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Distributed Architecture for Intelligent Robotic Assembly 

 Part II: 

 Design of the Task Planner 
 

 

Jorge Corona-Castuera and Ismael Lopez-Juarez 

 

1. Introduction 

In previous chapter it has been described the overall architecture for multimo-

dal learning in the robotic assembly domain (Lopez-Juarez & Rios-Cabrera, 

2006). The acquisition of assembly skills by robots is greatly supported by the 

effective use of contact force sensing and objects recognition. In this chapter, 

we will describe the robot’s ability to acquire and refine its knowledge through 

operations (i.e. using contact force sensing during fine motions) and how a 

manipulator can effectively learn the assembly skill starting from scratch. 

The use of sensing to reduce uncertainty significantly extends the range of 

possible tasks. One source of uncertainty is that the programmer’s model of 

the environment is incomplete. Shape, location, orientation and contact states 

have to be associated to movements within the robot’s motion space while it is 

in constraint motion. Compliant motion meets external constraints by specify-

ing how the robot’s motion should be modified in response generated forces 

when constraints are violated. Generalizations of this principle can be used to 

accomplish a wide variety of tasks involving constrained motion, e.g., insert-

ing a peg into a hole or following a weld seam under uncertainty. 

The success of robotic assembly operations therefore, is based on the effective 

use of compliant motion, the accuracy of the robot itself and the precise 

knowledge of the environment, i.e. information about the geometry of the as-

sembly parts and their localisation within the workspace. However, in reality 

uncertainties due to manufacturing tolerances, positioning, sensing and con-

trol make it difficult to perform the assembly. Compliant motion can be 

achieved by using passive devices such as the Remote Centre Compliance 

(RCC) introduced by Whitney (Whitney & Nevis, 1979) or other improved ver-

sions of the device (Joo & Miyasaki, 1998). Other alternative is to use Active 

Compliance, which actually modifies either the position of the manipulated 

component as a response to constraint forces or the desired force. Some com-

Source: Manufacturing the Future, Concepts - Technologies - Visions , ISBN 3-86611-198-3, pp. 908, ARS/plV, Germany, July 2006, Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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mercial devices have emerged in recent years to aid industrial applications 

(Erlbacher, 2004). 

Active compliance can be roughly divided into fine motion planning and reac-

tive control. Fine motion planning relies on geometrical path planning whereas 

reactive control on the synthesis of an accommodation matrix or mapping that 

transform the corresponding contact states to corrective motions. A detailed 

analysis of active compliance can be found in (Mason, 1983) and (De Schutter 

& Brussel, 1988). Perhaps, one of the most significant works in fine motion 

planning is the work developed by Lozano-Perez, Mason and Taylor known as 

the LMT approach (Lozano-Perez, et al, 1984). The LMT approach automati-

cally synthesizes compliant motion strategies from geometric descriptions of 

assembly operations and explicit estimates of the errors in sensing and control.  

Approaches within fine motion planning can also be further divided into 

model-based approaches and connectionist-based approaches though, some 

reactive control strategies can be well accommodated within the model-based 

approach. In either case, a distinctive characteristic in model-based approaches 

is that these take as much information of the system and environment as pos-

sible. This information includes localisation of the parts, part geometry, mate-

rial types, friction, errors in sensing, planning, and control, etc. On the other 

hand, the robustness of the connectionist-based approaches relies on the in-

formation given during the training stage that implicitly considers all the 

above parameters. 

In this chapter we present a “Task Planner”, connectionist-based approach that 

uses vision and force sensing for robotic assembly when assembly components 

geometry, location and orientation is unknown at all times. The assembly op-

eration resembles the same operation as carried out by a blindfold human op-

erator. The task planner is divided in four stages as suggested in (Doersam & 

Munoz, 1995) and (Lopez-Juarez, 2000): 
 

Pre-configuration: From an initial configuration of the hand/arm system, the 

expected solutions are the required hand/arm collision-free paths in which the 

object can be reached. To achieve this configuration, it is necessary to recog-

nize invariantly the components and determining their location and orienta-

tion. 

Grasp: Once the hand is in the Pre-configuration stage, switching strategies be-

tween position/force controls need to be considered at the moment of contact 

and grasping the object. Delicate objects can be broken without a sophisticated 

contact strategy even the Force/Torque (F/T) sensor can be damaged. 
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Translation: After the object is firmly grasped, it can be translated to the as-

sembly point. The possibility of colliding with obstacles has to be taken into 

account. 

Assembly Operation: The assembly task requires robust and reactive posi-

tions/force control strategies. Mechanical and geometrical uncertainties make 

high demands on the controller. 

The pre-configuration for recognition and location of components as well as 

the assembly operation are based on FuzzyARTMAP neural network architec-

ture, situated under the connectionist-based approach employing reactive con-

tact forces. 

In this approach, the mapping between contact states and arm motion com-

mands is achieved by using fuzzy rules that create autonomously an Acquired-

Primitive Knowledge Base (ACQ-PKB) without human intervention. This 

ACQ-PKB is then further used by the Neural Network Controller (NNC) for 

compliance learning. 
 

2. Related Work 

The use of connectionist models in robot control to solve the problem under 

uncertainty has been demonstrated in a number of publications, either in 

simulations (Lopez-Juarez & Howarth, 1996), (Asada, 1990), (Cervera & del 

Pobil, 1996), or being implemented on real robots (Cervera & del Pobil, 1997), 

(Gullapalli, et al, 1994), (Howarth, 1998), (Cervera & del Pobil, 2002). In these 

methods, Reinforcement Learning (RL), unsupervised and supervised type 

networks have been used. 

The reinforcement algorithm implemented by V. Gullapalli demonstrated to be 

able to learn circular and square peg insertions. The controller was a back-

propagation network with 11 inputs. These are the sensed positions and forces: 

(X, Y, Z, θ1, θ2) and (Fx, Fy, Fz, mx, my, mz). The output of the network was the 

position commands. The performance of the operation was evaluated by a pa-

rameter r, which measured the performance of the controller. r varied between 

0 to 1 and was a function of the sensed peg position and the nominal hole loca-

tion. The network showed a good performance after 150 trials with insertion 

times lower than 100 time steps (Gullapalli, 1995). Although the learning capa-

bility demonstrated during experiments improved over time, the network was 

unable to generalise over different geometries. Insertions are reported with 
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both circular and square geometries; however, when inserting the square peg, 

its rotation around the vertical axis was not allowed, which facilitated the in-

sertion. M. Howarth followed a similar approach, using also backpropagation 

in combination with reinforcement learning. In comparison with Gullapalli’s 

work, where the reinforcement learning values were stochastic, Howarth’s re-

inforcement value was based on two principles: minimization of force and 

moment values and continuation of movement in the assembly direction. This 

implied that whenever a force or moment value was above a threshold, an ac-

tion (i.e., reorientation), should occur to minimize the force. Additionally, 

movements in the target assembly direction were favoured. During simulation 

it was demonstrated that 300 learning cycles were needed to achieve a mini-

mum error level with his best network topology during circular insertions 

(Howarth, 1998). A cycle meant to be an actual motion that diminished the 

forces acting on the peg. For the square peg, the number of cycles increased 

dramatically to 3750 cycles. These figures are important, especially when fast 

learning is desired during assembly. 

On the other hand, E. Cervera using SOM networks and a Zebra robot (same 

used by Gullapalli) developed similar insertions as the experiments developed 

by Gullapalli. Cervera in comparison with Gullapalli improved the autonomy 

of the system by obviating the knowledge of the part location and used only 

relative motions. However, the trade-off with this approach was the increment 

of the number of trials to achieve the insertion (Cervera & del Pobil, 1997); the 

best insertions were achieved after 1000 trials. During Cervera's experiments 

the network considered 75 contact states and only 8 out of 12 possible motion 

directions were allowed. For square peg insertions, there were needed 4000 tri-

als to reach 66% success of insertion with any further improvement. According 

to Cervera's statement, “We suspect that the architecture is suitable, but the 

system lacks the necessary information for solving the task”, the situation 

clearly recognises the necessity to embed new information in the control sys-

tem as it is needed. 

Other interesting approaches have also been used for skill acquisition within 

the framework of Robot Programming by Demonstration that considers the 

characteristics of human generated data. Work carried out by (Kaiser & Dill-

man, 1996) shows that skills for assembly can be acquired through human 

demonstration. The training data is first pre-processed, inconsistent data pairs 

are removed and a smoothing algorithm is applied. Incremental learning is 

achieved through Radial Basis Function Networks and for the skill refinement; 
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the Gullapalli’s Stochastic Reinforcement Value was also used. The methodol-

ogy is demonstrated by the peg-in-hole operation using the circular geometry. 

On the other hand (Skubic & Volz, 2000 b), use a hybrid control model which 

provides continuous low-level force control with higher-level discrete event 

control. The learning of an assembly skill involves the learning the mapping of 

force sensor signals to Single-Ended Contact Formations (SECF), the sequences 

of SECFs and the transition velocity commands which move the robot from the 

current SECF to the next desired SECF. The first function is acquired using su-

pervised learning. The operator demonstrates each SECF while force data is 

collected, and de data is used to train a state classifier. The operator then dem-

onstrates a skill, and the classifier is used to extract the sequence of SECFs and 

transitions velocities which comprise the rest of the skill. 

The above approaches can be divided in two groups, those providing autono-

mous assembly skill and those which teach the skill by demonstration. These 

approaches have given some inputs to our research and the work presented 

here is looking to improve some of their limitations. In Gullapalli’s work the 

hole location has to be known. Howarth improved the autonomy by obviating 

the hole’s location; however, the lengthy training process made this approach 

impractical. Cervera considered many contact states, which worked well also 

during the assembly of different type of components. In the case of teaching 

the skill by demonstration, the method showed by Kaiser and Dillman was 

lengthy for real-world problems and the work by Skubic and Volz assumes 

that during supervised training the operator must know which SECF classes to 

include in the set. 

The integration of vision systems to facilitate the assembly operations in un-

calibrated workspaces is well illustrated in (Jörg, et al, 2000) and (Baeten, et al, 

2003) using eye-in-hand vision for different robotic tasks. 

3. Workplace Description 

The manufacturing cell used for experimentation is integrated by a KUKA 

KR15/2 industrial robot. It also comprises a visual servo system with a ceiling 

mounted camera as shown in figure 1. The robot grasps the male component 

from a conveyor belt and performs the assembly task in a working table where 

the female component is located. The vision system gets an image to calculate 

the object’s pose estimation and sends the information to the robot from two 

predefined zones:  
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Zone 1 which is located on the conveyor belt. The vision system searches for 

the male component and determines the pose information needed by the ro-

bot.  

Zone 2 is located on the working table. Once the vision system locates the fe-

male component, it sends the information to the NNC. 

 

 

 

 

Figure 1. Manufacturing cell 

 

The NNC for assembly is called SIEM (Sistema Inteligente de Ensamble 

Mecánico) and is based on a FuzzyARTMAP neural network working in fast 

learning mode (Carpenter, et al, 1992). The vision system, called SIRIO (Sis-

tema Inteligente de Reconocimiento Invariante de Objetos), also uses the same 

neural network to learn and classify the assembly components (Pena-Cabrera 

& Lopez-Juarez, 2006). The SIRIO was implemented with a high speed camera 

CCD/B&W, PULNIX 6710, with 640x480 resolution; camera movements on the 

X and Y axis were implemented using a 2D positioning system. 

For experimental purposes three canonical peg shapes were used: circular, 

square and radiused-square as it is shown in figure 2. Both, chamfered and 

chamferless female components were employed during experimentation. 
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Figure 2. a) Female assembly components, b) Male assembly components 

4. Assembly methodology 

4.1 Pre-Configuration 

4.1.1 Starting from scratch 

Initially, the robot system does not have any knowledge. To accomplish the 

very first assembly the robot has to acquire a Primitive Knowledge Base (PKB) 

using an interactive method. 
 

a) Given Primitive Knowledge Base (GVN-PKB) 

The formation of the PKB basically consists of showing the robot how to react 

to individual components of the F/T vector. This procedure results in creating 

the required mapping between contact states and robot motions within the 

motion space– linear, angular and diagonal movements- , this is illustrated in 

figure 3. The Given PKB (GVN-PKB) used for the experiments reported in this 

chapter considered rotation around Z axis and diagonal motions as it is illus-

trated in figure 4. 
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Using the above mentioned GVN-PKB to start the learning of the assembly 

skill, it showed to be effective, however the robot still lacked for autonomy and 

it was realized that sometimes the robot did not used all the information given 

in the GVN-PKB and also it was noticed a difference between the taught con-

tact forces the actual forces occurring during assembly so that an autono-

mously created PKB was needed in order to provide complete self-adaptive 

behaviour to the robot. 

 

 
 

 

Figure 3. Motion space 
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b) Acquired Primitive Knowledge Base (ACQ-PKB) 

It was decided to embed a fuzzy logic mechanism to autonomously acquire an 

initial knowledge from the contact states. That is, learning the mapping from 

scratch without knowledge about the environment. The only instruction given 

to the robot was the task – assembly – in order to start moving downwards. 

When the contact is made the robot starts acquiring information about the con-

tact states following fuzzy rules and autonomously generating the correspond-

ing motion commands and forming the Acquired PKB (ACQ-PKB). During the 

first contact, the fuzzy algorithm determines the type of operation: chamfered 

or chamferless assembly and chooses the rules to apply depending of moments 

and forces magnitude presents in X and Y directions. 

Fuzzy logic have proved to be useful to model many decision taking processes 

in presence of uncertainty or where no precise knowledge of the process exist 

in an attempt to formalize experience and empiric knowledge of the experts in 

a specific process. The initial knowledge from our proposal comes from a static 

and dynamic force analysis when the components are in contact assuming that 

there is an error in the position with respect to the centre of insertion. With the 

aid of dynamic simulation software (ADAMS), the behaviour of the contact 

impact is obtained for different situations which are to be solved by the 

movements of the manipulator. 

 

There are 12 defined motion directions (X+, X-, Y+, Y-, Z+, Z-, Rz+, Rz-, X+Y+, 

X+Y-, X-Y+ and X-Y-) and for each one there is a corresponding contact state. 

An example of these contact states for a chamfered female squared component 

is shown in figure 5. The contact states for linear motion X+, X-, Y+, Y-, and lin-

ear combined motions X+Y+, X+Y-, X-Y+, X-Y- are shown in figure 5(a). In fig-

ure 5(b), it is shown a squared component having four contact points. Figures 

5(c) and 5(d) provide additional patterns for rotation Rz- and Rz+ respectively 

when the component has only one point of contact. The contact state for map-

ping Z+ is acquired making vertical contact between component and a hori-

zontal surface, Z- direction is acquired with the component is in free space. 

This approach applies also for chamfered circular and radius-squared compo-

nents as well as the chamferless components. 

It is stated to use the following considerations for the generation of the fuzzy 

rules: a) Number of linguistic values: 2 (minimum, maximum), b) Number of 

input variables: 12 (Fxp, Fxn, Fyp, Fyn, Fzp, Fzn, Mxp, Mxn, Myp, Myn, Mzp, 

Mzn) and c) Maximum number of rules: 122 = 144 (only 24 were used). 
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Figure 5. Contacts between chamfered components while acquiring the primitive 

knowledge base, 

a) Linear movements, 

b) Pure rotation Rz+ and Rz-,  

c) Rotation Rz-,  

d) Rotation Rz+. 
 

The membership functions are stated as showed in figure 6. Forces and mo-

ments have normalised values between 0 and 1. The normalization was ad-hoc 

and considered the maximum experimental value for both, force and moment 

values. No belong functions were defined for the output, because our process 

does not includes defuzzification in the output. The function limit values are 

chosen heuristically and according to previous experience in the assembly op-

eration. 
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Figure 6. Membership functions 

 

Having those membership values, antecedents and consequents defined, then 

the Rule Statement can be generated and the ACQ-PKB created. An example of 

these rules for chamfered assembly is given in table 1. 
 

 
IF Fxp Fxn Fyp Fyn Fzp Fzn Mxp Mxn Myp Myn Mzp Mzn THEN DIR 

IF Max Min Min Min Max Min Min Min Max Min Min Min THEN X+ 

IF 
Max Min Min Min Max Min Max Min Max Min Min Min 

THEN 
X+ 

IF Min Max Min Min Max Min Min Min Min Max Min Min THEN X- 

IF 
Min Max Min Min Max Min Min Max Min Max Min Min 

THEN 
X- 

IF Min Min Max Min Max Min Min Max Min Min Min Min THEN Y+ 

IF Min Min Max Min Min Min Min Min Min Max Min Min THEN Y+ 

IF 
Min Min Min Max Max Min Max Min Min Max Min Min 

THEN 
Y- 

IF Min Min Min Max Max Min Min Min Min Min Min Min THEN Y- 

IF 
Min Min Min Min Max Min Min Min Min Min Min Min 

THEN 
Z+ 

IF Min Min Min Min Min Min Min Min Min Min Min Min THEN Z- 

IF Min Min Min Min Max Min Min Min Min Min Max Min THEN Rz+ 

IF 
Max Min Min Min Max Min Min Min Max Min Max Min 

THEN 
Rz+ 

IF Min Max Min Min Max Min Min Min Min Max Max Min THEN Rz+ 

IF 
Min Min Max Min Max Min Min Max Min Min Max Min 

THEN 
Rz+ 

IF Min Min Min Max Max Min Max Min Min Min Max Min THEN Rz+ 

IF Min Min Min Min Max Min Min Min Min Min Min Max THEN Rz- 

IF 
Max Min Min Min Max Min Min Min Max Min Min Max 

THEN 
Rz- 

IF Min Max Min Min Max Min Min Min Min Max Min Max THEN Rz- 

IF 
Min Min Max Min Max Min Min Max Min Min Min Max 

THEN 
Rz- 

IF Min Min Min Max Max Min Max Min Min Min Min Max THEN Rz- 

IF Max Min Max Min Max Min Min Max Max Min Min Min THEN X+Y+ 

IF 
Max Min Max Min Max Min Max Min Max Min Min Min 

THEN 
X+Y- 

IF Min Max Min Max Max Min Min Max Min Max Min Min THEN X-Y+ 

IF 
Min Max Min Max Max Min Max Min Min Max Min Min 

THEN 
X-Y- 

Table 1. Fuzzy rules for chamfered assembly 
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For chamferless assembly another knowledge base would have to be generated 

using similar rules as shown above, but without considering force in axis X 

and Y. The reason is that these forces in comparison with the moments gener-

ated around those axes are very small. The inference machine determines the 

rules to apply in a given case.  

To quantify the fuzzy output response a fuzzy logic membership value is used.  

For the “AND” connector we used the product criteria (Driankov, et al, 1996), 

and to obtain a conclusion, the maximum value for the fuzzy outputs in the 

expression (1) response was used. 
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Once the algorithm values have been generated, a routine which allows the 

manipulator for autonomous database generation is created. The mapping ac-

quisition between generated contact states-arm motion commands starts from 

the insertion centre. This information is determined by calculating the centroid 

of the component by the vision system. Positional errors due to the image 
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processing are about 1 mm to 2 mm which were acceptable for the experimen-

tal work since the assembly was always successful. The manipulator starts 

moving in every possible direction generating a knowledge database. The re-

sults given in this research considered only 24 patterns as indicated in the 

fuzzy rules shown in table 1, omitting the rotations around the X and Y axis 

since only straight insertions were considered. Some patterns generated with 

this procedure for the chamfered and chamferless square peg insertion can be 

observed in figure 7. 
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Figure 7. ACQ-PKB, left chamfered assembly, right chamferless assembly 
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In order to get the next motion direction the forces are read, normalized and 

classified using the NNC on-line. The F/T pattern obtained from the sensor 

provides a unique identification. The F/T vector (2) comprises 12 components 

given by the 6 data values (positive and negative). 

 

[ ]Tmzmzmymymxmxfzfzfyfyfxfx

TFCurrent

−−−−−−

=

,,,,,,,,,,,

]/[
 (2)

 

4.1.2 Acquiring location and component type 

The SIRIO system employs the following methodology: a) Finding the region 

of interest (ROI), b) Calculate the histogram of the image, d) Search for com-

ponents, e) Centroid calculation, f) Component orientation, g) Calculate 

Boundary Object Function (BOF), distances between the centroid and the pe-

rimeter points, h) Descriptor vector generation and normalization 

(CFD&POSE) and i) Information processing in the neural network. 

The descriptive vector is called CFD&POSE (Current Frame Descriptor and 

Pose) and it is conformed by (3): 

 

[ ] T

ccn IDZYXDDDDPOSECDF ],,,,,,...,,,[& 321 θ=  (3)

 

Where: Di are the distances from the centroid to the perimeter of the object. 

(180 data values) 

 

- XC, YC, are the centroid coordinates. 

- φ, is the orientation angle. 

- Z is the height of the object. 

- ID is a code number related to the geometry of the components.´ 

 

With this vector and following the above methodology, the system has been 

able to classify invariantly 100% of the components presented on-line even if 

they are not of the same size, orientation or location and for different light 

conditions, see (Pena-Cabrera & Lopez-Juarez, 2006) for details. 
 

The CFD&POSE vector is invariant for each component and it is used for clas-

sification. The vector is normalized to 185 data dimension and normalized in 
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the range [0.0 – 1.0]. The normalization of the BOF is accomplished using the 

maximum divisor value of the vector distance. This method allows having 

very similar patterns as input vectors to the neural network, getting a signifi-

cant improvement in the operation system. In our experiments, the object rec-

ognition method used the above components having 210 patterns as primitive 

knowledge to train the neural network. It was enough to recognize the assem-

bly components with ρa = 0.2 (base vigilance), ρmap = 0.7 (vigilance map) and ρb 

= 0.9 parameters, however, the SIRIO system can recognize more complex 

components (Pena-Cabrera, et al, 2005). 
 

4.2 Grasp 

At this stage, the PKB has been acquired and the location information sent to 

the robot. The motion planning from Home position to zone 1 uses the male 

component given coordinates provided by SIRIO. The robot uses this informa-

tion and the F/T sensor readings to grasp the piece and to control the motion in 

Z direction for two stages: 

 

a) The security stage 

In the event that position and orientation of the male component, given by 

SIRIO, have an error larger than 5 mm in X or Y axis and 10º around Z direc-

tion. Sensing is executed during 10 movements in Z- direction with manipula-

tor steps of 0.2 mm. In this stage a collision is possible to occur between grip-

per and components. The system reacts moving to home position when a force 

limit in Z direction is reached (4 N). The robot continues its trajectory in Z- di-

rection until a distance of 1 mm component is reached. 

 

b) Grasp Component 

This sensing stage begins just before the robot touches the component. The 

sensor is read every 0.1 mm executed by manipulator, this stage ends when 

the robot touches the component, in this situation the force magnitude in Z di-

rection is at least 4 N, then the condition to grasp (close gripper) is satisfied. 

4.3 Translation 

The translation is similar to the grasping operation in zone 1. The path to move 

the robot from zone 1 to zone 2 (assembly point) is accomplished by using the 
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coordinates given by the SIRIO system. The possibility of collision with obsta-

cles is avoided using bounded movements. 
 

4.4 Assembly Operation 

4.4.1 Neural Network Controller (NNC) 

a) ART Models 

Several works published in the literature inspired ideas about contact recogni-

tion and representation (Xiao & Liu, 1998), (Ji & Xiao, 1999), (Skubic &Volz, 

1996), however the fuzzy representation appealed to be suitable to expand the 

NNC capability and further work was envisaged to embed the automatic 

mechanism to consider contact states that are actually present in a specific as-

sembly operation. It was believed that by using only useful information, com-

pliance learning could be effective in terms of avoiding learning unnecessary 

contact information, hence also avoiding unnecessary motions within the mo-

tion space. 

The Adaptive Resonance Theory (ART) is a well established associative brain 

and competitive model introduced as a theory of the human cognitive process-

ing developed by Stephen Grossberg at Boston University. Grossberg sug-

gested that connectionist models should be able to adaptively switch between 

its plastic and stable modes. That is, a system should exhibit plasticity to ac-

commodate new information regarding unfamiliar events. But also, it should 

remain in a stable condition if familiar or irrelevant information is being pre-

sented. An analysis of this instability, together with data of categorisation, 

conditioning, and attention led to the introduction of the ART model that 

stabilises the memory of self-organising feature maps in response to an 

arbitrary stream of input patterns (Grossberg, 1976). 

The theory has evolved in a series of real-time architectures for unsupervised 

learning, the ART-1 algorithm for binary input patterns (Carpenter & Gross-

berg, 1987). Supervised learning is also possible through ARTMAP (Carpenter, 

et al, 1991) that uses two ART-1 modules that can be trained to learn the corre-

spondence between input patterns and desired output classes. Different model 

variations have been developed to date based on the original ART-1 algorithm, 

ART-2, ART-2a, ART-3, Gaussian ART, EMAP, ViewNET, Fusion ARTMAP, 

LaminART just to mention but a few. 
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b) NNC Architecture 

The functional structure of the assembly system is illustrated in figure 8. The 

Fuzzy ARTMAP (FAM) (Carpenter, et al, 1992) is the heart of the NNC. The 

controller includes three additional modules. The Knowledge Base that stores 

initial information related to the geometry of the assembling parts and which 

is autonomously generated. The Pattern-Motion Selection module keeps track 

of the appropriateness of the F/T patterns to allow the FAM network to be re-

trained. If this is the case, the switch SW is closed and the corresponding pat-

tern-action provided to the FAM for on-line retraining. The selection criterion 

is given by expression (3), discussed next. 

Future predictions will be based on this newly trained FAM network. The 

Automated Motion module basically is in charge of sending the incremental 

motion request to the robot controller and handling the communication with 

the Master Computer. 

 

 

 

 
 

Figure 8. System Structure 
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c) Knowledge refinement during fine motion 

There are potential overtraining problems associated with learning patterns 

on-line during fine motion and which are solved by the Pattern-Motion Selec-

tion module indicated in figure 8. The robot should continue moving in the in-

sertion direction if, and only if, a minimum force value has been reached. In 

this situation, on-line learning is started to allow the acquisition and learning 

of the pattern-action pair that produced such contact state and favoured the 

assembly. In the event of continual learning after having reached this mini-

mum force value, the performance of the NNC might decay. This situation is 

similar to what is known as overtraining, overfitting or overlearning in ANNs. 

At this point the learning should be stopped because if the robot learns other 

patterns under the above circumstances, eventually the minimum force value 

will be different leading to wrong motions. The same applies to the condition 

when the end-effector meets a force higher than the force limit. There should 

not be any further learning during this situation since learning a higher force 

would probably damage the sensor. 

The above situations can be resumed in three fundamental questions:  

 

1) How to recover from errors? 

2) What is a good motion?  

3) which motions should or should not be learned? 

 

Having an assembly system which is guided by compliant motion, the crite-

rion to decide whether the motion was good enough to be learnt is based on 

the following heuristic expression: 

 

( ) 10≥− afterinitial FF  (4)

 

Finitial and Fafter are a merit figures measured before and after the corrective mo-

tion are applied and computed using the following equation as in (Ahn, et al, 

1992): 

 

)( 222222
mzmymxsfzfyfxF +++++=  (5)

 

The heuristic expression (5) is used for all tasks; the scale factor s has been in-

cluded in this equation in order to allow the use of different units or size com-
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ponents. In our experiments, the scale factor was selected to be equal to 1 and 

the expression (4) is used in general for any learn task and means that if the to-

tal force after the incremental motion is significantly reduced then that pattern-

action will be considered good to be included in the knowledge base. 

 

There will be ambiguous situations in which learning should not be permitted. 

This applies to patterns in the insertion direction (usually Z direction). Con-

sider downward movements in the Z- direction. At the time the peg makes 

contact with the female block, there may well be a motion prediction in the Z+ 

direction, see figure 3. This recovery action will certainly diminish the contact 

forces and will satisfy the condition given by the expression (4) in order to 

learn the force-action pair. However, this situation is redundant since it has al-

ready been given when the PKB was formed and further learning will corrupt 

the PKB changing probably the peg’s assembly direction in Z+ instead Z-. Simi-

larly, learning should not be allowed when the arm is in free-space. In this 

situation, Finitial and Fafter will be very similar and again learning another pattern 

in the Z- direction will be redundant. Both situations were tested experimen-

tally and revealed that an unstable situation may appear if further learning is 

allowed. After the pattern-action has satisfied expression (4) and the prediction 

direction is not in the Z direction, the pattern is allowed to be included in the 

new “expertise” of the robot, PKB, now the Enhanced Knowledge Base (EKB). 

The above procedure can be better understood with the flowchart of the NNC 

processing as shown in figure 9. 

 

4.4.2 Compliant motion during peg-in-hole operations 

 

The robot carries out the assemblies with incremental straight and rotational 

motions of 0.1 mm and 0.1°, respectively. Rotation around the X and Y axes 

was avoided so that only straight directions were considered which means that 

only compliant motion in XY plane and rotation around the Z axis was consid-

ered. In order to get the next motion direction the forces are read, normalized 

and classified using the NNC. 

 
Several tests were carried out to assess the compliant motion performance of 

the NNC using aluminum pegs with different cross-sectional geometry: circu-

lar, squared and radiused-square, see figure 2. 
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Figure 9. Flowchart of the NNC processing 



Distributed Architecture for Intelligent Robotic Assembly, Part II: Design…   387 

The assembly was ended when 3/4 of the body of the peg were inside the hole. 

This represented 140 motion steps in the -Z assembly direction. A typical as-

sembly operation is shown in figure 10. 

 

The Fuzzy ARTMAP network parameters during experiments were set for fast 

learning (learning rate = 1). The values for the vigilance - in the range (0-1) - 

were selected based on the fact that it was required for the FuzzyARTMAP 

network to be as selective as possible to cluster all different patterns and which 

is achieved by having a high vigilance level for the of ρmap and ρa; hence, this 

was the main criterion to select the vigilance and was not related to the task 

conditions (shape, offset errors). ρb is small since this is increased internally ac-

cording to the disparity between the input patterns and the previous recogni-

tion categories in the match tracking mechanism, for a detailed description of 

the Fuzzy ARTMAP architecture see (Carpenter, et al, 1992). In our experi-

ments the values for the vigilance were as follows: ρa = 0.2 (base vigilance), ρmap 

= 0.9 and ρb = 0.9. 

 

 

 

Figure 10. Peg-in-hole operation 
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5. Assembly Results 

5.1 Assembly results using ACQ-PKB 

Typical results in a chamfered squared peg insertion using the GVN-PKB are 

summarised in table 2. 

 
Using GVN-PKB Using ACQ-PKB 

Inser

tion 

Offset (δx, δy, 

δRz) 

(mm, mm, °) 

New 

Pat-

terns 

Alignment 

Motions 

Total 

Motions

Time 

(s) 

New  

Pat-

terns 

Align-

ment 

Motions 

Total 

Mo-

tions 

Time 

(s) 

1 (0.7, 0.8, 0.8) 0 23 173 47.08 0 26 166 44.53 

2 (-0.8, 1.1, -0.8) 1 24 178 48.19 1 36 176 47.83 

3 (-0.7, -0.5, 0.8) 2 65 213 57.78 0 22 162 43.55 

4 (0.8. -0.9, -0.8) 0 20 160 43.41 0 25 165 44.56 

5 (0.7, 0.8, -0.8) 1 28 174 47.11 0 20 160 43.14 

6 (-0.8, 1.1, 0.8) 3 30 170 46.27 1 32 173 46.48 

7 (-0.7, -0.5, -0.8) 2 21 171 46.3 0 26 168 45.56 

8 (0.8. -0.9, 0.8) 0 17 157 42.58 0 22 162 43.50 

9 (0.7, 0.8, 0.8) 0 18 158 42.92 0 27 167 44.80 

10 (-0.8, 1.1, -0.8) 3 18 158 42.77 0 28 172 46.22 

11 (-0.7, -0.5, 0.8) 4 31 171 46.55 1 19 159 42.78 

12 (0.8. -0.9, -0.8) 0 19 159 43.08 0 25 173 46.59 

13 (0.7, 0.8, -0.8) 0 68 210 56.98 0 20 162 43.62 

14 (-0.8, 1.1, 0.8) 3 38 184 49.91 1 28 168 45.30 

15 (-0.7, -0.5, -0.8) 0 21 161 43.66 1 22 162 43.94 

16 (0.8. -0.9, 0.8) 0 32 172 46.72 0 20 160 42.94 

Table 2. Results using a GVN-PKB and ACQ-PKB 

 

At the start of the operation different positional offsets were given as indicated 

in the second column. During all insertions the robot’s learning ability was en-

abled. During the first insertion, for instance, the network learned 0 new pat-

terns requiring 140 motions in the Z- direction and 23 motions for alignment to 

complete the assembly, making a total of 173 motions. The processing time for 

the whole insertion was 47 seconds. 

Using the knowledge acquired from the squared peg insertion, the robot was 

also able to perform the assembly. For comparison purposes, insertions using 

the same offset as before were carried out and the results are given in table 2. 

From the results given above in table 2, using both, the GVN-PKB and the 

ACQ-PKB, it can be observed that the number of new patterns using the GVN-

PKB was much higher (19) compared with the number of new patterns ac-

quired by using the ACQ-PKB (5). Learning a lower number of new patterns 

indicates that when using the acquired knowledge the robot needs only few 
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examples more which are acquired on-line. However, when using the GVN-

PKB, the required number of contact force patterns needed for that specific as-

sembly is much higher, which demonstrates a lower compliant motion capabil-

ity. The robot’s behaviour improved over time in terms of the assembly speed 

and in the number of alignment motions when the ACQ-PKB was used. 

A quality measure that helps to assess the robot’s dexterity is the force and 

moment traces during assembly and while in constraint motion. This quality 

measure can be obtained from the continuous monitoring of the force and 

torque. The quality measure during experiments using the GVN-PKB and the 

ACQ-PKB is illustrated in figure 11 for forces and in figure 12 for torques. 
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Figure 11. Forces during square chamfered peg insertion 
 

From Figure 11 and Figure 12; it can be observed that when using the ACQ-

PKB the magnitude of the forces and torques were significantly lower and in 
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certain cases they were almost half the value in the same experiments when us-

ing the GVN-PKB. 
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Figure 12. Torque during square chamfered peg insertion 

 

Some forces and torques remain at the end of the insertion when the GVN-

PKB is used. These residues are due to the orientation error (Rz) which is not 

completely recovered. The recovery of the orientation error is illustrated in 

figure 13, when the ACQ-PKB is used the orientation error is recovered in al-

most all insertions. 

The total distance on XY plane by the robot is showed in figure 14 for both, 

GVN-PKB and ACQ-PKB. The ideal distance is de minimum distance required 

to reach the center point of the insertion. 

Figure 15 evaluates if the robot reached de center point of the insertion in XY 

coordinates after the assembly end condition was satisfied, when is used an 

ACQ-PKB the center point was reached more efficiently than with GVN-PKB.  
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It was also tested the generalisation capability of the NNC by assembling dif-

ferent components using the same ACQ-PKB. Results are provided in table 3. 

For the insertion of the radiused-square component, the offsets were the same 

as before and for the insertion of the circular component a higher offset was 

used and no rotation was given. The time for each insertion was computed 

with the learning ability on (Lon) and also with learning inhibited (Loff); that is, 

using only the initial ACQ-PKB. The assembly operation was always success-

ful and in general faster in most cases when the learning was enabled com-

pared with inhibited learning. 
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Recovery Error (Rz) During Assembly Using ACQ-PKB
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Figure 13. Recovery error (Rz) during assembly 



 Manufacturing the Future: Concepts, Technologies & Visions 392

 
Radiused-square chamfered peg insertion Circular chamfered peg insertion 

Inser-

tion 

Offset (dx, dy, dRz) 

(mm, mm, °) 

Lon time 

(s) 

Loff  time 

(s) 

Offset (dx, dy, dRz) 

(mm, mm, °) 

Lon time 

(s) 

Loff  time 

(s) 

1 (0.7, 0.8, 0.8) 45 48 (0.7, 0.8, 0) 42 43 

2 (-0.8, 1.1, -0.8) 45 51 (-0.8, 1.1, 0) 41 41 

3 (-0.7, -0.5, 0.8) 43 47 (0.8. -0.9, 0) 40 42 

4 (0.8. -0.9, -0.8) 50 54 (0.8. -0.9, 0) 41 41 

5 (0.7, 0.8, -0.8) 44 44 (-0.8, 1.1, 0) 41 41 

6 (-0.8, 1.1, 0.8) 53 51 (0.8. -0.9, 0) 41 42 

7 (-0.7, -0.5, -0.8) 54 55 (1.4, 1.6, 0) 45 45 

8 (0.8. -0.9, 0.8) 50 49 (1.6. -1.8, 0) 43 45 

9 (0.7, 0.8, 0.8) 46 46 (1.4, 1.6, 0) 43 44 

10 (-0.8, 1.1, -0.8) 45 55 (-1.4, -1, 0) 42 43 

11 (-0.7, -0.5, 0.8) 44 45    

12 (0.8. -0.9, -0.8) 53 51    

13 (0.7, 0.8, -0.8) 43 43    

14 (-0.8, 1.1, 0.8) 53 51    

15 (-0.7, -0.5, -0.8) 44 59    

16 (0.8. -0.9, 0.8) 45 50    

Table 3. Results using an ACQ-PKB 
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Figure 14. Total distance on XY plane 
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Figure 15. Insertion center error on XY plane 

 

5.2 Whole assembly process results 

Several tests were carried out to asses the performance. The diameter of the 

male components was 24.8 mm whereas the diameter of female components 

was 25 mm; the chamfer was set to 45° and 5 mm width. Results are contained 

in table 4. In zone 2 the SIRIO only provides location (X,Y) because the female 

component orientation was fixed, however an error occurs and it is related to 

the component’s tolerance. The error for the chamfered square component is 

0.8°, 0.5° for the chamfered radiused-square and 0.4° for the chamferless 

square and 0.6° for the chamferless radiused-square. Error recovery is illus-

trated in figure 18. The assembly operation ends when ¾ of the body of male 

component is in the hole, this represents 14 mm. The NNC was operated dur-

ing the first 10 mm (100 manipulator steps), the FuzzyARTMAP parameters 

were: ρa = 0.2, ρmap = 0.9 and ρb = 0.9. 

 

Table 4 shows the position errors in zone 2 which is represented in figures 16 

and 17 as the trajectory followed by the robot. The minimum time of assembly 

cycle was 1:11 min, the maximum was 1:24 min and the average time was 1.17 

min.  

The system has an average angular error of 3.11° and a maximum linear posi-

tion error from -1.3 mm to 3.1 mm due to the camera positioning system in 

Zone 1. 
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ZONE 1 Zone 1 Error ZONE 2 Zone 2 Error # 

IN P Ch 

TC 

(min) 

TA 

(s) Xmm Ymm RZ° Xmm Ymm RZ° Xmm Ymm Xmm Ymm NC

1 S Y 1:15 32.5 62.4 144.1 10 0.2 -1.3 0 84.6 102.1 0.3 -1 Y 

2 S Y 1:15 30.4 62.4 45.7 12 1.8 0.2 2 85.6 101.1 -0.7 0 Y 

3 S Y 1:15 31.8 178.7 47.7 23 0.9 -0.8 3 84.7 100.9 0.2 0.2 Y 

4 R Y 1:11 30.1 181.6 147 29 -0.3 -0.7 -1 84.7 100.6 0.2 0.5 Y 

5 R Y 1:14 29.4 62.4 145.1 36 0.2 -0.3 -4 84.9 100.7 0 0.4 Y 

6 R Y 1:19 29.6 67.3 44.8 48 3.1 -0.7 -2 85.3 101.6 -0.4 -0.5 Y 

7 C Y 1:15 29.6 180.6 49.6 57 1 1.1 -3 84.6 102.4 0.3 -1.3 Y 

8 C Y 1:13 30.2 180.6 148 77 -0.7 0.3 7 84.3 101 0.6 0.1 Y 

9 C Y 1:14 30.2 61.5 146 79 -0.7 0.6 -1 83.9 101.6 1 -0.5 Y 

10 S N 1:18 29.9 63.4 45.7 83 -0.8 0.2 -7 85.4 100.5 -0.5 0.6 Y 

11 S N 1:19 30.4 179.6 48.6 104 0 0.1 4 83.2 100.8 1.7 0.3 Y 

12 S N 1:22 34.6 180.6 147 104 -0.7 -0.7 -6 83.2 101.8 1.7 -0.7 Y 

13 R N 1:22 38.3 61.5 146 119 -0.7 0.6 -1 84.8 102.8 0.1 -1.7 Y 

14 R N 1:22 36.8 63.4 43.8 126 -0.8 1.7 -4 83.6 101.8 1.6 -0.7 Y 

15 R N 1:24 36.6 179.6 47.7 138 0 -0.8 -2 83.2 101.7 1.7 -0.6 Y 

16 C N 1:17 30.5 182.6 149 150 1.3 1.3 0 83.7 101.2 1.2 -0.1 Y 

17 C N 1:15 28.3 63.4 146 155 1.2 0.6 -5 84.6 100.7 0.3 0.4 Y 

18 C N 1:15 29.7 64.4 47.7 174 0.2 2.2 4 83.9 101.1 1 0 Y 

Table 4. Eighteen different assembly cycles, where IN= Insertion, P=piece, Ch=chamfer 

present, TC=Assembly cycle time, TA= Insertion time, NC=correct neural classifica-

tion, S=square, R=radiused-square, C=circle, N=no and Y=yes. 

 
The force levels in chamferless assemblies are higher than the chamfered ones. 

In the first one, the maximum value was in Z+, 39.1 N for the insertion number 

16, and in the chamfered the maximum value was 16.9 N for the insertion 

number 9. 

In chamfered assembly, in figure 16, it can be seen that some trajectories were 

optimal like in insertions 2, 5, 7, 8 and 9, which was not the case for chamfer-

less assembly; however, the insertions were correctly completed. 

In figure 17, each segment corresponds to alignment motions in other direc-

tions different from Z-. The lines mean the number of Rz+ motions that the ro-

bot performed in order to recover the positional error for female components. 

The insertion paths show how many rotational steps are performed. The 

maximum alignment motions were 22 for the chamfered case in comparison 

with 46 with the chamferless component. 
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CHAMFERLESS ASSEMBLY TRAJECTORY 
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Figure 16. Assembly trajectory in top view for each insertion in zone 2. The trajectory 

starts with the labels (INx) and ends at 0,0 origins coordinate 
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Figure 17. Compliant rotational motions (only Rz+) for each insertion in zone 2, left 

chamfered assembly, right chamferless assembly 
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6. Conclusions 

A task planner approach for peg-in-hole automated assembly was presented. 

The proposed methodologies were used to achieve the tasks and tested suc-

cessfully in the real world operations using an industrial manipulator. The ro-

bot is able to perform not only the assembly but also it can start working with-

out initial knowledge about the environment, and it can increase its PKB at 

every assembly if it is necessary. 

The presented approach using the vision and force sensing system has envis-

aged further work in the field of multimodal learning in order to fuse informa-

tion and to increase the prediction capability of the network which contributes 

towards the creation of truly self-adaptive industrial robots for assembly. 

All assemblies were successful showing the system robustness against differ-

ent uncertainties and its generalization capability. The generalization of the 

NNC has been demonstrated by assembling successfully different component 

geometry using different mechanical tolerances and offsets employing the 

same acquired knowledge base. 

Initial knowledge is acquired from actual contact states using explorative mo-

tions guided by fuzzy rules. The knowledge acquisition stops once the ACQ-

PKB is fulfilled. Later this knowledge is refined as the robot develops new as-

sembly tasks. 

The dexterity of the robot improves using the ACQ-PKB by observing the 

magnitude of forces and moments as shown in Figures 11 and 12. Values are 

significantly lower, hence motions were more compliant in this case indicating 

that information acquired directly from the part geometry allowed also lower 

constraint forces during manipulation. Having implemented the knowledge 

acquisition mechanism, the NNC acquires only real contact force information 

from the operation. In comparison with our previous results, insertion trajecto-

ries improved enormously; we believe that given a priori knowledge (GVN-

PKB) is fine, but contact information extracted directly form the operation it-

self provides the manipulator with better compliant motion behaviour. 

Results from this work have envisaged further work in the area of multimodal 

data fusion (Lopez-Juarez, et al, 2005). We expect that data fusion from the F/T 

sensor and the vision system result in an improved confidence for getting the 

contact information at the starting of the operation providing also important 

information such as chamfer presence, part geometry and pose information, 

which will be the input data to a hierarchical task level planner as pointed out 

by (Lopez-Juarez & Rios-Cabrera, 2006). 
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