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1. Introduction

Soybean [Glycine max (L.) Merrill], grown for its edible seed protein and oil, is often called
the miracle crop because of its many uses. It belongs to the genus Glycine under the family
Leguminosae, and is widely cultivated in the tropics, subtropics and temperate zones of the
world [1].

Soybean is now an essential and dominant source of protein and oil with numerous uses in
feed, food and industrial applications. It is the world’s primary source of vegetable oil and
protein feed supplement for livestock. The global production of soybeans is 250-260 million
tons per year. The US is the largest producer with 90.6 million metric tons. Other major
countries such as Brazil, Argentina, China and India contributing 70, 49.5, 15.2 and 9.6 mil‐
lion metric tons, respectively [2]. The US, Brazil and Argentina are the major exporters of
beans; while China and Europe are the major importers. The annual world market value is
around 2 billion US dollars, which stands second in world food production.

Recent nutritional studies claim that consumption of soybean reduces cancer, blood serum
cholesterol, osteoporosis and heart diseases [3]. This has sparked increased demand for the
many edible soybean products. The priority for more meat in diets among the world’s popu‐
lation has also increased the demand for soybean protein for livestock and poultry feed.

Soybean seeds are comprised of 40% protein, mostly consisting of the globulins β-conglyci‐
nin (7S globulin) and glycinin (11S globulin). The oil portion of the seed is composed pri‐
marily of five fatty acids. Palmitic and stearic acids are saturated fatty acids and comprise
15% of the oil. Soybean is rich in the unsaturated fatty acids like oleic, linoleic and linolenic,
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which make up 85% of the oil. Soybeans are a good source of minerals, B vitamins, folic acid
and isoflavones, which are credited with slowing cancer development, heart diseases and
osteoporosis [4].

The productivity of soybean has been limited due to their susceptibility to pathogens and
pests, sensitivity to environmental stresses, poor pollination and low harvest index. Among
the abiotic stresses, drought is considered the most devastating, commonly reducing soy‐
bean yield by approximately 40% and affecting all stages of plant growth and development;
from germination to flowering, and seed filling and development as well as seed quality [5].
It suffers from many kinds of fungal diseases, such as frogeye leaf spot and brown spot [6].
As demand increases for soybean oil and protein, the improvement of soybean quality and
production through genetic transformation and functional genomics becomes an important
issue throughout the world [7].

The main objectives of soybean improvement include increase in yield, development of re‐
sistance to various insects, diseases and nutritional quality. Commercial breeding is still
very important for the genetic improvement of the crop. However, breeding is difficult due
to the fact that the soybean is a self pollinating crop, and the genetic base of modern soybean
cultivars is quite narrow [8]. Most of the current soybean genotypes have been derived from
common ancestors; therefore, conventional breeding strategies are limited in capability to
expand the soybean genetic base. Recent advances in in vitro culture and gene technologies
have provided unique opportunities for the improvement of plants, which are otherwise dif‐
ficult through conventional breeding. The technology of plant transformation is only moder‐
ately or marginally successful in many important cultivars of crops, which can be a major
limiting factor for the biotechnological exploitation of economically important plant species
and the wider application of genomics.

Although numerous methods have been developed for introducing genes into plant ge‐
nomes, the transformation efficiency for soybean still remains low [9]. Since the first success‐
ful transformation of soybean was reported [10], two major methods have been used in
soybean transformation: one is particle bombardment of embryogenic tissue and another is
Agrobacterium tumefaciens-mediated transformation of the cotyledonary node. Both methods
have limitations: the former is highly genotype-dependent, requires a prolonged tissue cul‐
ture period and tends to produce multiple insertion events, while the latter is labour inten‐
sive and requires specially trained personnel to undertake the work [9]

For soybean in vitro regeneration, two principal methods have been identified: somatic em‐
bryogenesis and shoot morphogenesis. Each of these systems presents both advantages and
disadvantages for production of transformed plants, and each can be used with both of the
predominant transformation systems [11]. A better understanding of physiology and molecu‐
lar biology of in vitro morphogenesis needs focal attention to reveal their recalcitrant nature.

The present review gives an overview on the problems associated with low transformation
efficiency, and the research conducted to improve tissue culture and transformation efficien‐
cy of soybean during the past (Table 1&2) and also discuss the future prospects, demands of
these technologies and upcoming new technologies in soybean improvement.
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Year Explant tissue Major contribution Reference

1973 Hypocotyl Adventitious bud development Kimball and Bingham, [13]

1980 Cotyledonary node Shoot morphogenesis Cheng et al. [14]

1986 Immature embryo Plant regeneration from callus Barwale et al. [18]

1986 Cotyledonary node Multiple shoot formation Barwale et al. [19]

1986 Cotyledonary node Multiple shoot formation Wright et al. [20]

1987 Epicotyl Callus induction and shoot regeneration Wright et al. [29]

1988 Cotyledonary node Transfered npt II and gus gene by Agrobacterium

mediated transformation

Hinchee et al. [10]

1988 Immature seeds Developed transgenic soybean by Particle

bombardment

McCabe et al. [25]

1989 Germinating seeds Transfered npt II gene by Agrobacterium mediated

transformation

Chee et al. [45]

1989 Immature seed Particle bombardment of meristems Christou et al. [62]

1990 Immature cotyledon Plant regeneration from protoplast Luo et al. [127]

1990 Cotyledon, cotyledonary

node

Evaluated Agrobacterium sensitivity and

adventitious shoot formation

Delzer et al. [44]

1990 Immature cotyledon,

plumule, cotyledonary

node

Analysed plant regeneration efficiency of various

explants

Yang et al. [32]

1990 Immature embryo Organogenesis and plant regeneration Yeh,[128]

1990 Primary leaf node Adventitious shoot formation Kim et al. [27]

1991 Immature cotyledon Plant regeneration from protoplast Dhir et al. [129]

1992 Epicotyl and hypocotyl Investigated the stimulative effect of allantoin and

amides on shoot regeneration

Shetty, et al. [21]

1993 Shoot tip Transfered gus gene via particle bombardment Sato et al. [130]

1994 Primary leaf node Investigated the synergistic effect of proline and

micronutrients on shoot regeneration

Kim et al. [40]

1996 Cotyledonary node Developed transgenic soybean resistance to bean

pod mottle virus (BPMV)

Di et al. [131]

1997 Cotyledonary node and

hypocotyl

Multiple shoot induction by TDZ Kaneda et al. [22]

1998 Cotyledonary node Evaluation of sonication assisted Agrobacterium

mediated

transformation (SAAT) for cotyledonary node

Meurer et al. [50]

1998 Hypocotyl Adventitious shoot regeneration Dan and Reichert, [33]
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Year Explant tissue Major contribution Reference

1999 Cotyledonary node Assessed the use of glufosinate as a selective agent

in Agrobacterium-mediated transformation of

soybean

Zhang et al. [61]

2000 Cotyledonary node Agrobacterium two T-DNA binary system as a

strategy to derive marker free transgenic soybean

Xing et al. [132]

2000 Cotyledonary node Evaluated the effect of glyphosate as a selective

agent for Agrobacterium mediated cotyledonary

node transformation system

Clemente et al. [60]

2000 Embryonic axes Used of Imazapyr as selection agent for selection of

meristematic soybean cells

Aragao et al. [47]

2001 Cotyledonary node Investigated the use of thiol compound to increase

transformation frequency

Olhoft et al. [56]

2001 Cotyledonary node Increased Agrobacterium infection using L-cystine Olhoft and Somers, [16]

2001 Cotyledonary node Developed transgenic soybean plants resistant to

soybean mosaic virus (SMV)

Wang et al. [133]

2001 Cotyledonary node Expressed oxalate oxidase gene for resistant to

sclerotinia stem rot caused by Sclerotinia

sclerotiorum

Donaldson et al. [65]

2003 Hypocotyl Screened soybean genotype for adventitious

organogenic regeneration

Reichert et al. [41]

2003 Cotyledonary node Assessed the effect of genotype, plant growth

regulators and sugars on regeneration from calli

Sairam et al. [1]

2003 Cotyledonary node Used mixture of thiol compounds and hygromycin

based selection for increased transformation

efficiency

Olhoft et al. [57]

2004 Cotyledonary node Assessed glufosinate selection for increased

transformation efficiency

Zeng et al. [134]

2004 Cotyledonary node Investigated the effect of seed vigor of explant

source, selection agent and antioxidant on

Agrobacterium mediated transformation efficiency

Paz et al. [15]

2004 Cotyledonary node Transferred chitinase gene and the barley ribosome-

inactivating protein gene to enhance fungal

resistance

Li et al. [6]

2004 Mature and immature

cotyledon

Shoot regeneration Franklin et al. [31]

2004 Embryonic tip Established regeneration and Agrobacterium

mediated transformation system

Liu et al. [35]
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Year Explant tissue Major contribution Reference

2004 Cotyledonary node Established liquid medium based system for

selection transformed plants

Yun, [58]

2005 Cotyledonary node Developed repetitive organogenesis system Shan et al. [23]

2005 Cotyledonary node Expressed Escherichia coli K99 fimbriae

subunit antigen in soybean to use as edible vaccine

Piller et al. [66]

2006 Cotyledonary node Agrobacterium mediated transformation efficiency

was improved by using half seed explant from

mature seed

Paz et al. [24]

2007 Cotyledonary node Investigated Agrobacterium rhizogen to transform

soybean cotyledonary node cells.

Olhoft et al. [59]

2007 Cotyledonary node Expressed synthetic Bacillus thuringiensis cry1A

gene that confers a high degree of resistance to

Lepidopteran Pests

Miklos et al. [135]

2007 Cotyledonary node and leaf

node

Established organogenic callus induction and

Agrobacterium mediated transformation

Hong et al ., [43]

2007 Half seed Expressed jasmonic acid carboxyl methyltransferase

in soybean to produce methyl jasmonate, which

resulted in tolerant to water stress

Xue et al. [67]

2008 Hypocotyl Used silver nitrate to enhance adventitious shoot

regeneration after Agrobacterium transformation

and developed transgenic soybean producing high

oleic acid content by silencing endogenous

GmFAD2-1 gene by RNAi

Wang and Xu, [7]

2008 Cotyledonary node Improved transformation efficiency using surfactant

Silwet L-77 during Agrobacterium infection and L-

cysteine during co-cultivation

Liu et al. [136]

2008 Cotyledonary node Developed rapid regeneration system using whole

cotyledonary node

Ma and Wu, [2008]

2010 Cotyledonary node Production of isoflavone in callus cell lines by

expression of isoflavone synthase gene.

Jiang et al. [69]

2010 Cotyledon and embryo Developed shoot regeneration from calli of soybean

cv.Pyramid

Joyner et al. [39]

2011 Hypocotyl Transgenic soybean with low phytate content Yang et al. [70]

2011 Cotyledon Developed transgenic soybean with increased

Vitamin E content by transferring γ-tocopherol

methyltransferase (γ-TMT) gene in to seedling

cotyledon

Lee et al. [137]

Table 1. Major landmarks in soybean organogenesis and transformation
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Explant Tissue Year Major Contribution Reference

Embryonic axes 1983 Embryoids development and plant regeneration

via suspension culture

Christianson et al.[77]

Immature cotyledon 1984 Somatic embryo Induction Lippmann & Lippmann, [84]

Immature cotyledon 1985 Plant regeneration via somatic embryogenesis Lazzeri et al. [138]

Immature embryo 1985 Somatic embryogenesis and assessment of

genotypic variation

Ranch et al. [139]

Immature embryo,

cotyledon and, hypocotyl

from germinating seedling

1986 Somatic embryogenesis from callus Ghazi et al. [140]

Hypocotyl and cotyledon 1986 Embryoids development in suspension culture Kerns et al. [141]

Immature embryo and

cotyledon

1987 Investigated the effect of nutritional, physical, and

chemical factors on somatic embryogenesis

Lazzeri et al. [85]

Immature cotyledon 1988 Investigated the effect of auxin and orientation of

explant on somatic embryogenesis

Hartweck et al. [142]

Immature cotyledon 1988 Analysed genotype dependency and High

concentration of auxin on somatic embryo

induction

Komatsuda and Ohyama,

[143]

Immature cotyledon 1988 Investigated the interaction between auxin and

sucrose during somatic embryogenesis

Lazzeri et al. [86]

Immature cotyledon 1988 Germination frequency of somatic embryo has

been improved by reducing the exposure to auxin

Parrott et al. [87]

Immature cotyledon 1988 Developed rapid growing maintainable

embryogenic suspension culture

Finer and Nagasawa, [82]

Immature cotyledon 1988 Histological analysis to investigate secondary

somatic embryo formation.

Finer, [79]

Immature cotyledon 1989 Demonstrated the effect of genotype on

embryogenesis

Parrott et al. [144]

Immature cotyledon 1989 Developed primary transformants expressing zein

gene by agrobacterium mediated transformation

Parrott et al. [105]

Immature cotyledon 1989 Assayed somatic embryo maturation for

conversion into plantlets

Buchheim et al. [94]

Immature cotyledon 1989 Investigated the developmental aspects of somatic

embryogenesis

Christou and Yang, [145]

Immature cotyledon 1990 Screened soybean genotypes for somatic embryo

production

Komatsuda et al. [146]

Immature cotyledon 1991 Transformed embryogenic cultures with gus and

hpt gene via particle bombardment

Finer and McMullen., [64]
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Explant Tissue Year Major Contribution Reference

Immature cotyledon 1991 Analysed the interaction between genotype and

sucrose concentration on somatic embryogenesis

Komatsuda et al. [147]

Immature cotyledon 1991 Demonstrated adventitious shoot formation from

cotyledonary and torpedo stage embryo

Wright et al. [148]

Immature cotyledon 1992 Somatic embryo proliferation by somatic embryo

cycling.

Liu et al. [83]

Immature cotyledon 1993 Improved germination efficiency of somatic

embryos of cultivar H7190 by desiccation

Bailey et al. [101]

Immature cotyledon 1993 Demonstrated genotypic effect on induction,

proliferation, maturation and germination of

somatic embryo

Bailey et al. [96]

Immature cotyledon 1993 Investigated the factors affecting somatic

embryogenesis

Lippmann & Lippmann,

[149]

Immature cotyledon 1993 Soybean transformation by particle bombardment

of embryogenic cultures

Sato et al. [130]

Immature cotyledon 1994 Developed transgenic soybean resistance to insect. Parrott et al. [150]

Immature embryos 1995 Investigated the effect of glutamine and sucrose

on dry matter accumulation and composition of

somatic embryo.

Saravitz and Raper, [151]

Immature cotyledon 1996 Demonstrated the significance of embryo cycling

for transformation

Liu et al.[152]

Immature cotyledon 1996 Transformed embryogenic cultures with 12

different plansmid via particle bombardment

Hadi et al. [115]

Immature cotyledon 1996 Developed transgenic soybean expressing a

synthetic Bacillus thuringiensis insecticidal crystal

protein gene (BtcrylAc) which is resistance to

insects

Stewart et al. [46]

Immature cotyledon 1997 Investigated the effect of ethylene inhibitors on

embryo histodifferentiation and maturation

Santos et al. [92]

Epicotyls and primary

leaves

1997 Somatic embryogenesis and plant regeneration

from cotyledon, epicotyls and primary leaves

Rajasekaran and Pello, [153]

Immature cotyledon 1997 Studied the effect of explant orientiation, pH,

solidifying agent and wounding on induction of

soybean from immature cotyledons

Santarém et al. [81]

Immature cotyledon 1998 Studied growth characteristics of embryogenic

cultures for transformability

Hazal et al. [113]
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Explant Tissue Year Major Contribution Reference

Immature cotyledon 1998 Established sonication-assisted Agrobacterium

mediated transformation of soybean immature

cotyledon

Santarem et al.[48]

Immature cotyledon 1998 Established sonication-assisted Agrobacterium

mediated transformation of embryogenic

suspension culture tissue

Trick and Finer, [108]

Immature cotyledon 1998 Improved proliferation efficiency of embryogenic

cultures by modifying sucrose and nitrogen

content in medium

Samoylov et al. [89]

Immature cotyledon 1998 Developed liquid medium based system for

histodifferentiation of embryogenic cultures

Samoylov et al. [154]

Immature cotyledon 1998 Studied soluble carbohydrate content in soybean

somatic and zygotic embryo during development.

Chanprame et al. [155]

Immature cotyledon 1999 Studied the factors influencing transformation of

prolific embryogenic cultures using bombardment

Santarem and Finer, [116]

Immature cotyledons 1999 Developed transgenic plants with bovine milk

protein, β-casein

Maughan et al. [114]

Immature cotyledons 1999 Transformed GFP into embryogenic suspension

culture with the aim to improve transformation

and regeneration strategy

Ponappa et al. [156]

Immature cotyledons 2000 Improved somatic embryo development and

maturation by application of ABA

Tian and Brown, [157]

Immature cotyledon 2000 Screened genotypes for proliferative

embryogenesis

Simmonds and Donaldson,

[97]

Immature cotyledons 2000 Studied physical factors influencing somatic

embryo development from immature cotyledons.

Bonacin et al. [99]

Immature cotyledon 2000 Investigated the factors affecting Agrobacterium

mediated transformation soybean

Yan et al. [109]

Immature cotyledon 1989 Investigated maturation of somatic embryo for

efficient conversion into plantlets

Buchheim et al. [94]

Immature cotyledon 2000 Developed and evaluated transgenic soybean

expressing a synthetic cry1Ac gene from Bacillus

thuringiensis for resistance to variety of insects

Walker et al. [158]

Immature cotyledon 2001 Effect of polyethylene glycol and sugar alcohols on

soybean somatic embryo germination and

conversion

Walker and Parrott, [90]
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Explant Tissue Year Major Contribution Reference

Immature cotyledon 2000 Developed integrated bombardment and

Agrobacterium transformation method

Droste et al.[159]

Immature cotyledon 2001 Screened soybean from different location in the US

for uniform embryogenic response

Meurer et al. [103]

Immature cotyledon 2001 Studied the effect of osmotica for their influence

on embryo maturation and germination

Walker & Parrott, [90]

Immature cotyledon 2001 Developed transgenic plant expressing 15-kD zein

protein under β-phaseolin seed specific promoter

Dinkins et al. [125]

Immature cotyledon 2001 Somatic embryogenesis in Brazilian soybean

cultivars

Droste et al. [160]

Immature cotyledon 2002 Somatic embryogenesis and particle

bombardment for south Brazil cultivars

Droste et al. [100]

Immature cotyledon 2002 Histological analysis of developmental stages of

somatic embryogenesis

Fernando et al. [161]

Immature cotyledon 2002 Screened soybean genotypes for somatic embryo

induction and maturation capability

Tomlin, [162]

Immature cotyledon 2003 Investigated the effect of proliferation, maturation

and desiccation on somatic embryo conversion

Moon and Hildebrand, [88]

Immature cotyledon 2004 Improved transformation efficiently using

Agrobacterium strain KYRT1 carrying pKYRTI

Ko et al. [111]

Immature cotyledon 2004 Developed transgenic plant containing phytase

gene that store (produces) more phosphrous in

seed.

Chiera et al. [163]

Immature cotyledon 2004 Developed fertile transplastomic soybean Dufourmantel et al.[117]

Immature cotyledon 2004 Transferred chi and rip gene to enhance fungal

resistance

Li et al. [6]

Immature cotyledon 2004 Improved transformation efficiency using

Agrobacterium strain KYRT1

Ko and Korban, [80]

Immature cotyledon 2004 Analysed media components and pH on somatic

embryo induction

Hoffmann et al. [80]

Immature cotyledon 2005 Developed transgenic soybean expressing maize γ-

zein protein

Li et al. [124]

Immature cotyledon 2005 Modified soybean histodifferentiation and

msaturation medium with the aim to improve the

protein and lipid composition of somatic embryo

Schmidt et al. [164]

Immature cotyledon 2005 Analysed the effect of carbon source and

polyethylene glycol on embryo conversion

Korbes et al. [91]

In vitro Regeneration and Genetic Transformation of Soybean: Current Status and Future Prospects
http://dx.doi.org/10.5772/54268

421



Explant Tissue Year Major Contribution Reference

Immature cotyledon 2006 Improved fatty acid content Chen et al. [119]

Immature cotyledon 2006 Investigated the ontogeny of somatic

embryogenesis

Santos et al. [165]

Somatic embryo 2006 Developed transgenic soybean resistance to dwarf

virus

Tougou et al. [120]

Immature cotyledon 2006 Investigated the influence of antibiotics on

embryogenic cultures and Agrobacterium

tumefaciens suppression in soybean

transformation

Wiebke et al. [166]

Immature cotyledon 2006 Developed transgenic soybean for increased

production of ononitol and pinitol

Chiera et al. [167]

Immature cotyledon 2007 Developed transgenic soybean resistant to dwarf

virus

Tougou et al. [168]

Immature cotyledon 2007 Improved somatic embryogenesis in recalcitrant

cultivars by back cross with a highly regenerable

cultivar Jack

Kita et al. [104]

Immature cotyledon 2007 Evaluated Japanese soybean genotypes for

somatic embryogenesis

Hiraga et al. [102]

Immature cotyledon 2007 Soybean seed over expressing the Perilla frutescens

γ -tocopherol methyltransferase gene

Tavva et al. [123]

Immature cotyledon 2007 Improved protein quality in transgenic soybean

transformed with modified Gy1 proglycinin gene

with a synthetic DNA encoding four continuous

methionines.

EI-Shemy et al. [169]

Immature cotyledon 2007 Analysed the effect of Abscisic acid on somatic

embryo maturation and conversion.

Weber et al. [170]

Immature cotyledon 2007 Developed transgenic soybean resistance to

soybean mosaic virus

Furutani et al. [121]

Immature cotyledon 2008 Used a new Selectable Marker Gene Conferring

resistance to Dinitroanilines

Yemets et al. [171]

Immature cotyledon 2008 Developed strategy for transfer of multiple genes

via micro projectile-mediated bombardment

Schmidt et al. [172]

Immature cotyledon 2009 Assessed the effect mannitol, abscisic acid and

explant age on somatic embryogenesis in Chinese

soybean cultivars

Yang et al. [98]

Somatic embryo 2009 Developed transgenic soybean with increased oil

content

Rao and Hildebrand, [118]
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Embryonic tip 2010 somatic embryogenesis and plant regeneration

from the immature embryonic shoot tip

Loganathan et al. [173]

Immature cotyledon 2010 Developed transgenic soybean with more

tryptophan content in seed

Ishimoto et al. [122]

Immature cotyledon 2010 Screening of Brazilian soybean genotypes for

embryogenesis

Droste et al. [174]

Immature cotyledon 2011 Demonstrated Metabolic engineering of soybean

seed coat for the production of novel biochemicals

Schnell et al. [126]

Immature cotyledon 2011 Investigated developmental profile of storage

reserve accumulation in soybean somatic embryos

He et al. [175]

Immature cotyledon 2011 Improved transformation efficiency by Micro

wounding with DNA free particle bombardment

followed by Agrobacterium mediated

transformation.

Wiebke et al. [112]

Immature cotyledon 2012 Developed vacuum infiltration assisted

Agrobacterium mediated transformation for

Indian soybean cultivars.

Mariashibu et al. [176]

Table 2. Major landmarks in soybean somatic embryogenesis and transformation

2. Organogenesis and transformation

Organogenesis is characterized by the production of a unipolar bud primordium with sub‐
sequent development of the primordium into a leafy vegetative shoot. A successful plant re‐
generation protocol requires appropriate choice of explant, definite media formulations,
specific growth regulators, genotype, source of carbohydrate, gelling agent, other physical
factors including light regime, temperature, humidity and other factors [12]. Plant regenera‐
tion by organogenesis in soybean was first reported by Kimball and Bingham, [13] from hy‐
pocotyl sections followed by Cheng et al.[14] by culturing seedling cotyledonary node
segments. Transfer of T-DNA into cotyledonary node cells by Agrobacterium mediated trans‐
formation was first reported by Hinchee et al. [10]. Advancement in soybean transformation
appears to be slow compared to some of the recent improvement in cereal transformation
(Paz et al. 2004). Olhoft et al. [16] stated that the efficiency of soybean transformation has to
be improved 5-10 times before one person can produce 300 transgenic lines per year. Soy‐
bean transformation efficiency has been improved by optimizing the selection system, en‐
hancing explant-pathogen interaction and improving culture conditions to promote
regeneration and recovery of transformed plants.
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2.1. Organogenesis

The successful application of biotechnology in crop improvement is based on efficient plant
regeneration protocol. Soybean has been considered as recalcitrant to regenerate in vitro. Tis‐
sue culture responses are greatly influenced by three main factors viz. whole plant physiolo‐
gy of donor, in vitro manipulation, and in vitro stress physiology [17]. After the first report of
adventitious bud regeneration from hypocotyl sections by Kimball and Bingham, [13] re‐
searchers have used different parts of the soybean plant as explants for successful shoot mor‐
phogenesis in soybean. These include cotyledonary node [10,14,18-24], shoot meristems [25],
stem-node [26,27] epicotyls [28], primary leaf [29], cotyledons [30,31], plumules (32), hypoco‐
tyls [22,33,34], and embryo axes [25,35]. Plant regeneration via organogenesis from cotyledo‐
nary node was found to be the most convenient and faster approach in soybean. However,
much improvement is needed for the cotyledonary node regeneration system. This limitation
is mainly due to low frequency of shoot regeneration, long regeneration period and explant
growth difficulties, which prevent the plant from being regeneration-competent[36].

The nutritional requirement for optimal shoot bud induction from different explants has
been reported to vary with mode of regeneration. Media compositions have a key role in
shoot morphogenesis, the basal medium MS [37] is most commonly used for soybean orga‐
nogenesis and the medium B5 [38] are useful in some approaches. Benzylaminopurine (BA)
has been the most commonly used plant growth regulator either alone or in combination
with a low concentration of cytokinins, kinetin or thidiazuron (TDZ) [22, 39]. TDZ was re‐
ported to induce multiple bud tissue (MBT) from cotyledonary node axillary meristem
which then gives shoots in the presence of BA [23]. The efficiency of shoot bud formation
were enhanced by supplementing media with proline, increased level of MS micro nutrients
[40], and ureide in the form of allantoin and amides [21].

Adventitious shoot regeneration from cotyledonary node or leaf node is based on prolifera‐
tion of meristems. Use of pre-existing shoot meristems in transformation procedures can in‐
crease the chance of chimerism, so identifying tissues that can produce shoots in the absence
of such pre-formed organs would be important [41]. Adventitious soybean shoots have been
induced from hypocotyls [13]; cotyledons [18, 20], primary leaves [29] and epicotyls [28].
Hypocotyls of seedlings have been used as explants for adventitious shoot regeneration by
Kaneda et al. [22]. Explants cultured on media supplemented with TDZ induced adventi‐
tious shoots more efficiently than BA. Histological analysis of adventitious shoot regenera‐
tion from the hypocotyl shows shoot primordias, formed from parenchymatous tissues of
central pith and plumular trace regions [33]. Hypocotyls of seedlings have seldom been
used as explants, even though the shoot regeneration frequency from hypocotyl segments
was found to be higher than from cotyledons [22]. Franklin et al. [31] investigated the factors
affecting adventitious shoot regeneration from the proximal end of mature and immature
cotyledons. The presence of BAP and TDZ in the medium exerted a synergistic effect, in that
regeneration efficiency was higher than for either cytokinin alone.

Indirect organogenesis is important as an alternative source of genetic variation in order to
recover somaclones with interesting agronomic traits. Callus regeneration is advantageous
over direct regeneration for transformation since effective selection of transgenic cells can be
achieved [1]. However, the efforts made to regenerate plants from callus have yielded poor

A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen
Relationships

424



results since plants could not be regenerated from any type of soybean callus [42]. Yang et
al. [32] compared different explants excised from immature and germinated seeds for callus
mediated organogenic regeneration, although induction of organogenic callus was easily
achieved by culture of immature cotyledons, development of adventitious buds from these
calluses and the subsequent growth of these buds to shoots were inefficient, suggesting that
only part of the callus was competent for regeneration. Sairam et al. [1] developed a rapid
and efficient protocol for regeneration of genotype-independent cotyledonary nodal callus
for cultivars Williams 82, Loda and Newton through manipulation of plant growth regula‐
tors and carbohydrates in the medium. Hong et al. [43] reported organogenic callus induc‐
tion from cotyledonary node and leaf node explants in media supplemented with TDZ and
BA, the system has been successfully utilized for Agrobacterium-mediated transformation

2.2. Genotype

Among the different factors affecting soybean regeneration, the genotypic dependence is
ranked quite high. Since there is strong genotype specificity for regeneration of different
soybean genotypes, a major limiting factor, it is pivotal to formulate genotype specific re‐
generation protocols. Genotype specificity for regeneration in soybean is well documented,
although organogenesis is less genotype dependent and has become routine in several labo‐
ratories [18,20,28,29&33]. Reichert et al. [41] tested organogenic adventitious regeneration
from hypocotyl explants excised from 18 genotypes. Plant formation from hypocotyl ex‐
plants showed that all genotypes were capable of producing elongated shoots that could be
successfully rooted. This study confirmed the genotype independent nature of this organo‐
genic regeneration from the hypocotyl explant. Sairam et al. [1] developed an efficient geno‐
type independent cotyledonary nodal callus mediated regeneration protocol for soybean
cultivars Williams 82, Loda and Newton developed through manipulation of plant growth
regulators and carbon source. Callus induction and subsequent shoot bud differentiation
were achieved from the proximal end of cotyledonary explants on modified MS [37] media
containing 2,4-dichlorophenoxyacetic acid (2,4-D) and benzyladenine (BA), respectively.
Sorbitol was found to be the best for callus induction and maltose for plant regeneration.
The genotypic dependence of regeneration from cotyledon explants could be reduced by the
use of combinations of cytokinins (Franklin et al. [31]). Though there was no significant dif‐
ference in shoot bud formation among different genotypes, but there was significant differ‐
ence in conversion of the number of regenerated plants in each cultivar (Delzer et al. [44]).

2.3. Agrobacterium mediated transformation

Agrobacterium-mediated transformation of soybean was first demonstrated by Hinchee et al.
[10] through delivering, T-DNA into cells in the axillary meristems of the cotyledonary-
node. After that scientists have attempted to introduce a lot of genes using Agrobacterium
[25, 45-47]. The cotyledonary-node method is a frequently used soybean transformation sys‐
tem based on Agrobacterium-mediated T-DNA delivery into regenerable cells in the axillary
meristems of the cotyledonary-node [16]. The efficiency of this transformation system re‐
mains low, apparently because of infrequent T-DNA delivery to cells in the cotyledonary-
node axillary meristem, inefficient selection of transgenic cells that give rise to shoot

In vitro Regeneration and Genetic Transformation of Soybean: Current Status and Future Prospects
http://dx.doi.org/10.5772/54268

425



meristems, and low rates of transgenic shoot regeneration and plant establishment. The de‐
velopment of an effective Agrobacterium transformation method for soybean depends on
several factors including plant genotype, explant vigor, Agrobacterium strain, vector, selec‐
tion system, and culture conditions [48, 49]. Increased soybean transformation efficiency,
may be achieved by further optimizing the selection system, enhancing explant-pathogen
interaction and improving culture conditions to promote regeneration and recovery of trans‐
formed plants. It has been reported that soybean genotype contributed to variation in sus‐
ceptibility to Agrobacterium and regenerability in tissue culture [50, 51]. In addition, surface
sterilization of plant tissue material for in vitro tissue culture and transformation is one of
the critical steps in carrying out transformation experiments. While a short time of steriliza‐
tion cannot completely decontaminate explants, prolonged sterilization may cause damage
to explants and consequently affect their regenerability [52]. Antioxidant reagents such as
cysteine, dithiothreitol, ascorbic acid and polyvinyl pyrrolidone have been used in plant
transformation optimization to enhance either tissue culture response or transformation effi‐
ciency [53-55]. Recently, high transformation efficiency has also been reported in soybean by
adding cysteine and thiol compounds to the cocultivation media [16, 56,57]. Liu et al. [35]
established Agrobacterium mediated transformation using shoot tip explants of Chinese soy‐
bean cultivars. It had the advantage over the cotyledonary node by having no necrosis after
infection, and showed more transient gus expression as embryonic tips are more sensitive to
Agrobacterium because they contain promeristems and procambium. Yun, [58] established
liquid medium to select transformed plants from the cotyledonary node. Liquid selection
has proven to be more efficient than solid selection due to the direct contact of the explants
with the medium and the selection agent in the medium. Olhoft et al. [59] transformed soy‐
bean cotyledonary nodes using Agrobacterium rhizogens strain SHA17 for the first time. The
transformation efficiency was as high as 3.5 fold when compared with Agrobacterium tumefa‐
ciens strain AGL1. Clemente et al. [60] successfully used and evaluated the effect of glypho‐
sate as a selective agent within the Agrobacterium mediated cotyledonary transformation
system. Imazapyr is a herbicidal molecule that inhibits the enzymatic activity of acetohy‐
droxyacid synthase, which catalyses the initial step in the biosynthesis of isoleucine, leucine
and valine. Aragao et al. [47] used Imazapyr as a selection agent for selection of meristemat‐
ic soybean cells transformed with the ahas gene from Arabidopsis. The bar gene encodes for
phosphinothricin acetyltransferase (PAT) which detoxifies glufosinate, the active ingredient
in the herbicide. Zhang et al. [61] successfully used glyphosate to select transformed cells af‐
ter Agrobacterium transformation of cotyledonary node cells.

2.4. Particle bombardment

Even though particle bombardment is a widely used technique for transforming soybean
embryogenic cultures, it was rarely explored for shoot morphogenesis. McCabe et al. [25]
was the first to report particle bombardment mediated transformation in soybean. Trans‐
forming meristems of soybean bu DNA coated gold particles followed by shoot regenera‐
tion in the presence of cytokinin, resulting in the development of chimeras. In subsequent
studies, non-chimeric plants were obtained through the use of screening methods for the se‐
lection of plants that contained transgenic germ-line cells [32,62&63]. Shoot apex transfor‐
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mation is labour intensive because the meristematic tissue is diffcult to target and, without
selection, a large number of plants must be regenerated and analysed [64].

2.5. Genes for trait improvement

Soybean has been improved by Agrobacterium mediated transformation followed by shoot
regeneration. Wheat germin gene (gf-2.8) encoding an oligomeric protein and oxalate oxi‐
dase (oxo) genes were introduced into soybean to improve resistance to the oxalate-secret‐
ing  pathogen  Sclerotina  sclerotiorum  [65].  Li  et  al.[6]  successfully  utilized  Agrobacterium-
mediated  transformation  to  transfer  chitinase  gene  (chi)  and  the  barley  ribosome-
inactivating  protein  gene  (rip)  into  soybean  cotyledonary  node  cells.  Piller  et  al.  [66]
investigated  the  feasibility  of  expressing  the  major  Enterotoxigenic  Escherichia  coli  K99
fimbrial  subunit,  FanC,  in  soybean for  use  as  an edible  subunit  vaccine.  Xue et  al.  [67]
successfully expressed jasmonic acid carboxyl methyltransferase (NTR1) gene from Brassi‐
ca campestris  into soybean cv.Jungery that produces methyl jasmonate and showed toler‐
ance  to  water  stress.  Soybean  oil  contains  very  low  level  of  α-tocopherol  which  is  the
most active form of tocopherol. The tocopherols present in the seed are converted into α-
and β-tocopherols  by overexpressing γ-tocopherol  methyltransferase  from Brassica  napus
(BnTMT) [68]. Jiang et al. [69] transferred isoflavone synthase (IFS) gene into soybean cal‐
lus using Agrobacterium-mediated transformation and the transgenic plants  produced in‐
creased  levels  of  the  secondary  metabolite,  isoflavone.  Transgenic  soybean  plant
containing PhyA gene of Aspergillus ficuum exhibited a lower amount of phytate in differ‐
ent soybean tissues including the leaf, stem and root. This indicated that engineering crop
plants with a higher expression level of heterologous phytase could improve the degrada‐
tion of phytate and potentially in turn mobilize more inorganic phosphate from phytate
and thus reduce phosphate load on agricultural ecosystems [70].

3. Somatic embryogenesis and transformation

Somatic embryogenesis is a process by which a plant somatic cell develops into a whole
plant without gametic fusion but undergoes developmental changes as that of zygotic em‐
bryogenesis [71, 72]. The first demonstration of in vitro somatic embryogenesis was reported
in Daucus carota by Reinert [73]. The concept of embryogenesis has drawn a lot of attention
because of its significance in theory and practice. Primarily, somatic embryos can be pro‐
duced easily and quickly, so that it provides an economical and easy way to study plant de‐
velopment. Secondly, synthetic seeds developed from somatic embryos open the possibility
of developing high quality seeds and may allow us to produce seeds from those plants that
require a long period for seed production. Somatic embryogenesis is also useful in plant ge‐
netic engineering since regeneration via somatic embryogenesis is frequently single of cell
origin, resulting in a low response of chimeras and high a number of true transgenic regen‐
erants [74, 75].
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3.1. Somatic embryogenesis

The first record of soybean somatic embryogenesis was reported by Beversdorf & Bingham
[76], followed by Christianson et al. [77] who regenerated plants through the method. The
immature cotyledon is the preferred explant for soybean somatic embryogenesis as it has
pre-determined embryogenic cells. Somatic embryogenesis is a multi-step regeneration
process starting with the formation of proembryogenic cell mass, followed by somatic em‐
bryo induction, their maturation, desiccation and finally plant regeneration [78].

Soybean somatic embryos were induced from immature cotyledon explants cultured on me‐
dium containing high levels of 2,4-D [79]. Even though NAA induced somatic embryogene‐
sis from immature cotyledons, the mean number of embryos produced on 2,4-D was
significantly higher [80]. Explant orientation, pH, solidifying agent, and 2,4-D concentration
have a synergic effect on somatic embryo induction [81]. The early-staged somatic embryos
can be maintained and proliferated by subculturing the tissue on either semi-solid medium
[79] or liquid suspension culture medium [82]. Somatic embryos incubated in a medium
containing NAA do not proliferate so well as those produced on a medium containing 2,4-D
[83]. Somatic embryos initiated on NAA are more advanced in embryo morphology than
those induced on 2,4-D and the efficiency of somatic embryo induction was highest with a
medium containing 2-3% sucrose. Cultures initiated on lower sucrose concentrations tended
to produce a higher amount of friable embryos, while increased concentrations of this sugar
impaired embryo induction [80,84-86]. Histodifferentiation and maturation of somatic em‐
bryos doesn’t need exogenous auxin or cytokinins [87]. Indeed, poorly developed meristem
or swollen hypocotyls may be an undesired outcome of the application of exogenous auxins
and cytokinins, respectively. Moon and Hildebrand, [88] investigated the effects of prolifera‐
tion, maturation, and desiccation methods on conversion of soybean somatic embryos to
plants. Somatic embryos proliferated on solid medium showed a higher regeneration rate
when compared with the embryos proliferated in liquid medium. The growth period of so‐
matic embryo development can be reduced one month by culturing in a medium devoid of
2,4-D and B5 vitamins. Carbon source is critical for embryo nutritional health and improves
somatic embryo maturation. The effects of carbohydrates on embryo histodifferentiation
and maturation on liquid medium were analyzed by Samoylov et al. [89]. FNL medium sup‐
plemented with 3% sucrose (FNL0S3) or 3% maltose (FNL0M3) were compared. Data indi‐
cated that sucrose promotes embryo growth and significantly increases the number of
cotyledon-stage embryos recovered during histodifferentiation and maturation. However,
the percentages of plants recovered from embryos differentiated and matured in FNL0S3
was lower than those grown in FNL0M3 (Samoylov et al. 1998b). The quality of somatic em‐
bryos can be positively influenced by a low osmotic potential in maturation medium [90,
91]. Carbohydrates can act as an osmotic agent. Polyethylene glycol 4000, mannitol and sor‐
bitol were tested as supplements to a liquid Finer and Nagasawa medium-based histodiffer‐
entiation/maturation medium FNL0S3, for soybean (Glycine max L. Merrill) somatic embryos
of ‘Jack’ and F138 or ‘Fayette’[90]. Overall, 3% sorbitol was found to be the best of the os‐
motic supplements tested. The ability of histodifferentiation and conversion of somatic em‐
bryo have been improved by the use of ethylene inhibitor aminoethoxyvinylglycine [92].
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The effects of ethylene on embryo histodifferentiation and conversion were genotype-specif‐
ic. The germination frequency of soybean embryos is very low [93], and therefore, partial
desiccation of somatic embryos was emphasised with a view to improving the germination
frequency in soybean [87,94&95]. Desiccation induced a physiological state there by increase
the germination ability of somatic embryos [87].

3.2. Genotype

Soybean somatic embryogenesis is highly genotypic when compared to organogenesis. The
existence of strong genotype specificity in the regeneration capacity of the different cultivars
represents a major limiting factor for the advancement of soybean biotechnology. The em‐
bryogenic efficiency of soybean was shown to be different among cultivars at each stage (in‐
duction, proliferation, maturation, germination) of somatic embryogenesis [92,96] and it is
very challenging to identify genotypes highly responsive to all stages. Simmonds and Do‐
naldson, [97] screened 18 short season soybean genotypes for proliferative embryogenesis.
Five genotypes produced embryogenic cultures which were proliferative for at least 6
months. Yang et al. [98] screened 98 Chinese soybean varieties for somatic embryogenesis
and selected 12 varieties based on their embryogenic capacity. The greatest average number
of plantlets regenerated per explant (1.35) was observed in N25281. Bonacin et al. [99] dem‐
onstrated the influence of genotype on somatic embryogenic capability of five Brazilian cul‐
tivars. Droste et al. [100] reported somatic embryo induction, proliferation and
transformation of commercially grown Brazilian soybean cultivars for the first time. Soy‐
bean somatic embryo conversion is genotype dependent; germination frequency of H7190
was approximately three fold lower than that of PI 417138 [101]. Hiraga et al. [102] exam‐
ined the capacity for plant regeneration through somatic embryogenesis in Japanese soy‐
bean cultivars and identified Yuuzuru and Yumeyutaka as having high potential for somatic
embryogenesis. Several cultivars were identified as uniformly embryogenic at the primary
induction phase at all locations, among which Jack was the best [103]. Kita et al. [104] evalu‐
ated somatic embryogenesis, proliferation of embryogenic tissue, and regeneration of plant‐
lets in backcrossed breeding lines derived from cultivar Jack and a breeding line, QF2. The
backcrossed breeding lines exhibited an increased capacity for induction and proliferation of
somatic embryos and were used successfully to generate transgenic plants.

3.3. Agrobacterium mediated transformation

Recovery of the first transgenic plant via somatic embryogenesis in soybean was reported
by  Parrott  et  al.  [105].  Immature  cotyledon  tissues  were  inoculated  with  Agrobacterium
strain which contained 15 kD zein gene and the neomycin phosphotransferase gene. The
explants  were  placed  on  medium containing  high  auxin  for  somatic  embryo  induction.
Three transgenic plants containing the introduced 15 kD zein gene were regenerated. Un‐
fortunately,  these plants were chimeric and the 15 kD zein gene was not transmitted to
the progeny. Sonication-assisted Agrobacterium-mediated transformation (SAAT) of imma‐
ture cotyledons tremendously improves the efficiency of Agrobacterium infection by intro‐
ducing large numbers of micro wounds into the target plant tissue [48]. The highest GUS
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expression  was  obtained when immature  cotyledons  were  sonicated  for  2s  in  the  pres‐
ence of Agrobacterium followed by co-cultivation for 3 days. Trick and Finer, [108] success‐
fully employed Sonication-assisted Agrobacterium-mediated transformation of embryogenic
suspension culture tissue and when SAAT was not used,  no transgenic clones were ob‐
tained. Yan et al. [109] demonstrated the feasibility of Agrobacterium mediated transforma‐
tion of cotyledon tissue for the production of fertile transgenic plants by optimising the
Agrobacterium  concentration,  using  co-cultivation  time  and  selecting  proper  explant.  Ko
and Korban, [110] investigated optimal conditions for induction of transgenic embryos fol‐
lowed by Agrobacterium  mediated transformation.  Using cotyledon explants  from imma‐
ture  embryos  of  5-8mm length,  a  1:1  (v/v)  concentration of  bacterial  suspension and 4-
day  co-cultivation  period  significantly  increased  the  frequency  of  transgenic  somatic
embryos.  The  Agrobacterium  tumefaciens  strain  KYRT1  harboring  the  virulence  helper
plasmid pKYRT1 induces transgenic somatic embryos at  a high frequency from infected
immature soybean cotyledons [111]. Recently, the successful recovery of a high number of
soybean transgenic fertile plants was obtained from the combination of DNA- free parti‐
cle bombardment and Agrobacterium-mediated transformation using proliferating soybean
somatic embryos as targets [112].

3.4. Particle bombardment

Particle bombardment is a widely used technique for transformation of embryogenic cul‐
tures of soybean; the major advantage of this technique over Agrobacterium is the removal
of biological incompatibilities. Particle bombardment in soybean was first reported by Fi‐
ner and McMullen [64], in which embryogenic suspension culture tissue of soybean was
bombarded  with  particles  coated  with  plasmid  DNAs  encoding  hygromycin  resistance
and β-glucuronidase.  Analysis of  DNA from progeny plants showed genetic  linkage for
multiple copies of introduced DNA. Using particle bombardment, fertile plants could be
routinely  produced  from  the  proliferating  transgenic  embryogenic  clones.  Hazal  et  al.
[113]  studied  growth  characteristics  and  transformability  of  embryogenic  cultures  and
found that cultures bombarded between 2-6 days after transfer to fresh medium showed
more transient expression of the reporter gene. Histological analysis showed that the most
transformable  cultures  had  cytoplasmic-rich  cells  in  the  outermost  layers  of  the  tissue.
Maughan et  al.  [114]  bombarded embryogenic  cultures  with  plasmid  containing  630-bp
DNA fragment encoding a bovine milk protein, β-casein. Hadi et al. [115] co-transformed
12 different plasmids into embryogenic suspension culture by particle bombardment. Hy‐
bridization analysis  of  hygromycin resistance clones verified the presence of  introduced
plasmid DNAs.  Santarem and Finer [116]  investigated the effect  of  desiccation of  target
tissue, period of subculture prior to bombardment and number of bombardments per tar‐
get  tissue  for  enhancement  of  transient  expression  of  the  reporter  gene.  Desiccation  of
proliferating  tissue  for  10  min,  subculture  on the  same day prior  to  bombardment  and
three times bombardment on a single day enhanced the transient expression of β-glucuro‐
nidase  [116].  Dufourmantel  et  al.  [117]  successfully  transformed  chloroplasts  from  em‐
bryogenic tissue of soybean using DNA carrying spectinomycin resistance gene (aadA) by
bombardment.  All  transplastomic  T0 plants  were fertile  and T1 progeny was uniformly
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spectinomycin resistant,  showing the stability of the plastid transgene. Droste  et al.  [100]
successfully  transformed  embryogenic  cultures  of  soybean  cultivars  recommended  for
commercial growing in South Brazil  by bombardment,  and this opened the field for the
improvement of this crop in this country by genetic engineering.

3.5. Genes for trait improvement

Li et al. [6] attempted to transform two antifungal protein genes (chitinase and ribosome-in‐
activating protein) by co-transformation. Transgenic soybeans expressing the Yeast SLC1
Gene showed higher oil content [118]. They reported that, compared to controls, the average
increase in triglyceride values went up by 1.5% in transgenic somatic embryos and also
found that a maximum of 3.2% increase in seed oil content was observed in a T3 line. Trans‐
fer of Δ6 desaturase, fatty acid elongase and D5 desaturase into soybean under seed specific
expression produced arachidonic acid (ARA) in seeds of soybean [119]. In an attempt to en‐
hance soybean resistance to viral diseases, several groups successfully generated transgenic
plants by expressing an inverted repeat of soybean dwarf virus SbDV coat protein (CP)
genes [120], or soybean mosaic virus (SMV) coat protein gene [121]. The nutritional quality
of soybean has been improved for enhanced amino acid, proteins and vitamin production
by transgenic technology [114, 122, 123, 124, and 125]. The feasibility of genetically engineer‐
ing soybean seed coats to divert metabolism towards the production of novel biochemicals
was tested by transferring the genes phbA, phbB, phbC from Ralstonia eutropha. Each gene
was under the control of the seed coat peroxidase gene promoter [126]. The analysis of seed
coats demonstrated that polyhydroxybutyrate (PHB) was produced at an averge of 0.12%
seed coat dry weight.

4. Conclusion and future prospects

As demands increase for soybean oil and protein, the improvement of soybean quality and
production through genetic transformation and functional genomics becomes an important
issue throughout the world. Modern genetic analysis and improvement of soybean heavily
depend on an efficient regeneration and transformation process, especially commercially
important genotypes. The transformation techniques developed until now till date do not al‐
low high-throughput analyses in soybean functional genomics; though significant improve‐
ments have been made in the particle bombardment of embryogenic culture and
Agrobacetrium mediated transformation of the cotyledonary node over the past three deca‐
des. However, routine recovery of transgenic soybean plants using either of these two trans‐
formation systems has been restricted to a few genotypes with no reports of transformation
on other locally available commercial genotypes. Therefore, development of an efficient and
consistent transformation protocol for other locally available commercial genotypes, will
greatly aid soybean functional genomics and transgenic technology.
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