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1. Introduction

Autism spectrum disorders (ASD) have attracted public attention by its high prevalence,
elevated social cost and large impact on the family [1]. Since the first descriptions of au-
tism made by Hans Asperger in 1938 [2] and by Leo Kanner in 1943 [3, 4], much discus-
sion has focused in the search for the triggering points of autism and identifying risk
factors has become a high priority of scientists. Nevertheless, even after almost seventy
years since the first reports, the etiology of autism remains unknown and its molecular
basis is not well understood. Environmental factors (such as virus, bacteria, drugs, etc.)
known to increase the risk of autism have critical periods of action during embryogene-
sis. Congenital syndromes are found in high rates in patients with autism including so-
matic changes originated early in the first trimester [5].

The link between rubella and autism came from epidemic rubella in which the incidence of
autism diagnosis in prenatally exposed offspring was more than 10-fold higher than normal.
The study describes 243 children exposed to congenital rubella, where 25% presented mental
retardation, 15% had reactive behavior and 7% was included in the autism spectrum [6].

Valproic acid (VPA) has traditionally been prescribed for epilepsy, but is increasingly used for
psychiatric condition, such as bipolar disease by its modulation on GABA neurotransmission
[7]. Furthermore, it has been also shown to be associated with an increased prevalence of
autism. In fact, prospective and retrospective studies demonstrate that exposure to VPA during
pregnancy is associated with approximately three-fold increase in the rate of major anomalies
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and a possible set of dysmorphic features with decreased intrauterine growth [8, 9], charac-
teristics of Fetal Valprotate Syndrome (FVS) described in item 3. Histone deacetylase (HDAC)
inhibition by VPA and changes in gene expression may explain part of the teratogenicity of
this drug. In utero exposure of rodents to VPA has been proposed to induce a phenotype with
behavioral characteristics reminiscent of those observed in ASD and provides a robust animal
model for social cognitive impairment understanding and a potential screen for the develop-
ment of novel therapeutics for this condition [10]. Other possible explanations include either
the effect of VPA through the increase of fetal oxidative stress, affecting mainly the brain in
comparison to other fetal organs, or its inhibitory action on the folic acid mechanism [11]. In
agreement, it is possible to duplicate a number of anatomic and behavioral features charac-
teristic of human cases by exposing rat embryos to a teratogenic agents at the time of neural
tube closure [12].

Thus, in utero exposure to VPA has been used as a reliable model to increase the understanding
of behavioral effects evaluated by specific tests as sociability, social preference and stereotypic
behavior, also observed in human patients [9, 13, 14]. The present chapter summarizes the
current knowledge on the relationship between in utero exposure to VPA in humans and in
autism-like animal model phenotypes, highlighting the importance of this model to the
neurobiology of autism studies.

2. Valproic acid

The compound VPA (Figure 1A) is a fatty acid synthesized in 1882 [15] as an analogue of valeric
acid, found naturally in valerian (Valeriana officinalis), used at that time as an organic solvent.
The chemical names to VPA and derivatives are shown in Table 1. Antiepileptic properties of
VPA, which is structurally unrelated to other antiepileptic drugs, were discovered by chance
in 1962, when the French researcher Pierre Eymard in a serendipity discovery observed the
anticonvulsant properties of VPA while using it as a vehicle for a number of other compounds
that were being screened for anti-seizure activity [16]. He found that it prevented pentylene-
tetrazol-induced convulsions in rodents. Since then, it has also been used for migraine and
bipolar disorder. The U.S. Food and Drug Administration (FDA) approved VPA in 1978 for
the treatment of seizure disorder and in 1986 approved its enteric-coated counterpart valproate
semisodium (Figure 1B) also named divalproex sodium (USA), for the same indication.
Valproate semisodium is a stable co-ordination compound comprised of sodium valproate
(Figure 1C) and valproic acid in a 1:1 molar relationship in an enteric coated form. An enteric
coating is a barrier applied to oral medication that controls the location in the digestive system
where it is absorbed. This compound dissociates to release valproate ions into the gastroin-
testinal tract. Once in the blood, sodium valproate can be converted also in the acid form or
conjugated as valproate semisodium [17]. The acid form is currently used to quantify plasma
levels of all three.
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Valproic Acid 2-Propylvaleric acid, 2-Propylpentanoic acid or Di-n-dipropylacetic acid
Sodium Valproate Sodium 2-propylvalerate
Valproate semisodium Sodium hydrogen bis(2-propylvalerate)
Valproate Pivoxil Hydroxymethyl 2-propylvalerate pivalate
Valpromide 2-Propylvaleramide

Table 1. Chemical names of VPA and derivatives

OH o I

Figure 1. The molecular structure of VPA and derivatives showed in ball and stick view. A. Valproic acid. B. Valproate
semisodium, C. Sodium valproate. In A is possible to compare both chemical and ball and stick structures (used also to
illustrate derivatives).

The therapeutic concentration of sodium valproate (the sodium salt of VPA) during chronic
oral treatment ranges from 40-100 mg/mL (280-700 mmol/L) in plasma and from 6-27 mg/g
(42-190 mmol/g) in brain [18]. From this point, to simplify the reading throughout the text, the
VPA abbreviation will be used when referring to valproic acid and derivatives.

The VPA is marketed under brand names including: Convulex (Pfizer-UK and Byk Madaus-
South Africa), Depakene (Abbott Laboratories-USA, Brazil and Canada), Depakine (Sanofi
Aventis-France and Sanofi Synthelabo-Romania), Deprakine (Sanofi Aventis-Finland),
Encorate (Sun Pharmaceuticals-India), Epilim (Sanofi Synthelabo-Australia), Valcote (Abbot
Laboratories-Argentina).

The VPA effects of clinical importance include GABAergic activity increase, excitatory
neurotransmission decrease, and modification of monoamines [19]. The biochemical and
biological effects of VPA are summarized in Table 2.
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Target of action Biological effects Reference
HDAC (inhibition) Open DNA transcription [20]
Mitochondria Energy metabolism impairment [21]
Lymphocytes Modification of the epigenotype [22]
Neurons from substantia nigra Reduction in firing rate [23]
c-Jun N-terminal kinase (JNK) Defective neurite formation [24]
GSK3B inhibitor Promotion of hair re-growth [25]

) ) Differentiation and inhibition of proliferation in
Beta-catenin-Ras-ERK-p21Cip/WAF1 pathway ) [26]
neural progenitor cells

Constitutive androstane receptor (CAR) and Up-regulation of CYP3A4 and MDR1 gene 27]
pregnane X receptor (PXR) expression

) o Attenuation of blood-spinal cord barrier (BSCB)
Matrix metalloprotease-9 inhibitor . o [28]
after spinal cord injury (SCI)

PI3K/Akt/mTOR pathway Skeletal muscle hypertrophy [29]

Table 2. Biochemical and biological effects of VPA

3. Valproic acid as an environmental risk factor in the development of
autism

After the VPA license for use in 1978, the first adverse report of a fetus exposed to the drug
was published in 1980 [30]. Since then. particular attention has been directed to the occurrence
of neural tube defects in infants exposed to VPA in utero [31, 32]. The critical period for exposure
to teratogens shown to increase the risk of autism is early in the first trimester [33]. Some of
the critical teratogens related to autism risk are maternal rubella infection [6], ethanol [34],
thalidomide [35] and VPA [8, 9]. Approximately one in 250 pregnancies is known to be exposed
to antiepileptic drugs [36] and a significant proportion of these are exposed to VPA, either as
monotherapy or as part of a polytherapy drug regimen.

The timing for the teratogenic effect of VPA that increases the risk for autism cannot be
estimated directly, as the drug is typically taken throughout the entire pregnancy [33]. Many
children exposed in utero to VPA exhibit FVS, first described in 1984 [37] and characterized by
a major and minor malformations and developmental and behavioral delays [8, 12, 38-40].
Specific impairments observed in FVS includes neural tube defects, trigonocephaly, radial ray
defects, pulmonary abnormalities, coloboma of iris/optic disc, low verbal IQ and features of
ASD [41] and has been reported in a number of sibling pairs [12, 21, 37, 42-44] with different
degree of severity among affected siblings. Common facial features of FVS include epicanthal
folds, broad nasal bridge, short nose with antiverted nares, long upper lip, and low set,
posteriorly rotated ears [41].
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The classical autism was first reported to be one of the behavioral outcomes of VPA exposure
[41] through several case reports [12, 39, 45]. The first epidemiological study with drugs as
environmental risk factors of autism was described in 2000, with 57 offspring of women taking
anticonvulsants (see ref [46], summarized in Tables 3 and 4).

Features % of children
Poor social interaction 53
Poor communication skills 49
Short attention span 46
Insistence on routines 44
Hand flapping 25

Table 3. Autism features in children exposed in utero to anticonvulsants.

No of children VPA exposure in mg (weeks of gestation)
1 1000 (0-5), 800 (5-40)
Neural tube defect
1 1200 (1-17), 1500 (17-26), 2000 (26-40)
1 1000 (0-40)
Genitourinary 1 1000 (0-5), 800 (5-40)
5 1500 (0-40)
» 2 1000 (0-40)
Extremities
1 1500 (0-40)
1 700 (0-40)
Eyes
1 800 (0-40)
2 1000 (0-40)
Teeth
1 1700 (0-40)
Diastasis recti 1 1200 (0-40)

Table 4. Congenital malformations in children exposed in utero to VPA

Fifty two children were ascertained through the Fetal Anticonvulsant Syndrome Association
(FACS) and five were referred to the Aberdeen Medical Genetics Service (AMGS). The number
of patients exposed in utero to each anticonvulsant alone was 34 (60%) to VPA, 4 (7%) to
carbamazepine, 4 (7%) to phenytoin, and 15 (26%) to more than one anticonvulsant. The
number of patients with behavioral problems was 46 (81%), with hyperactivity or poor
concentration was 22 (39%) and with attention deficit and hyperactivity disorder 4 (7%).
Autistic features were present in 34 patients (60%).

147
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4. Animal model of autism induced by prenatal exposure to VPA

Considering human evidences of autism followed by early in utero exposure to teratogens,
such as thalidomide and VPA, the next step was to develop a model of autism induced by
prenatal exposure of animals to the same drugs, particularly VPA [47]. The in utero exposure
to VPA induced patterns of abnormal development across species as demonstrated in Table 5.

Patterns of abnormal development Specie References
Mice [48, 49]

Skeletal abnormalities Rabbits [50]
Rhesus monkey [51]
Cardiac abnormalities Mice [52]
Neural tube defects (including spina bifida) Mice [53]
Cranial neural tube defects Rats [54]
Behavioral abnormalities Rats [55]

Table 5. Patterns of abnormal development across species after in utero exposure to VPA.

The use of animal models allows a wide range of research possibilities including the search
for etiologic clues, molecular targets, and biomarkers. The main aspects to take into account
in developing animal models, is (i) to reproduce a circumstance that would lead to a certain
condition, for example, inducing a genetic disease by manipulating a specific gene; (ii) to
induce similar patterns found in the studied condition, for example, observing the same
behavioral alterations found in a particular impairment; (iii) to observe if the model has
similarities to a human features when exposed to certain treatment [56]. The time of induction,
dosage of VPA and the way of administration in rodents are variable in the literature, as
demonstrated in Table 6. It is important to observe that in rats, 600 mg/Kg VPA at 12.5 days
of pregnancy is the most investigated due to similarities in the features of autism. Besides the
higher number of studies describing prenatal exposure to VPA, there are some protocols
reporting also postnatal exposure and behavioral features of autism [57, 58].

The diagnoses of autism take into account behavioral alterations in three main areas: sociabil-
ity, communication and behavioral stereotypies and narrow range of interests. Therefore, a
consistent animal model must show similar behavioral abnormalities, which might indicate
common neural alterations.

Our group has administrated a single intraperitoneal injection of 600 mg/kg VPA in pregnant
rats at the embryonic day 12.5, observing variations in social memory, and flexibility to change
strategy [84]. Females were kept separate and with free access to their own litters. Somatic
aspects observed during the pups' development, included body weight, ear unfolding and eye
opening which were unchanged between groups. In three-chambered-apparatus test, used to
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Embryonic Day(s) Procedure References
(mg/Kg VPA)
Mice

9 IP (200, 400, 800) [59]
9 SC (400) (60]
9,12.5,14.5 IP (500) [61]

1" OA (800) [62,63]
12,13,14 IP (100) [64]
125 IP (500) [65]

13 SC(600) [66, 67]

Rats

7,9.5,12,15 IP (400) [68]
8,9,10, 11 OA (800) [69]
9 IP (600) [70]

9 OA (800) [71-74]

9,11 AO (800) [75,76]
11,12,13 IP (200) [77]
15 IP (500) [78]
1.5,12,12.5 IP (350) [9]
12 IP (400) [79]

12 IP (600) [80-83]

125 IP (600) [10, 14, 84-93]

125 SC(350) [94]
125 IP (350) [95]
125 IP (400, 500, 600) [77]
12.5 IP (500) [96]

Table 6. Prenatal exposure of VPA in rodents: Time of induction and dosage

observe social memory, preferences and interests, the VPA group spent less time in the
presence of a stranger rat and more time in the presence of an object, indicating a reduced place
preference conditioned by conspecific and an increased preference for the object, revealing
sociability impairments. As adults, they showed inappropriate social approach to a stranger
rat, decreased preference for social novelty, apparently normal social recognition, no spatial
learning deficits and normal resistance to change on Morris water maze.
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5. Brain alterations induced by prenatal exposure to VPA

Once prenatal exposure to VPA became a reliable tool to model autism, more brain alterations
were investigated in rodents exposed to this teratogen, as summarized in Table 7.

Rodent  VPA (mg/kg) Findings References

500 Altered distribution of 5-HT neurons in the dorsal raphe nucleus. [71]

350 Reduction in the number of motor neurons from hypoglossal and (0]
oculomotor nuclei.

Reduction in the number of putative synaptic contacts in connection

500 ) [97]
Rat between layer 5 pyramidal neurons.
Prolonged neuronal progenitor cells proliferation in embrionar
400 9 prog ) P Y [79]
period.

Decreased number of purkinje cells, neuronal degeneration and
600 ) [98]
chromatolysis.

500 Reduction in the number of Parvalbumin -positive inhibitory neurons (99]
in the neocortex.

Mice

500 Nissl-positive cell loss in the middle and lower layers of the prefrontal (65]
cortex and in the lower layers of the somatosensory cortex.

Table 7. Brain alterations induced by in utero exposure to VPA

Behavioral outcomes started to be studied, demonstrating a number of anatomic and behav-
ioral features characteristic of human cases by exposing rodents” embryos to VPA at the time
of neural tube closure. One of the affected structures in the brains is the cerebellum. Magnetic
resonance imaging showed that patients with autism have reduced size of the cerebellum when
compared to controls, displaying smaller vermal lobules VI and VII. This abnormality is
probably an outcome of developmental hypoplasia and not likely shrinkage or deterioration
after full development had been achieved [100]. Similar alterations were found in brains from
rat model of autism induced by prenatal exposure to VPA [9]. Exposed rats showed a reduction
in the number of motor neurons of the earliest-forming motor nuclei (V, XII), and had the VI
th and III rd cranial nerve nuclei affected. In the same way, another work found diminished
number of cells in the posterior lobe of the cerebellum [86]. In this context, cerebellar anatomy
alterations in humans might be due to loss of neurons in the cranial nerve motor nuclei, as
demonstrated in rats.

The amygdala is likely to be also linked to autism, due to its involvement in social-emotional
behavior. Rats exposed to VPA in utero had longer lasting and harder to extinguish fear
memories, which could be explained by the hyperreactivity and hyperplasticity found in the
lateral amygdala [96, 101]. Another work found enhanced long-term potentiation (LTP) in the
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medial prefrontal cortex of rats exposed to VPA, with enhanced synaptic plasticity and short-
and long-term fear memories [82].

Synaptic impairments were already described in autism, which may be related to neuroligins
alterations. Neuroligins are a family of proteins which play a central role in synaptic matura-
tion and were affected in rats after in utero exposure to VPA. Neuroligin 3 mRNA expression
was decreased in the hippocampus, especially in cornu ammonis (CA1) and dentate gyrus [62].

Synaptic plasticity is influenced by brain-derived neurotrophic factor (BDNF), a factor that
modulates several neurochemical parameters. High levels of BDNF have been reported in the
blood of patients with autism [102]. BDNF acts through TrkB-mediated activation of various
signal transduction pathways, including pathways that involve PI3K, mitogen-activated
kinase (MAPK), and phospholipase C-y [103]. Infusion of BDNF in the nucleus accumbens of
aged rats restored synaptic plasticity and improved cognition [104] and some environmental
factors, such social isolation, results in low levels of BDNF in the hippocampus of rats [105].
Animals exposed to VPA in utero display decreased cortical BDNF mRNA expression. It is
important to notice that altered levels of the transcript will not necessarily mean an altered
protein expression [63]. Diminished BDNF may lead to altered synaptic development; once it
is known that this neurotrophic factor is involved in development and function of serotonergic
neurons [106].

Several hypotheses have arisen to explain the social deficits in autism. One of these proposals
points an alteration in opioidergic mechanisms as a likely causative of behavioral impairments
in this disorder [107]. Opioid peptides are involved in stress responses and affective states,
and blockage of their receptors causes dysphoria in humans. Enkephalins are part of the opioid
family and are distributed in brain areas, like the striatum and the nucleus accumbens,
involved in processing emotional information, anxiety and fear. Exposure to VPA reduced
proenkephalin mRNA expression in both the core and shell of the nucleus accumbens and dorsal
striatum of rats concomitantly to anxious-like behavior [91].

The monoamine system is also altered in patients with autism and their relatives. It was
demonstrated that children with autism have increased 5-HT (serotonin) synthesis capacity
when compared to children with typical development [108]. Besides, it is widely known that
sleep disorders are common in autistic children [109]. Interestingly, increased levels of
serotonin was found in pre-frontal cortex of rats prenatally exposed to VPA in association with
disrupted sleep/awake rhythm. The elevated levels of 5-HT were found during light phase of
animals’ circadian rhythm [74]. It was proved that serotonergic neurons have a silent firing
rate during REM sleep [110], indicating that the sleep disturbance found in the animals may
be related to increased levels of 5-HT found in their prefrontal cortex. In addition, higher levels
of 5-HT were also reported in the left side of hippocampus and in blood from rats [111].
However, using the whole hippocampus, it was demonstrated 46% decrease in 5-HT levels
from rats exposed to VPA in utero [70].

Recently, we observed hippocampal reactive astrogliosis in the group of rats exposed in
utero to VPA (see ref [84]). After 15 postnatal days, hippocampal astrocytes were intensely
immunoreactive to the astroglial marker Glial Fibrillary Acidic Protein (GFAP) (Figure 2).
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Astrocytes are the major cell type in the central nerve system (CNS) and provide a variety of
critical supportive functions that maintain neuronal homeostasis, participating of the synapse
and the glutamatergic metabolism [112]. These cells become reactive in VPA group, charac-
terized by up-regulation of GFAP and apparently show higher number of processes than the
control cells as demonstrated by the squares in A and B.

Seven Fresh-frozen post mortem tissues from individuals with autism and CSF from six living
autistic patients were investigated for cytokine protein profiling [113]. This study shows an
active neuroinflammatory process in the cerebral cortex, white matter, and notably in the
cerebellum. Immunocytochemical studies showed marked activation of microglia and
astroglia. The cytokine profiling indicated that the macrophage chemoattractant protein
(MCP)-1 and tumor growth factor-betal, both derived from neuroglia were the most prevalent
cytokines in brain tissues. We presumed that microglia/macrophage-derived pro-inflamma-
tory cytokines regulate the transition of astrocytes into reactive astrogliosis. Nevertheless, the
mechanisms which regulate the level of astroglial cell activity in the hippocampus from VPA
autism model need to be investigated.

HippocampusP15 VRA

Control

Figure 2. Astrocyte immunoreactive to GFAP in hippocampus from rats. A. Representative image from control group,
B. Representative image from VPA group. Scale bar =50 pm

Glutamatergic excitatory synapses are the major type of synapses in the brain and it was found
that glutamate metabolism is altered in autistic CNS, particularly the glutamate receptors
AMPA, NMDA and mGlIuR5 [114]. In agreement, rats exposed in utero to VPA show impair-
ments in excitatory/inhibitory brain balance [78]. In this context, impairment in excitatory and
inhibitory signaling during certain periods of development is proposed to be involved in the
autism pathophysiology [115].

Although social impairments are one of the most important features observed in autism,
patients present several other symptoms, including motor disturbances. Motor stereoty-
pies are part of the so called autism triad of impairments, but hypotonia, motor apraxia,
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toe-walking, have already been reported [116]. Evaluation of motor cortex neurons of rats
exposed to VPA in utero showed no changes in length or volume of either basilar or api-
cal dendrites, but presented greater dendritic arborization in comparison with controls.
This data indicates that pruning of neurons is abnormal in animals prenatally exposed to
VPA [95]. Evidence suggests that the same may happen in patients with autism, since
there are reports of increased brain weight in autopsy cases of autism [117]. However,
the involvement of the abnormal pruning in motor cortex neurons with motor disturban-
ces in autism deserves further investigation. Individuals with autism are more likely to
present hearing deficits. In a study with a group of 199 children and adolescents, 3.5%
had profound bilateral hearing loss or deafness [118].

The superior olivary complex (SOC) plays different roles in hearing. It is located within the
lower brainstem and it is involved in encoding temporal features of sound and descending
modulation of the cochlear nucleus and cochlea for listening in background noise. Rats exposed
to VPA in utero showed reduced number of neurons and disrupted neuronal morphology in
the SOC. Neuronal cell bodies were smaller and more round, indicating that these anatomical
feature might have a role in the hearing difficulties that are a common in patients with autism
[87]. In a study with brains of patients with autism similar morphological alterations were
found, including soma size, shape and number of neurons in the SOC [119].

The cerebellum have been the focus of studies involving active and chronic neuroinflammatory
process in autistic patients, demonstrating the presence of proinflammatory chemokines such
as MCP-1 as well as antiinflammatory cytokines such as TGF-f1 in this brain structure. These
findings support the idea that a chronic state of specific cytokine activation occurs in autism
[113]. Because neuroimmune responses are influenced by the genetic background of the host,
the role of neuroinflammation in the context of the genetic and other factors that determine
the autism phenotype remains an important issue to be investigated.

6. Concluding remarks and scientific challenges

The spectrum of autism comprises a multifactorial group of disorders, with phenotypic
diversity related to the symptoms and increasing prevalence. One of the major challenges of
cognitive neuroscience is to understand how changes in the structural properties of the brain
affect the plasticity exhibited whenever a person develops, ages, learns a new skill, make social
interaction or adapts to a disease. In ASD, it is necessary studies in this field attempting to
explain and understand the trigger of autism. In this context, it is not easy to find a single
animal model able to captures the entire molecular and cellular alterations observed in patients
with ASD.

Studies of in utero interventions in the search for animal models of autism, together with the
study of potential clinical markers to ASD are innovative and may generate strategies aiming
(a) the prevention of autism; (b) the construction of laboratory kits as new tools to improve
and anticipate diagnosis; (c) the study of neuroglial plasticity; (d) the search for new clues to
unravel the etiology of ASD. Challenged by these complexities, it is necessary to evaluate the
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most representative animal model to which a research group may address its questions.
Considering that neuroimmune responses are influenced by the host, the role of possible
neuroinflammation triggered by environmental factors in utero followed by neuroglial
alterations in the litters remain an important issue to be investigated.

The present chapter summarizes findings obtained in rodents exposed in utero to VPA which
present important similarities to autism features, supporting it as a valuable experimental
model to study neurodevelopmental alterations induced by VPA as an environmental risk
factor.
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