t)=σ0e x(t ) 

 dx(t)= - kx(t)dt + νd B̂H (t)
 (52)

where ν is the volatility factor of the log-volatility process x(t) . The volatility process is the
exponential of an OU-process driven by the truncated fBm. Also, we assume that

x(0)=0,  k >0,  1
2 < H <1 .

Solving the OU-process with integrating factor, we have

x(t)= ∫0
tνe -k (t -s)d B̂H (s) (53)

By applying the fractional calculus or using the formulas provided in [5], we can formulate
x(t) in another way as

x(t)= ∫0
ta(t - s)dB(s) (54)

where B(t) is an ordinary standard Brownian motion and

a(θ)= ν

Γ(H +
1
2

)
d
dx ∫0

θe -ku(θ - u)H -
1
2 du = ν

Γ(H +
1
2

) (θ α - ke -θ∫0
θe kuu α du)  (55)

By applying the ordinary discretization scheme to (54), we have

x̃(t)=∑ j=1
tN =t a(tN -

t j - 1
n )(B(t j) - B(t j-1)) (56)

Here, the coefficient a(⋅ ) can be calculated by symbolic packages such as matlab and mathe‐
matics. In our case of OU-process, it is a summation of constant with incomplete gamma
function and gamma function.
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Figure 2. shows a sample path of σ(t) = exp (x̃(t)) for k = 1,  σ0 = 0.1, ν = 0.3,  H = 0.75,  T = 2  . For the purpose of com‐
parison, a sample path of the volatility process driven by an ordinary OU-process (the dotted line): σ(t) = exp (y(t)),  
where  y(t) = ∫0

tνe -k (t -s)dB(s) , is shown alongside, which has the same parameters except the Hurst index.

The sample path of the fractional-OU driven volatility process has shown more of a persis‐
tent trend, i.e. more prominent trend (more smooth and less reversal) compared to the ordi‐
nary-OU driven volatility process, which is what to be expected according [5]. This
approach only imitate fractional Brownian motion if the time-step in discretization scheme
is very small, renders it not robust enough for practical purpose. But for analytical purpose,
it can be shown it is equivalent to the S-transform approach outlined in [36].For more dis‐
cussion of its statistical property and justification of its stability as compared to the original
stationary version, we direct the reader to [5] and [6]. We provided this approach for the
sake of completeness and readers’ interest.

We have also included fractional Brownian motion simulatedsimulated by the circulant-em‐
beddingmethod, with the same parameters as above in Figure 3. This approach is more ro‐
bust since the covariance structure does not depends on the step-size. Figure 3 shows a
sample path of (t)=exp (x(t)) , where x(t) is the fBM generated by the circulant-embedding
FFT with the same parameters as Figure 2: k =1,  σ0 =0.1, ν =0.3,  H =0.75,  T =2  .In these

two examples, the fractional Brownian motions are scaled, so that the variance of B H (T )
equals to the ordinary Brownian motion B 1/2(T )  .
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Figure 3.

6. Conclusion

Motivated by the inadequacy in capturing long-dependence feature in volatility process of
the traditional stochastic volatility framework, we explore the possibility of fractional Brow‐
nian motion (fBm) in financial modeling and various schemes of the Monte Carlo simula‐
tion. Starting from the general definition, fBm can be considered as an extension of the
ordinary Brownian motion with an autocovariance function that depends on both time indi‐
ces instead of just the minimum between the two.

With different values of Hurst index, we can distinguish fractional Brownian motion into

three different cases: H < 1
2 ,  H = 1

2  and H > 1
2  . Since only the case of H > 1

2  displays a long-
dependence behavior, that is the case we are interested in. Several prominent examples of
fBm in financial modeling are given.

Simulation schemes are divided into the exact schemes and approximate schemes. While the
former will capture the complete structure for the whole length of sample size, the latter ei‐
ther approximates the value of the real realization or truncates the covariance structure for
robustness.

We start with the exact scheme of Hosking algorithm that utilizes the multivariate Gaussian
distribution of fractional Gaussian noises and simulates the sample points conditioned on
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the previous samples. Alternatively, instead of simulating each conditioned on the past sam‐
ple points, we can first construct the covariance matrix of the size of the sample we want,
and proceed to find the ‘square root’ of the covariance matrix and multiply with a standard
normal variable vector, for which the product vector will be the fractional Gaussian noise
(fGn) with exact covariance structure as the covariance matrix. To find the ‘square root’, we
first investigate the Cholesky decomposition, but the computational and memory expense is
too large to be feasible in practice. In contrast, fast Fourier transform (FFT) simulation em‐
beds the original covariance matrix in a larger circulant matrix and simulates by diagonaliz‐
ing the circulant matrix into the product of eigenvalue matrix and unitary matrix. The FFT
method is significantly more robust than the previous schemes.

We then look into the approximate schemes; namely the construction of fBm with correlated
random walks, which can be viewed as an extension of construction of Brownian motion
with ordinary random walk. This method gives us interesting insight into the true working
of fBm, especially the idea of long-range dependence. This approach is not only interesting
and easy to implement, but also the error can be calculated explicitly. The drawback of this
approach is that the speed slows down significantly with large sample points, and the trade‐
off is made based on the error function. The last simulation approach we look at is the con‐
ditional random midpoint displacement (RMD) scheme, which is mathematically similar to
the Hosking scheme, but with fixed number of past sample points it conditions on. The on-
the-fly version of RMD scheme can indefinitely generate sample points with given resolu‐
tion. Finally, we include the spectral method for approximating fBm.

Comparing all the schemes and also referring the studies done in [34], we conclude that if
the time-horizon is known beforehand, the FFT/spectral schemes would be the best scheme
due to the high speed and accuracy. Alternately, if samples should be generated indefinite‐
ly, the on-the-fly conditioned RMD scheme seems to offer similar level of accuracy and
speed as the FFT scheme.

At last, we provided numerical examples for the truncated version of fBM proposed in [5, 6],
as well as the fBM generated by FFT for comparison in robustness.
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