1. Introduction

We will begin with a simple type of stationary stochastic systems of quantum physics using them within a frame of the Shannon Information Theory and Thermodynamics but starting with their algebraic representation. Based on this algebraic description a model of information transmission in those systems by defining the Shannon information will be stated in terms of variable about the system state. Measuring on these systems is then defined as a spectral decomposition of measured quantities - operators. The information capacity formulas, now of the narrow-band nature, are derived consequently, for the simple system governed by the Bose–Einstein (B–E) Law [bosonic (photonic) channel] and that one governed by the Fermi-Dirac (F–D) Law [fermionic (electron) channel]. The not-zero value for the average input energy needed for information transmission existence in F–D systems is stated [11, 12].

Further the wide–band information capacity formulas for B–E and F–D case are stated. Also the original thermodynamic capacity derivation for the wide–band photonic channel as it was stated by Lebedev–Levitin in 1966 is revised. This revision is motivated by apparent relationship between the B–E (photonic) wide–band information capacity and the heat efficiency for a certain heat cycle, being further considered as the demonstrating model for processes of information transfer in the original wide–band photonic channel. The information characteristics of a model reverse heat cycle and, by this model are analyzed, the information arrangement of which is set up to be most analogous to the structure of the photonic channel considered, we see the necessity of returning the transfer medium (the channel itself) to its initial state as a condition for a sustain, repeatable transfer. It is not regarded in [12, 30] where a single information transfer act only is considered. Or the return is

\[T \to \infty \]
regarded, but by opening the whole transfer chain for covering these return energy needs from its environment not counting them in - not within the transfer chain only as we do now. The result is the corrected capacity formula for wide–band photonic (B–E) channels being used for an information transfer organized cyclically.

2. Information transfer channel

An information, transfer channel \(\mathcal{K} \) is defined as an arranged tri–partite structure [5]

\[
\mathcal{K} \overset{\text{Def}}{=} [X, \varepsilon, Y] \text{ where } X \overset{\text{Def}}{=} [A, p_X(\cdot)], \quad Y \overset{\text{Def}}{=} [B, p_Y(\cdot)] \quad \text{and} \quad (1)
\]

- \(X \) is an input stochastic quantity, a source of input messages \(a \in A^+ \overset{\Delta}{=} \mathcal{X}, \) a transceiver,
- \(Y \) is an output stochastic quantity, a source of output messages \(b \in B^+ \overset{\Delta}{=} \mathcal{Y}, \) a receiver,
- output messages \(b \in \mathcal{Y} \) are stochastic dependent on input messages \(a \in \mathcal{X} \) and they are received by the receiver of messages, \(Y, \)
- \(\varepsilon \) is the maximal probability of an error in the transfer of any symbol \(a \in \mathcal{X} \) [the maximal probability of erroneously receiving \(y \in B \) (inappropriate for \(x \)) in an output message \(b \in \mathcal{Y} \)],
- \(A \) denotes a finite alphabet of elements \(x \) of the source of input messages,
- \(B \) denotes a finite alphabet of elements \(y \) of the source of output messages,
- \(p_X(\cdot) \) is the probability distribution of evidence of any symbol \(x \in A \) in an input message,
- \(p_Y(\cdot) \) is the probability distribution of evidence of any symbol \(y \in B \) in an output message. The structure \((X, \mathcal{K}, Y)\) or \((\mathcal{X}, \mathcal{K}, \mathcal{Y})\) is termed a transfer (Shannon) chain. The symbols \(H(X) \) and \(H(Y) \) respectively denote the input information (Shannon) entropy and the output information (Shannon) entropy of channel \(\mathcal{K}, \) discrete for this while,

\[
H(X) \overset{\text{Def}}{=} - \sum_{x \in A} p_X(x) \ln p_X(x), \quad H(Y) \overset{\text{Def}}{=} - \sum_{y \in B} p_Y(y) \ln p_Y(y) \quad (2)
\]

The symbol \(H(X|Y) \) denotes the loss entropy and the symbol \(H(Y|X) \) denotes the noise entropy of channel \(\mathcal{K}. \) These entropies are defined as follows,

\[
H(X|Y) \overset{\text{Def}}{=} - \sum_{A} \sum_{B} p_{X,Y}(x,y) \ln p_{X|Y}(x|y), \quad H(Y|X) \overset{\text{Def}}{=} - \sum_{A} \sum_{B} p_{X,Y}(x,y) \ln p_{Y|X}(y|x) \quad (3)
\]

where the symbol \(p_{X,Y}(\cdot, \cdot) \) denotes the condition and the symbol \(p_{-X}(\cdot, \cdot) \) denotes the simultaneous probabilities. For mutual (transferred) usable information, transinformation \(T(X;Y) \) or \(T(Y;X) \) is valid that

\[
T(X;Y) = H(X) - H(X|Y) \quad \text{and} \quad T(Y;X) = H(Y) - H(Y|X) \quad (4)
\]

From (2) and (3), together with the definitions of \(p_{-X}(\cdot, \cdot) \) and \(p_{-Y}(\cdot, \cdot), \) is provable prove that the transinformation is symmetric. Then the equation of entropy (information) conservation is valid

\[
H(X) - H(X|Y) = H(Y) - H(Y|X) \quad (5)
\]
The information capacity of the channel \mathcal{K} (both discrete an continuous) is defined by the equation

$$C \overset{\text{Def}}{=} \sup I(X; Y)$$

over all possible probability distributions $q(\cdot)$, $p(\cdot)$.

It is the maximum (supremum) of the medium value of the usable amount of information about the input message x within the output message y.

Remark: For continuous distributions (densities) $p_{x|y} (\cdot)$, $p_{y|x} (\cdot)$ on intervals \mathcal{X}, $\mathcal{Y} \in \mathbb{R}$, $x \in \mathcal{X}$, $y \in \mathcal{Y}$ is

$$H(X) = -\int_{\mathcal{X}} p_X(x) \ln p_X(x) \, dx,$$

$$H(Y) = -\int_{\mathcal{Y}} p_Y(y) \ln p_Y(y) \, dy,$$

$$H(X|Y) = -\int_{\mathcal{X}} \int_{\mathcal{Y}} p_{X,Y}(x,y) \ln p_{X|Y}(x|y) \, dx dy,$$

$$H(Y|X) = -\int_{\mathcal{X}} \int_{\mathcal{Y}} p_{X,Y}(x,y) \ln p(y|x) \, dx dy.$$

Equations (4), (5 are valid for both the quantities $H(\cdot)$ and $H(\cdot|\cdot)$, as well as for their respective changes $\Delta H(\cdot)[= H(\cdot)]$ and $\Delta H(\cdot|\cdot)[= H(\cdot|\cdot)].$

3. Representation of physical transfer channels

The most simple way of description of stationary physical systems is an euclidean space Ψ of their states expressed as linear operators. This way enables the mathematical formulation of the term (physical) state and, generally, the term (physical) quantity.

Physical quantities α, associated with a physical system Ψ represented by the Euclidean space Ψ are expressed by symmetric operators from the linear space $L(\Psi)$ of operators on Ψ, $\alpha \in \mathbb{A} \subset L(\Psi)$ [7]. The supposition is that any physical quantity can achieve only those real values α which are the eigenvalues of the associated symmetric operator α (symmetric matrix $[\alpha_{ij}]_{n,n}$, $n = \dim \Psi$). They are elements of the spectrum $\mathcal{S}(\alpha)$ of the operator α. The eigenvalues $\alpha \in \mathcal{S}(\alpha) \subset \mathbb{R}$ of the quantity α being measured on the system $\Psi \cong \Psi$ depend on the (inner) states θ of this system Ψ.

- The pure states of the system $\Psi \cong \Psi$ are represented by eigenvectors $\psi \in \Psi$. It is valid that the scalar product $\langle \psi, \psi \rangle = 1$; in quantum physics they are called normalized wave functions.
- The mixed states are nonnegative quantities $\theta \in \mathbb{A}$; their trace [of an square matrix (operator) α] is defined

$$\text{Tr}(\alpha) \overset{\text{Def}}{=} \sum_{i=1}^{n} \alpha_{i,i} \quad \text{and, for } \alpha \equiv \theta \text{ is valid that } \text{Tr}(\theta) = 1.$$

The symmetric projector $\pi \{ \psi \} = \pi[\Psi(\{ \psi \})]$ (orthogonal) on the one–dimensional subspace $\mathcal{Y}(\{ \psi \})$ of the space Ψ is nonnegative quantity for which $\text{Tr}(\pi \{ \psi \}) = 1$ is valid. The projector $\pi \{ \psi \}$ represents [on the set of quantities $\mathbb{A} \subset L(\Psi)$] the pure state ψ of the system Ψ. Thus, an arbitrary state of the system Ψ can be defined as a nonnegative quantity $\theta \in \Theta \subset \mathbb{A}$ for which $\text{Tr}(\theta) = 1$ is valid. For the pure state θ is then valid that $\theta^2 = \theta$ and the state space Θ of the system Ψ is defined as the set of all states θ of the system Ψ.

2 The motivation is the axiomatic theory of algebraic representation of physical systems [7].
3.1. Probabilities and information on physical systems

3.1.0.1. Theorem:

For any state \(\Theta \) the pure states \(\theta_i = \pi \{ \psi_i \} \) and numbers \(q(i|\theta) \geq 0 \) exists, that

\[
q(i|\theta) \geq 0, \quad \theta = \sum_{i=1}^{n} q(i|\theta) \theta_i \quad \text{where} \quad \sum_{i=1}^{n} q(i|\theta) = 1
\]

(10)

3.1.0.2. Proof:

Let \(D(\theta) = \{ D_{\theta} : \theta \in S(\theta) \} \) is a disjoint decomposition of the set \(\{1, 2, ..., n\} \) of indexes of the base \(\{ \psi_1, \psi_2, ..., \psi_n \} \) of \(\Psi \). The set \(\{ \psi_i : i \in D_{\theta} \} \) is an orthogonal basis of the eigenspace \(\Psi(\theta|\theta) \subset \Psi \) of the operator \(\theta \) [for its eigenvalue \(\theta \in S(\theta) \)]. Then

\[
\text{card } D_{\theta} = \dim \Psi(\theta|\theta) \geq 1 \quad \text{and} \quad \pi[\Psi(\theta|\theta)] = \sum_{i \in D_{\theta}} \pi \{ \psi_i \}, \quad \forall \theta \in S(\theta)
\]

(11)

Let \(q(i|\theta) = \theta \) is taken for all \(i \in D_{\theta}, \theta \in S(\theta) \). By the spectral decomposition theorem [9],

\[
\theta = \sum_{\theta \in S(\theta)} \theta \pi_{\theta} = \sum_{\theta \in S(\theta)} \theta \pi[\Psi(\theta|\theta)] = \sum_{\theta \in S(\theta)} \theta \sum_{i \in D_{\theta}} \pi \{ \psi_i \} = \sum_{i=1}^{n} q(i|\theta) \pi \{ \psi_i \}
\]

(12)

\[
\text{Tr}(\theta) = \sum_{i=1}^{n} q(i|\theta) \cdot \text{Tr}(\pi \{ \psi_i \}) = \sum_{i=1}^{n} q(i|\theta) = 1
\]

The symbol \(q(\cdot|\theta) \) denotes the probability distribution into pure, canonic components \(\theta_i \) of \(\theta \) is called:

- **canonic distribution** (\(q \)-distribution) of the state \(\theta \in \Theta \).

Further the two distribution defined on spectra of \(\alpha \in A \) and \(\theta \in \Theta \subset A \) will be dealt:

- **dimensional distribution** (\(d \)-distribution) of the state \(\theta \in \Theta \)

\[
d(\theta|\theta) \overset{\text{Def}}{=} \frac{\dim \Psi(\theta|\theta)}{\dim \Psi} = \frac{\dim \Psi(\theta|\theta)}{n}, \quad \theta \in S(\theta)
\]

(13)

- **distribution of measuring** (\(p \)-distribution) of the quantity \(\alpha \in A \) in the state \(\theta \in \Theta \),

\[
p(\alpha|\alpha|\theta) \overset{\text{Def}}{=} \text{Tr}(\theta \pi_{\alpha}), \quad \alpha \in S(\alpha)
\]

(14)

where \(\{ \pi_{\alpha} : \alpha \in S(\alpha) \} \) is the spectral decomposition of the unit operator \(1 \). Due the nonnegativity of \(\theta \pi_{\alpha} \) is \(p(\alpha|\alpha|\theta) = \text{Tr}(\alpha \pi_{\alpha}) \geq 0 \). By spectral decomposition of \(1 \) and by definition of the trace \(\text{Tr}(\cdot) \) is

\[
\sum_{\alpha \in S(\alpha)} p(\alpha|\alpha|\theta) = \text{Tr} \left(\theta \sum_{\alpha \in S(\alpha)} \pi_{\alpha} \right) = \text{Tr}(\theta 1) = 1
\]

(15)

Thus the relation (14) defines the probability distribution on the spectrum of the operator \(S(\alpha) \).

3 Or, the system spectral distribution SSD [11].

4 Or, the system distribution of the system spectral dimension SDSD [11].
• The special case of the p-distribution is that for measuring values of $\alpha \equiv \theta$, $\theta \in \Theta$,
\begin{equation}
 p(\theta|\theta) = \operatorname{Tr}(\theta \pi_{\theta}) = \theta \dim \Psi(\theta|\theta), \quad \theta \in S(\theta) \tag{16}
\end{equation}
It is the case of measuring the θ itself. Thus, by the equation (14), the term measuring means just the spectral decomposition of the unit operator 1 within the spectral relation with α [4, 20]. The act of measuring of the quantity $\alpha \in \Theta$ in the state θ gives the value α from the spectrum $S(\alpha)$ with the probability $p(\alpha|\alpha|\theta) = \operatorname{Tr}(\theta \pi_{\alpha})$ given by the p-distribution,
\begin{equation}
 \sum_{\alpha \in S(\alpha)} p(\alpha|\alpha|\theta) = \sum_{\alpha \in S(\alpha)} \operatorname{Tr}(\theta \pi_{\alpha}) = 1 \tag{17}
\end{equation}
The measured quantity α in the state θ is a stochastic quantity with its values occurring with probabilities $p(\cdot|\alpha|\theta)$ from its spectrum $S(\alpha)$. For its mathematical expectation, medium value is valid
\begin{equation}
 E(\alpha) = \sum_{\alpha \in S(\alpha)} \alpha \operatorname{Tr}(\theta \pi_{\alpha}) = \operatorname{Tr} \left(\theta \sum_{\alpha \in S(\alpha)} \alpha \pi_{\alpha} \right) = \operatorname{Tr}(\theta \pi_{\alpha}) = (\alpha \psi, \psi) \tag{18}
\end{equation}
Nevertheless, in the pure state $\theta = \pi\{\psi\}$ the values $i = \alpha \in S(\alpha)$ are measured, $\operatorname{Tr}(\theta, \alpha) = (\alpha \psi_i, \psi_i) = \alpha_{ii}$. Let Ψ is an arbitrary stationary physical system and $\theta \in \Theta \subset A$ is its arbitrary state. The physical entropy $\mathcal{H}(\theta)$ of the system Ψ in the state θ is defined by the equality
\begin{equation}
 \mathcal{H}(\theta) \overset{\text{Def}}{=} -\operatorname{Tr}(\theta \ln \theta) \tag{19}
\end{equation}
When $\{\pi_{\theta} : \theta \in S(\theta)\}$ is the decomposition of 1 spectral equivalent with θ, then it is valid that
\begin{equation}
 \theta \ln \theta = \sum_{\theta \in S(\theta)} \theta \ln \theta \pi_{\theta} \quad \text{and} \quad \mathcal{H}(\theta) = -\sum_{\theta \in S(\theta)} \theta \ln \theta \cdot \dim \Psi(\theta|\theta) \tag{20}
\end{equation}
3.1.0.3. Theorem:
For a physical system Ψ in any state $\theta \in \Theta$ is valid that
\begin{equation}
 \mathcal{H}(\theta) = -\sum_{i=1}^{n} q(i|\theta) \cdot \ln q(i|\theta) = H[q(\cdot|\theta)] = \ln n - \sum_{\theta \in S(\theta)} p(\theta|\theta) \cdot \ln \frac{p(\theta|\theta) \cdot d(\theta|\theta)}{d(\cdot|\theta)} \tag{21}
\end{equation}
where $H(\cdot)$ is the Shannon entropy, $I(\cdot|\cdot)$ is the information divergence, $p(\cdot|\theta|\theta)$ is the p-distribution for the state θ, $q(\cdot|\theta)$ is the q-distribution for the state θ and $d(\cdot|\theta)$ is the d-distribution for the state θ, $n = \dim \Psi$.
3.1.0.4. Proof:
The relations in (21) follows from (20) and from definition (10) of the distribution $q(\cdot|\theta)$. From definitions (13) and (16) of the other two distributions follows that [12, 38]
\begin{equation}
 I[p(\cdot|\theta) \parallel d(\cdot|\theta)] = \sum_{\theta \in S(\theta)} \theta \dim \Psi(\theta|\theta) \cdot \ln \frac{n \theta \cdot \dim \Psi(\theta|\theta)}{\dim \Psi(\theta|\theta)} = \sum_{\theta \in S(\theta)} \theta \dim \Psi(\theta|\theta) \cdot \ln n - \mathcal{H}(\theta) = \ln n - \mathcal{H}(\theta) \tag{22}
\end{equation}
Due to the quantities $X, Y, X|Y, Y|X$ describing the information transfer are in our algebraic description denoted as follows, $X \triangleleft \theta, Y \triangleleft \alpha$ or $Y \triangleright (\alpha|\theta)$, $(X|Y) \triangleright (\theta|\alpha)$, $(Y|X) \triangleright (\alpha|\theta)$. The laws of information transfer are writable in this way too:

$$C = \text{sup}_{\alpha, \theta} I(\alpha; \theta), \quad I(\cdot | \cdot) \equiv T(\cdot | \cdot)$$

$$I(\theta; \alpha) = I(\alpha; \theta) = H(\theta) - H(\theta|\alpha) = H(\alpha|\theta) - H(\alpha|\theta) = H(\theta) + H(\alpha|\theta) - H(\theta, \alpha)$$

4. Narrow-band quantum transfer channels

Let the symmetric operator ε of energy of quantum particle is considered, the spectrum of which eigenvalues ε_i is $S(\varepsilon)$. Now the equidistant energy levels are supposed. In a pure state θ_i of the measured (observed) system Ψ the eigenvalue $\varepsilon_i = i \cdot \varepsilon$, $\varepsilon > 0$. Further, the output quantity α of the observed system Ψ is supposed (the system is cell of the phase space B–E or F–D) with the spectrum of eigenvalues $S(\alpha) = \{ \alpha_0, \alpha_1, \ldots \}$ being measured with probability distribution $\Pr(\cdot) = \{ p(0), p(1), p(2), \ldots \}$

$$p(\alpha_k|\alpha|\theta_i) = \begin{cases} p(k - i) & \text{pro } \kappa \geq i \\ 0 & \kappa < i \end{cases}$$

Such a situation arises when a particle with energy ε_i is excited by an impact from the output environment. The jump of energy level of the impacted particle is from ε_i up to ε_{i+j}, $i + j = k$. The output ε_{i+j} for the excited particle is measured (it is the value on the output of the channel $\mathcal{K} \cong \Psi$). This transition j occurs with the probability distribution

$$\Pr(j), j \in \{0, 1, 2, \ldots\}$$

Let be considered the narrow-band systems (with one constant level of a particle energy) Ψ of B–E or F–D type [27] (denoted further by $\Psi_{B-E,\varepsilon}, \Psi_{F-D,\varepsilon}$).

- In the B–E system, bosonic, e.g. the photonic gas the B–E distribution is valid

 $$\Pr(j) = (1 - p) \cdot p^j, \quad j \in \{0, 1, \ldots\}, \quad p \in (0, 1), \quad p^{-\Theta}$$

- In the F–D system, fermionic, e.g. electron gas the F–D distribution is valid

 $$\Pr(j) = \frac{p^j}{1 + p}, \quad j \in \{0, 1\}, \quad p \in (0, 1), \quad p^{-\Theta}$$

where parameter p is variable with absolute temperature $\Theta > 0$; k is the Boltzmann constant.

Also a collision with a bundle of j particles with constant energies ε of each and absorbing the energy $j \cdot \varepsilon$ of the bundle is considerable. E.g., by Ψ (e.g. $\Psi_{B-E,\varepsilon}$ is the photonic gas) the monochromatic impulses with amplitudes $i \in S$ are transferred, nevertheless generated from the environment of the same type but at the temperature T_W, $T_W > T_0$ where T_0 is the temperature of the transfer system $\Psi \cong \mathcal{K}$ (the noise temperature).

It is supposed that both pure states θ_i in the place where the input message is being coded - on the input of the channel $\Psi \cong \mathcal{K}$ and, also, the measurable values of the quantity α being
observed on the place where the output message is decoded - on the output of the channel \(\mathcal{Y} \cong \mathcal{K} \)
are arrangeable in such a way that in a given \(i \)-th pure state \(\theta_i \) of the system \(\mathcal{Y} \cong \mathcal{K} \) only
the values \(\alpha_k \in S(\alpha) \), \(k = i + j \) are measurable and, that the probability of measuring the \(k \)-th
value is \(\Pr(j) = Pr(k - i) \). This probability distribution describes the additive noise in the given
channel \(\mathcal{Y} \cong \mathcal{K} \). Just it is this noise which creates observed values from the output spectrum
\(S(\alpha) = \{ \alpha_i, \alpha_{i+1}, \ldots \} \) being the selecting space of the stochastic quantity \(\alpha \).

The pure states with energy level \(\varepsilon_i = i \cdot \varepsilon \) are achievable by sending \(i \) particles with energy \(\varepsilon \) of each. When the environment, through which these particles are going, generates a bundle of \(j \) particles with probability \(\Pr(j) \) then, with the same probability the energy \(\varepsilon_{i+j} = k \cdot \varepsilon \) is decoded on the output.

It is supposed, also, the infinite number of states \(\theta_i \), infinite spectrum \(S(\alpha) \) of the measured
quantity \(\alpha \), then \(S(\alpha) = \{ 0, 1, 2, \ldots \} \), \(S(\alpha) = D(\theta); \left[S(\alpha) \right] \triangleq S, \alpha_k \triangleq \alpha \).

The narrow–band, memory-less (quantum) channel, additive (with additive noise) operating on the energy level \(\varepsilon \in S(\varepsilon) \) is defined by the tri–partite structure (1),

\[
\mathcal{K}_\varepsilon = \{ [S, q(i|\theta)], p(\alpha|\theta_i), [S, p(\alpha|\theta)] \}. \tag{29}
\]

4.1. Capacity of Bose–Einstein narrow–band channel

Let now \(\theta_i \equiv i, i = 0, 1, \ldots \) are pure states of a system \(\mathcal{Y}_{\text{B–E,}\varepsilon} \cong \mathcal{K} \) and let \(\alpha \) is output quantity
taking on in the state \(\theta_i \) values \(\alpha \in S \) with probabilities

\[
p(\alpha|\theta_i) = (1 - p) p^{\alpha - i} \tag{30}
\]

Thus the distribution \(p(\cdot|\theta_i) \) is determined by the forced (inner–input) state \(\theta_i = \pi\{\psi_i\} \)
representing the coded input energy at the value \(\varepsilon_i = i \cdot \varepsilon \in S(\varepsilon), \varepsilon = \text{const} \). For the medium
value \(W \) of the input \(i \) is valid

\[
W = \sum_{i=0}^{\infty} i \cdot q(i|\theta) = E(\theta), \quad W = \varepsilon \cdot W \tag{31}
\]

The quantity \(W \) is the medium value of the energy coding the input signal \(i \).

For the medium value of the number of particles \(j = \alpha - i \geq 0 \) with B–E statistics is valid

\[
\sum_{j=0}^{\infty} j \cdot (1 - p) p^j = (1 - p) \cdot p \cdot \sum_{j=0}^{\infty} j p^{j-1} = (1 - p) \cdot p \cdot \frac{d}{dp} \left[\frac{1}{1 - p} \right] = \frac{p}{1 - p}
\]

The quantity \(E(\alpha) \) is the medium value of the output quantity \(\alpha \) and

\[
E(\alpha) = \sum_{\alpha \in S(\alpha)} \alpha \cdot p(\alpha|\theta) \tag{32}
\]

where \(p(\alpha|\theta) \) is the probability of measuring the eigenvalue \(\alpha = k \) of the output variable \(\alpha \).

This probability is defined by the state \(\theta = \sum_{i=0}^{n} q(i|\theta) \theta_i \) of the system \(\mathcal{Y}_{\text{B–E,}\varepsilon} \cong \mathcal{K} \)

\[
p(\alpha|\theta) = \sum_{i=0}^{n} q(i|\theta) \cdot p(\alpha|\theta_i) = (1 - p) \cdot \sum_{i=0}^{n} q(i|\theta) \cdot p^{\alpha - i} \quad \left[= \text{Tr}(\theta \pi_\alpha) \right] \tag{33}
\]
From the differential equation with the condition for \(\alpha = 0 \)

\[
p(\alpha|\theta) = p(\alpha - 1|\theta) \cdot p + (1 - p) \cdot q(\alpha|\theta), \quad \forall \alpha \geq 1; \quad p(0|\theta) = (1 - p) \cdot q(0|\theta)
\]

follows, for the medium value \(E(\alpha) \) of the output stochastic variable \(\alpha \), that

\[
E(\alpha) = \sum_{\alpha \geq 1} \alpha \cdot p(\alpha - 1|\theta) \cdot p + \sum_{\alpha \geq 1} \alpha \cdot (1 - p) \cdot q(\alpha|\theta) \tag{35}
\]

\[
= \sum_{\alpha \geq 1} \alpha \cdot p(\alpha - 1|\theta) \cdot p + \mathcal{W} \cdot (1 - p) = p \cdot E(\alpha) + p \cdot \sum_{\alpha \geq 1} p(\alpha - 1|\theta) + \mathcal{W} \cdot (1 - p)
\]

\[
E(\alpha) \cdot (1 - p) = p + \mathcal{W} \cdot (1 - p) \quad \rightarrow \quad E(\alpha) = \frac{p}{1 + p} + \mathcal{W}, \quad \mathcal{W} = E(\theta) > 0, \quad \theta \in \Theta_0 \tag{36}
\]

The quantity \(H(\alpha||\theta) \) is the \(p \)-entropy of measuring \(\alpha \) for the input \(i \in S \) being represented by the pure state \(\theta \) of the system \(\mathcal{Y}_{B-E,\varepsilon} \)

\[
-H(\alpha||\theta) = \sum_{j \in S} (1 - p) \cdot p^j \cdot \ln[(1 - p) \cdot p^j] \tag{37}
\]

\[
= (1 - p) \cdot \ln(1 - p) \cdot \sum_j p^j - (1 - p) \cdot p \cdot \ln p \cdot \sum_j j \cdot p^{j-1} = \ln(1 - p) - (1 - p) \cdot p \cdot \ln p \cdot \frac{d}{dp} \left[\frac{1}{1 - p} \right] = -\frac{h(p)}{1 - p}, \quad \forall i \in S
\]

where \(h(p) \triangleq -(1 - p) \cdot \ln(1 - p) - p \cdot \ln p \) is the Shannon entropy of Bernoulli distribution \(\{p, 1 - p\} \).

The quantity \(H(\alpha|\theta) \) is the conditional Shannon entropy of the stochastic quantity \(\alpha \) in the state \(\theta \) of the system \(\mathcal{Y}_{B-E,\varepsilon} \), not depending on the \(\theta \) (the noise entropy)

\[
H(\alpha|\theta) = \sum_{i=0}^{n} q(i|\theta) \cdot H(\alpha||\theta) = \sum_{i=0}^{n} q(i|\theta) \cdot \frac{h(p)}{1 - p} = \frac{h(p)}{1 - p} \tag{38}
\]

For capacity \(C_{B-E^*} \) of the channel \(\mathcal{K} \cong \mathcal{Y}_{B-E} \) is, following the capacity definition, valid

\[
C_{B-E^*} = \sup_{\theta \in \Theta_0} H(\alpha||\theta) - H(\alpha|\theta) = \sup_{\theta \in \Theta_0} H(\alpha||\theta) - \frac{h(p)}{1 - p} \tag{39}
\]

where the set \(\Theta_0 = \{\theta \in \Theta, \quad E(\theta) = \mathcal{W} \geq 0\} \) represents the coding procedure of the input \(i \in S \). The quantity \(H(\alpha||\theta) = H(p(\cdot|\alpha|\theta)) \) is the \(p \)-entropy of the output quantity \(\alpha \). Its supremum is determined by the Lagrange multipliers method:

\[
H(\alpha||\theta) = - \sum_{\alpha \in S(\alpha)} p(\alpha|\theta) \cdot \ln p(\alpha|\theta) = - \sum_{\alpha \in S(\alpha)} p_\alpha \cdot \ln p_\alpha, \quad p_\alpha \triangleq p(\alpha|\theta) \tag{40}
\]

The conditions for determining of the bound extreme are

\[
\sum_{\alpha \in S(\alpha)} p_\alpha = 1, \quad \sum_{\alpha \in S(\alpha)} \alpha \cdot p_\alpha = E(\alpha) = \text{const.} \tag{41}
\]
The Lagrange function
\[L = - \sum_\alpha p_\alpha \ln p_\alpha + \lambda_1 \sum_\alpha p_\alpha + e^{-\lambda_2} \sum_\alpha \alpha \cdot p_\alpha + \lambda_2 E(\alpha) \] \hspace{1cm} (42)
which gives the condition for the extreme, \(\frac{\partial L}{\partial p_\alpha} = -\ln p_\alpha + 1 + \lambda_1 - \lambda_2 \cdot \alpha = 0 \), yielding in
\[p_\alpha = e^{-1+\lambda_1} \cdot e^{-\lambda_2 \alpha} = p(\alpha|\theta) \] and further, in \(\sum_\alpha p_\alpha = \sum_\alpha e^{-1-\lambda_1} \cdot e^{\lambda_2 \alpha} = \frac{e^{-1-\lambda_1}}{1-e^{-\lambda_2}} = 1 \) \hspace{1cm} (43)

Then for the medium value \(E(\alpha) \) the following result is obtained
\[E(\alpha) = \sum_\alpha \alpha \cdot p_\alpha = \sum_\alpha \alpha \cdot e^{-1-\lambda_1} \cdot e^{-\lambda_2 \alpha} = -e^{-1-\lambda_1} \cdot \frac{\partial}{\partial \lambda_2} \sum_\alpha e^{-\lambda_2 \alpha} \]
\[= -e^{-1-\lambda_1} \cdot \frac{\partial}{\partial \lambda_2} \left[\frac{1}{1-e^{-\lambda_2}} \right] = \frac{e^{-1-\lambda_1}}{(1-e^{-\lambda_2})^2} \cdot e^{-\lambda_2} = \frac{e^{-\lambda_2}}{1-e^{-\lambda_2}} \] \hspace{1cm} (44)

By (35), (36) and for the parameter \(p=e^{\varepsilon kT_W} = \text{const.} \) \((\varepsilon = \text{const.} \Theta = \text{const.}) \) \(E(\alpha) \) is a function of \(\mathcal{W} \) only. For \(\lambda_2 = \frac{\varepsilon k}{T_W} \) is \(e^{-\lambda_2} = p(\mathcal{W}) \) and \(E(\alpha) \) is the medium value for \(\alpha \) with the geometric probability distribution
\[p(\cdot) = p(\cdot|\theta) = [1 - p(\mathcal{W})] \cdot p(\mathcal{W})^\alpha, \hspace{0.5cm} \alpha \in S(\alpha) \] \hspace{1cm} (45)
depending only on \(\varepsilon k T_W \) or, on the absolute temperature \(T_W \) respectively. Thus for \(E(\alpha) \) is valid that
\[E(\alpha) = \frac{p(\mathcal{W})}{1 - p(\mathcal{W})}, \hspace{0.5cm} p(\mathcal{W}) = e^{\frac{\varepsilon k T_W}{1-p(\mathcal{W})}} \] \hspace{1cm} (46)

From (35) and (46) is visible that \(p(\mathcal{W}) \) or \(T_W \) respectively is the only one root of the equation
\[\frac{p(\mathcal{W})}{1-p(\mathcal{W})} = \frac{p}{1-p} + \mathcal{W}, \text{ resp.} \frac{e^{\frac{\varepsilon k T_W}{1-p(\mathcal{W})}}}{1-e^{\frac{\varepsilon k T_W}{1-p(\mathcal{W})}}} = \frac{e^{\frac{\varepsilon k T_W}{1-p(\mathcal{W})}}}{1-e^{\frac{\varepsilon k T_W}{1-p(\mathcal{W})}}} + \mathcal{W} \] \hspace{1cm} (47)

From (34) and (45) follows that for state \(\theta \in \Theta_0 \) or, for the \(q \)-distribution \(q(\cdot|\theta) \) respectively, in which the value \(H(\alpha||\theta) \) is maximal [that state in which \(\alpha \) achieves the distribution \(q(\cdot|\theta) = p(\cdot) \)], is valid that
\[q(\alpha|\theta) = \frac{1 - p(\mathcal{W})}{1-p}, \hspace{0.5cm} \alpha = 0 \hspace{0.5cm} \text{and} \hspace{0.5cm} q(\alpha|\theta) = \frac{1 - p(\mathcal{W})}{1-p} \cdot [p(\mathcal{W}) - p] \cdot p(\mathcal{W})^{\alpha - 1}, \hspace{0.5cm} \alpha > 0 \] \hspace{1cm} (48)

For the effective temperature \(T_W \) of coding input messages the distribution (45) supremizes (maximizes) the \(p \)-entropy \(H(\alpha||\theta) \) of \(\alpha \) and, by using (37) with \(p(\mathcal{W}) \), is gained that
\[\sup_{\theta \in \Theta_0} H(\alpha||\theta) = \frac{h[p(\mathcal{W})]}{1-p(\mathcal{W})} \] \hspace{1cm} (49)

From (39) and (49) follows \([12, 37]\) the capacity \(C_{B-E,\varepsilon} \) of the narrow–band channel \(K \cong \Upsilon_{B-E} \)
\[C_{B-E,\varepsilon} = \frac{h[p(\mathcal{W})]}{1-p(\mathcal{W})} - \frac{h(p)}{1-p} \] \hspace{1cm} (50)
By (35), (36) and (46) the medium value W of the input message $i \in S$ is derived,

$$W = \frac{p(W)}{1-p(W)} - \frac{p}{1-p}$$ \hspace{1cm} (51)

By (31) the condition for the *minimal* average energy W_{Krit} needed for coding the input message is

$$W \geq 0 \text{ resp. } W = \varepsilon \cdot W \geq 0, \ \varepsilon \in S(\varepsilon)$$ \hspace{1cm} (52)

$$W \geq W_{\text{Krit}}, \ W_{\text{Krit}} = 0$$ \hspace{1cm} (53)

The relations (35), (36), (46) and (52), (53) yield in

$$E(\alpha) = \frac{p(W)}{1-p(W)} \geq \frac{p}{1-p} \text{ and then } p(W) \geq p, \ 1-p(W) \leq 1-p$$ \hspace{1cm} (54)

From (47) and (54) follows that for the defined direction of the signal (message) transmission at the temperature T_W of its sending and decoding is valid that

$$\frac{p(W)}{1-p(W)} > \frac{p}{1-p}, \ p(W) > p, \ W > 0$$ \hspace{1cm} (55)

$$p(W) = e^{-\frac{\varepsilon}{kT_W}} \geq e^{-\frac{\varepsilon}{kT_0}} = p \text{ and thus } T_w \geq T_0$$ \hspace{1cm} (56)

4.2. Capacity of Fermi–Dirac narrow–band channel

Let is now considered, in the same way as it was in the B–E system, the pure states $\theta_i \equiv i$ of the system Ψ which are coding the input messages $i = 0, 1, \ldots$ and the output stochastic quantity α having its selecting space S. On the spectrum S probabilities of realizations $\alpha \in S$ are defined,

$$p(\alpha|\alpha|\theta_i) = \frac{p^{\alpha-i}}{1+p}, \ p \in (0,1), \ i = 0, 1, \ldots$$ \hspace{1cm} (57)

expressing the additive stochastic transformation of an input i into the output α for which is valid $\alpha = i$ or $\alpha = i + 1$.\(^5\) The uniform energy level $\varepsilon = \text{const.}$ of particles is considered.

The quantity W is the mathematical expectation of the energy coding the input signal

$$W = \varepsilon \cdot W, \ W = \sum_{i \in S} i \cdot q(i|\theta) = E(\theta)$$ \hspace{1cm} (58)

The medium value of a stochastic quantity with the F–D statistic is given by

$$\sum_{j \in \{0;1\}} j \cdot \frac{p^j}{1+p} = \frac{p}{1+p}$$ \hspace{1cm} (59)

The quantity $E(\alpha)$ is the medium value of the output quantity α,

$$E(\alpha) = \sum_{\alpha \in S(\alpha)} \alpha \cdot p(\alpha|\alpha|\theta)$$ \hspace{1cm} (60)

\(^5\) In accordance with *Pauli excluding principle* (valid for fermions) and a given energetic level $\varepsilon \in S(\varepsilon)$.
where \(p(\alpha|\alpha|\theta) \) is probability of realization of \(\alpha \in S \) in the state \(\theta \) of the system \(\Psi \equiv \Psi_{F-D,x} \equiv \mathcal{K} \),

\[
\theta = \sum_{i \in S} q(i|\theta) \theta_i, \quad p(\alpha|\alpha|\theta) = \sum_{i=0}^{n} q(i|\theta) \cdot p(\alpha|\alpha|\theta_i) = \frac{1}{1+p} \cdot \sum_{i=0}^{n} q(i|\theta) \cdot p^{\alpha-i} \quad (61)
\]

From the differential equation

\[
p(\alpha|\alpha|\theta) = \frac{q(\alpha-1|\theta) \cdot p + q(\alpha|\theta)}{1+p}, \quad \alpha \geq 1
\]

with the condition for

\[
\alpha = 0, \quad p(0|\alpha|\theta) = \frac{1}{1+p} \cdot q(0|\theta)
\]

follows that for the medium value \(E(\alpha) \) of the output stochastic variable \(\alpha \) is valid that

\[
E(\alpha) = \frac{p}{1+p} \cdot \sum_{\alpha \geq 1} \alpha \cdot q(\alpha-1|\theta) + \frac{1}{1+p} \cdot \sum_{\alpha \geq 1} \alpha \cdot q(\alpha|\theta)
\]

\[
= \frac{p}{1+p} \cdot \sum_{\alpha \geq 1} (\alpha - 1) \cdot q(\alpha-1|\theta) + \frac{p}{1+p} \cdot \sum_{\alpha \geq 1} q(\alpha-1|\theta) + \frac{1}{1+p} \cdot \mathcal{W}
\]

\[
= \frac{p}{1+p} \cdot \mathcal{W} + \frac{p}{1+p} + \frac{1}{1+p} \cdot \mathcal{W} \quad \longrightarrow \quad E(\alpha) = \frac{p}{1+p} + \mathcal{W}, \quad \mathcal{W} = E(\theta), \quad \theta \in \Theta_0
\]

The quantity \(H(\alpha||\theta_i) \) is the \(p \)-entropy of measuring \(\alpha \) for the input \(i \in S \) being represented by the pure state \(\theta_i \) of the system \(\Psi_{F-D,x} \),

\[
H(\alpha||\theta_i) = -\sum_{j=0}^{1} \frac{p^j}{1+p} \cdot \ln \frac{p^j}{1+p} = -\frac{1}{1+p} \cdot \ln \frac{1}{1+p} - \frac{p}{1+p} \cdot \ln \frac{p}{1+p}
\]

\[
= -\left(1 - \frac{p}{1+p}\right) \cdot \ln \left(1 - \frac{p}{1+p}\right) - \frac{p}{1+p} \cdot \ln \frac{p}{1+p} = h \left(\frac{p}{1+p}\right), \quad \forall i \in S \quad (64)
\]

The quantity \(H(\alpha|\theta) \) is the conditional (the noise) Shannon entropy of the stochastic quantity \(\alpha \) in the state system \(\theta \), but, independent on this \(\theta \),

\[
H(\alpha|\theta) = \sum_{i=0}^{n} q(i|\theta) \cdot H(\alpha||\theta_i) = \sum_{i=0}^{n} q(i|\theta) \cdot h \left(\frac{p}{1+p}\right) = h \left(\frac{p}{1+p}\right)
\]

For capacity \(C_{F-D,x} \) of the channel \(\mathcal{K} \equiv \Psi_{F-D,x} \) is, by the capacity definition in (23)-(24), valid that

\[
C_{F-D,x} = \sup_{\theta \in \Theta_0} H(\alpha||\theta) - H(\alpha|\theta) = \sup_{\theta \in \Theta_0} H(\alpha||\theta) - h \left(\frac{p}{1+p}\right) \quad (66)
\]

where the set \(\Theta_0 = \{ \theta \in \Theta : E(\theta) = \mathcal{W} > 0 \} \) represents the coding procedure.

The quantity \(H(\alpha||\theta) = H(p(\cdot|\alpha|\theta)) \) is the \(p \)-entropy of the stochastic quantity \(\alpha \) in the state \(\theta \) of the system \(\Psi_{F-D,x} \). Its supremum is determined by the Lagrange multipliers method in the same way as in B–E case and with the same results for the probability distribution \(p(\cdot|\alpha|\theta) \) (geometric) and the medium value \(E(\alpha) \).
The medium value W gained follows that (maximizes) the positive 'bottom' value W_{Krit}. Again, the value $E(\alpha)$ depends on $\frac{\varepsilon}{kT_W}$, or on absolute temperature T_W respectively, only. By using $E(\alpha)$ in (63) it is seen that $p(\mathcal{W})$ or T_W respectively is the only one root of the equation [12, 30]

\[
p(\mathcal{W}) = \frac{p}{1 + p} + \mathcal{W},\quad \text{resp.}\quad \frac{e^{-\frac{\varepsilon}{kT_W}}}{1 - e^{-\frac{\varepsilon}{kT_W}}} = \frac{e^{-\frac{\varepsilon}{kT_0}}}{1 + e^{-\frac{\varepsilon}{kT_0}}} + \mathcal{W}
\]

(68)

For the q-distribution $q(\cdot | \theta) = p(\cdot)$ of states $\theta \in \Theta_0$, for which the relation (62) and (67) is gained, follows that

\[
q(\alpha - 1 | \theta) \cdot p + q(\alpha | \theta) = [1 - p(\mathcal{W})] \cdot p(\mathcal{W})^\alpha, \quad \alpha \in S \text{ with conditions}
\]

(69)

\[
q(0 | \theta) = (1 + p) \cdot [1 - p(\mathcal{W})] \quad \text{and} \quad q(1 | \theta) = (1 + p) \cdot [1 - p(\mathcal{W})] \cdot [p(\mathcal{W}) - p];
\]

\[
q(\alpha | \theta) = (1 + p) \cdot [1 - p(\mathcal{W})] \cdot \left[\left(\sum_{i=0}^{\alpha-1} (-1)^i \cdot p(\mathcal{W})^{\alpha-i} \cdot p^i \right) + (-1)^\alpha \cdot p^\alpha \right], \quad \alpha > 1
\]

For the effective temperature T_W of coding the input messages the distribution (67) suprimes (maximizes) the p-entropy $H(\alpha | \theta)$ of α is valid, in the same way as in (49), that

\[
\sup_{\theta \in \Theta_0} H(\alpha | \theta) = \frac{h[p(\mathcal{W})]}{1 - p(\mathcal{W})}
\]

(70)

By using (70) in (66) the formula for the $C_{F-D, \varepsilon}$ capacity [12, 37] is gained

\[
C_{F-D, \varepsilon} = \frac{h[p(\mathcal{W})]}{1 - p(\mathcal{W})} - h \left(\frac{p}{1 + p} \right)
\]

(71)

The medium value W of the input $i = 0, 1, 2, \ldots$ is limited by a minimal not-zero and positive 'bottom' value W_{Krit}. From (58), (63) and (68) follows

\[
E(\alpha) = \frac{p(\mathcal{W})}{1 - p(\mathcal{W})} \geq \frac{p}{1 - p}, \quad p(\mathcal{W}) = e^{-\varepsilon/kT_W} \geq e^{-\varepsilon/kT_0} = p \quad \text{and thus} \quad T_W \geq T_0
\]

(72)

\[
W = \frac{p(\mathcal{W})}{1 - p(\mathcal{W})} \cdot \frac{p}{1 + p} \geq 0, \quad W \geq \frac{2p^2}{1 - p^2} = W_{\text{Krit}}, \text{resp.} \quad W = \varepsilon \cdot W \geq \varepsilon \cdot \frac{2e^{-2\varepsilon/kT_0}}{1 - e^{-2\varepsilon/kT_0}}
\]

(73)

For the average coding energy W, when the channel $C_{F-D, \varepsilon}$ acts on a uniform energetic level ε, is

\[
W \geq W_{\text{Krit}} = \frac{2p^2}{1 - p^2}
\]

(74)

For the F–D channel is then possible speak about the effect of the not-zero capacity when the difference between the coding temperatures T_W and the noise temperature T_0 is zero.\footnote{Not not-zero capacity for zero input power as was stated in [37]. The (74) also repares small missprint in [11]}. This phenomenon is, by necessity, given by properties of cells of the F–D phase space.
5. Wide–band quantum transfer channels

Till now the narrow–band variant of an information transfer channel \mathcal{K}_ε, $\varepsilon \in S(\varepsilon)$, card $S(\varepsilon) = 1$ has been dealt. Let is now considered the symmetric operator of energy ε of a particle, having the spectrum of eigenvalues q of independent stochastic quantities too.

Due the independency of narrow–band components \mathcal{K}_ε the vector quantities i_ε, α_ε, θ_ε, j_ε are independent stochastic quantities too.

The simultaneous q-distribution of the input vector of i_ε and the simultaneous p-distribution of measuring the output vector of values α_ε (of the individual narrow–band components \mathcal{K}_ε) are

\[
\prod_{\varepsilon \in S(\varepsilon)} q_{\varepsilon}(i_\varepsilon|\theta_\varepsilon) = q(\vec{i} | \theta), \quad \theta = \bigotimes_{\varepsilon \in S(\varepsilon)} \theta_\varepsilon, \quad \vec{i} \in S(\vec{i})
\]

\[
\prod_{\varepsilon \in S(\varepsilon)} p(\alpha_\varepsilon|\theta_\varepsilon) = p(\vec{\alpha} | \theta), \quad \theta = \bigotimes_{\varepsilon \in S(\varepsilon)} \theta_\varepsilon, \quad \vec{\alpha} \in S(\vec{\alpha})
\]

The system of quantities θ_ε (the set of states of the narrow–band components \mathcal{K}_ε) is the state θ of the multi–band channel \mathcal{K} in which the (canonic) q-distribution of the system \mathcal{K} is defined.

Values i', j', α'

\[
\alpha' = j' + i'; \quad \alpha' = \sum_{\varepsilon \in S(\varepsilon)} \alpha_\varepsilon, \quad j' = \sum_{\varepsilon \in S(\varepsilon)} j_\varepsilon, \quad i' = \sum_{\varepsilon \in S(\varepsilon)} i_\varepsilon; \quad j_\varepsilon = \alpha_\varepsilon - i_\varepsilon \geq 0, \forall \varepsilon \in S(\varepsilon), \text{ card} S_\varepsilon > 1
\]

are the numbers of the input, output and additive (noise) particles of the multi–band channel \mathcal{K}. In this channel the stochastic transformation of the input i_ε into the output α_ε is performed, being determined by additive stochastic transformations of the input i_ε into the output α_ε in individual narrow–band components \mathcal{K}_ε.

Realizations of the stochastic systems i, α, θ, j are the vectors (sequences) \vec{i}, $\vec{\alpha}$, $\vec{\theta}$, \vec{j}

\[
\vec{i} = (i_\varepsilon)_{\varepsilon \in S(\varepsilon)}, \quad \vec{\alpha} = (\alpha_\varepsilon)_{\varepsilon \in S(\varepsilon)}, \quad \vec{\theta} = (\theta_\varepsilon)_{\varepsilon \in S(\varepsilon)}, \quad \vec{j} = (j_\varepsilon)_{\varepsilon \in S(\varepsilon)}; \quad \vec{i}, \vec{\alpha}, \vec{\theta}, \vec{j} \in \bigotimes_{\varepsilon \in S(\varepsilon)} S(\varepsilon), \quad \vec{\alpha} \in S(\vec{\alpha})
\]

\[
i_{\varepsilon}, \alpha_{\varepsilon}, j_{\varepsilon} \in S, \quad \theta_{\varepsilon} \in S(\theta_{\varepsilon}), \quad \theta_{\varepsilon} = \sum_{i_{\varepsilon} \in S} \theta_{i_{\varepsilon}, \varepsilon}, \quad \vec{\theta} \in S(\theta)
\]
For the probability of the additive stochastic transformation (77), (78) of input \(\bar{i} \) into the output \(\bar{a} \) is valid
\[
\prod_{\varepsilon \in S(\varepsilon)} p(\alpha_\varepsilon | \alpha_\varepsilon; \theta_{\varepsilon,i}) = p(\bar{a} | \alpha_\varepsilon; \theta); \quad \bar{a} = \bar{j} + \bar{i}, \quad \bar{j} \in S(i), \quad \bar{i} \in S(j), \quad \bar{a} \in S(a)
\] (81)

The symbol \(\theta_{\varepsilon,i} \) denotes the pure state coding the input \(i_\varepsilon \in S \) of a narrow–band component \(\mathcal{K}_\varepsilon \) and the state \(\theta_i = \times_{\varepsilon \in S(\varepsilon)} \theta_{\varepsilon,i} \) codes the input \(\bar{i} \) for which
\[
q(\bar{i} | \theta) = q_{\bar{a}} = \prod_{\varepsilon \in S(\varepsilon)} q_\varepsilon(\theta_\varepsilon)
\] (82)

For the multi–band channel \(\mathbf{K} \) the following quantities are defined:7

- the p-entropy of the output \(a \)
\[
H(a \| \theta) = \sum_{\varepsilon \in S(\varepsilon)} H(a_\varepsilon \| \theta_\varepsilon) = -\sum_{\varepsilon \in S(\varepsilon)} \sum_{\alpha_\varepsilon \in S} p(\alpha_\varepsilon | \alpha_\varepsilon; \theta_\varepsilon) \cdot \ln p(\alpha_\varepsilon | \alpha_\varepsilon; \theta_\varepsilon)
\] (83)

\[
\leq \sum_{\varepsilon \in S(\varepsilon)} \sup_{\theta_\varepsilon} H(a_\varepsilon \| \theta_\varepsilon)
\]

for which, following the output narrow–band B–E and F–D components \(\mathcal{K}_\varepsilon \in \mathbf{K} \), is valid that
\[
\sup_{\theta \in \Theta_0} H(a \| \theta) = \sup_{\theta \in \Theta_0} \sum_{\varepsilon \in S(\varepsilon)} H(a_\varepsilon \| \theta_\varepsilon) = \sum_{\varepsilon \in S(\varepsilon)} \sup_{\theta_\varepsilon} H(a_\varepsilon \| \theta_\varepsilon) = \sum_{\varepsilon \in S(\varepsilon)} \frac{h[p_\varepsilon(W)]}{1 - p_\varepsilon(W)}
\] (84)

- the conditional noise entropy (entropy of the multi–band B–E | F–D noise)
\[
H(a \| \theta) = \sum_{\varepsilon \in S(\varepsilon)} H(a_\varepsilon \| \theta_\varepsilon) = \sum_{\varepsilon \in S(\varepsilon)} \sum_{i \in S} q(i \| \theta_{\varepsilon,i}) \cdot H(a_\varepsilon \| \theta_\varepsilon) = \sum_{\varepsilon \in S(\varepsilon)} \left[\frac{h(p_\varepsilon)}{1 - p_\varepsilon} \right] \ln \left(\frac{1}{1 + p_\varepsilon} \right)
\] (85)

where \(p_\varepsilon(W) = e^{-\frac{W}{W_\varepsilon}}, \quad p_\varepsilon = e^{-\frac{p}{W_\varepsilon}}, \quad W_\varepsilon \geq W_0 > 0 \) and \(h(p) = -p \ln p - (1 - p) \ln(1 - p) \).

- the transinformation \(T(a; \theta) \) and the information capacity \(C(\mathbf{K}) \),
\[
C(\mathbf{K}) = \sup_{\theta \in \Theta_0} T(a; \theta) = \sup_{\theta \in \Theta_0} H(a \| \theta) - H(a \| \theta)
\]
\[
= \sum_{\varepsilon \in S(\varepsilon)} \frac{h[p_\varepsilon(W)]}{1 - p_\varepsilon(W)} - \sum_{\varepsilon \in S(\varepsilon)} \left[\frac{h(p_\varepsilon)}{1 - p_\varepsilon} \right] \ln \left(\frac{1 + p_\varepsilon}{1 + p_\varepsilon} \right)
\]

The set \(\Theta_0 = \times_{\varepsilon \in S(\varepsilon)} \{ \theta_\varepsilon \in \Theta_0 ; E(\theta_\varepsilon) = W_\varepsilon \geq 0 \} \) represents a coding procedure of the input \(\bar{i} \) of the \(\mathbf{K} \) into \(\theta_\bar{i} \) [by transforming each input \(i_\varepsilon \) into pure state \(\theta_{\varepsilon,i} \), \(\forall \varepsilon \in S(\varepsilon) \)].

7 Using the chain rule for simultaneous probabilities it is found that for information entropy of an independent stochastic system \(\mathbf{X} = (X_1, X_2, ..., X_n) \) is valid that \(H(\mathbf{X}) = \sum_i H(X_i | X_1, ..., X_{i-1}) = \sum_i H(X_i) \). Thus the physical entropy \(H(\theta) \) of independent stochastic system, \(\theta = \{ \theta_i \} \), is the sum of \(H_i[q_i(\theta_i)] \) over \(\varepsilon \in S_\varepsilon \). too.
5.1. Transfer channels with continuous energy spectrum

Let a spectrum of energy with the finite cardinality \(n + 1 \) and a finite time interval \(\tau > 0 \) are considered

\[
S(\varepsilon) = \{\varepsilon_r\}_{r=0,1,...,n} = \left\{ \frac{\tau}{\tau} \right\}_{r=0,1,...,n}, \quad \Delta \varepsilon = \frac{\Delta \varepsilon}{\tau}, \quad \varepsilon_r = \frac{\tau}{\tau} = r \cdot \Delta \varepsilon,
\]

(87)

\[
\text{card } S(\varepsilon) = \frac{\varepsilon_n}{\Delta \varepsilon} = n + 1, \quad n \cdot \Delta \varepsilon = n \cdot \frac{\Delta \varepsilon}{n} = \frac{\tau}{\varepsilon_n} = \text{const.}
\]

For a transfer channel with the continuous spectrum of energies of particles and with the band–width equal to \(\text{card } S(\varepsilon) = \frac{\varepsilon_n}{\hbar} \), is valid that

\[
\lim_{\tau \to \infty} \varepsilon_r = \lim_{\tau \to \infty} \frac{\tau}{\tau} = \lim_{\tau \to \infty} r \cdot \Delta \varepsilon = \frac{\varepsilon_r}{\hbar} \quad \text{resp.} \quad \lim_{\tau \to \infty} \frac{\varepsilon_r}{\varepsilon} = \frac{r \cdot \Delta \varepsilon}{\varepsilon} = \left(\frac{\varepsilon_r}{\varepsilon} \right) = (0, \varepsilon_n)
\]

(88)

But the infinite wide–band and infinite number of particles \((\tau \to \infty, \quad n \to \infty) \) will be dealt with. Then

\[
S(\varepsilon) = \{\varepsilon_r\}_{r=0,1,...} = \left\{ \frac{\tau}{\tau} \right\}_{r=0,1,...} = \lim_{\tau \to \infty} \varepsilon_r = \lim_{\tau \to \infty} \frac{\tau}{\tau} = \lim_{\varepsilon \to 0} r \cdot \Delta \varepsilon = \frac{r \cdot \Delta \varepsilon}{\varepsilon} = \varepsilon
\]

(89)

and thus the wide–band spectrum \(S(\varepsilon) \) of energies is

\[
\lim_{\tau \to \infty} \frac{1}{\tau} = \frac{\varepsilon_r}{\hbar}, \quad S(\varepsilon) = (0, \infty)
\]

(90)

With the denotation \(\alpha_\varepsilon \triangleq \alpha, \quad i \triangleq i_\varepsilon, \quad j \triangleq j_\varepsilon, \quad i_\varepsilon, \quad j_\varepsilon \in S, \quad \alpha_\varepsilon \in S, \varepsilon \in S(\varepsilon) \) For the \(p \)-entropy of the output \(\alpha \) of the wide–band transfer channel \(K_{B-E/F-D} \) is valid that

\[
H(\alpha||\theta) = \lim_{\tau \to \infty} \frac{1}{\tau} \sum_{\varepsilon \in S(\varepsilon)} H(\alpha_\varepsilon||\theta_\varepsilon) = \lim_{\tau \to \infty} -\frac{1}{\tau} \sum_{\varepsilon \in S(\varepsilon)} \sum_{\alpha_\varepsilon \in S} p(\alpha_\varepsilon|\alpha_\varepsilon|\theta_\varepsilon) \cdot \ln p(\alpha_\varepsilon|\alpha_\varepsilon|\theta_\varepsilon)
\]

\[
= -\frac{1}{\hbar} \int_0^\infty \left[\sum_{\alpha_\varepsilon \in S} p(\alpha_\varepsilon|\alpha_\varepsilon|\theta_\varepsilon) \cdot \ln p(\alpha_\varepsilon|\alpha_\varepsilon|\theta_\varepsilon) \right] d\varepsilon
\]

\[
\sup_{\theta} H(\alpha||\theta) = \lim_{\tau \to \infty} \frac{1}{\tau} \sum_{\varepsilon \in S(\varepsilon)} \sup_{\theta_\varepsilon} H(\alpha_\varepsilon||\theta_\varepsilon) = \frac{1}{\hbar} \int_0^\infty \frac{h[p_\varepsilon(W)]}{1 - p_\varepsilon(W)} d\varepsilon
\]

For conditional entropy of the wide–band transfer channel \(K_{B-E/F-D} \) [entropy of the wide–band noise independent on the system \((K_{B-E/F-D}) \) state \(\theta \)] and for its information capacity is valid, by (85) and (86)

\[
H(\alpha||\theta) = \lim_{\tau \to \infty} \frac{1}{\tau} \sum_{\varepsilon \in S(\varepsilon)} H(\alpha_\varepsilon||\theta_\varepsilon) = \lim_{\tau \to \infty} \frac{1}{\tau} \sum_{\varepsilon \in S(\varepsilon)} \sum_{i_\varepsilon \in S} q(i_\varepsilon|\theta_\varepsilon) \cdot H(\alpha_\varepsilon||\theta_\varepsilon)
\]

\[
= \frac{1}{\hbar} \int_0^\infty H(\alpha_\varepsilon||\theta_\varepsilon) d\varepsilon = \frac{1}{\hbar} \int_0^\infty \left[h(p_\varepsilon) \ln \left(\frac{p_\varepsilon}{1 + p_\varepsilon} \right) \right] d\varepsilon
\]

\[
C(K_{B-E/F-D}) = \frac{1}{\hbar} \int_0^\infty \frac{h[p_\varepsilon(W)]}{1 - p_\varepsilon(W)} d\varepsilon - \frac{1}{\hbar} \int_0^\infty \left[h(p_\varepsilon) \ln \left(\frac{p_\varepsilon}{1 + p_\varepsilon} \right) \right] d\varepsilon
\]

(93)
By (52) and (74) the average number of particles on the input of a narrow–band component K_ϵ is

$$W_\epsilon = \sum_{i \in S} i \cdot q(i | \theta_\epsilon) \geq \left[0 \left| \frac{2p_\epsilon^2}{1 - p_\epsilon} \right. \right]$$ (94)

and then for the whole average number of input particles W' of the wide–band transfer channel K is obtained

$$W' = \frac{1}{h} \int_0^\infty W_\epsilon \, d\epsilon, \quad W = \frac{1}{h} \int_0^\infty \epsilon W_\epsilon \, d\epsilon$$ (95)

where W is whole input energy and T_W is the effective coding temperature being supposedly at the value $T_{W_\epsilon}, \quad T_W = T_{W_\epsilon}, \forall \epsilon \in S(\epsilon)$.

5.2. Bose–Einstein wide–band channel capacity

By derivations (86) and (92), (93) is valid that [12]

$$C(K_{B-E}) = \frac{1}{h} \int_0^\infty h[p_\epsilon(W)] \frac{h(p_\epsilon)}{1 - p_\epsilon} \, d\epsilon - \frac{1}{h} \int_0^\infty h[p_\epsilon(W)] \, d\epsilon$$ (96)

For the first or, for the second integral respectively, obviously is valid

$$\frac{1}{h} \int_0^\infty h[p_\epsilon(W)] \frac{h(p_\epsilon)}{1 - p_\epsilon} \, d\epsilon = \frac{\pi^2 k T_W}{3h} \quad \text{resp.} \quad \frac{1}{h} \int_0^\infty h[p_\epsilon(W)] \, d\epsilon = \frac{\pi^2 k T_0}{3h}$$ (97)

Then, for the capacity of the wide–band B–E transfer channel K_{B-E} is valid

$$C(K_{B-E}) = \frac{\pi^2 k}{3h} (T_W - T_0) = \frac{\pi^2 k T_W}{3h} \cdot \frac{T_W - T_0}{T_W} \geq \frac{\pi^2 k T_W}{3h} \cdot \eta_{\max}, \quad T_W \geq T_0$$ (98)

and for the whole average output energy is valid

$$\lim_{\tau \to \infty} \frac{1}{\tau} \sum_{\epsilon \in S(\epsilon)} \epsilon \frac{p_\epsilon(W)}{1 - p_\epsilon(W)} = \int_0^\infty \epsilon \frac{p_\epsilon(W)}{1 - p_\epsilon(W)} \, d\epsilon = - \frac{k^2 T_W^2}{h} \int_0^1 \frac{\ln(1 - t)}{t} \, dt = \frac{\pi^2 k^2 T_W^2}{6h}$$ (99)

For the whole average energy of the B–E noise must be valid

$$\lim_{\tau \to \infty} \frac{1}{\tau} \sum_{\epsilon \in S(\epsilon)} \epsilon \frac{p_\epsilon}{1 - p_\epsilon} = \frac{1}{h} \int_0^\infty \epsilon \frac{p_\epsilon}{1 - p_\epsilon} \, d\epsilon = \frac{\pi^2 k^2 T_0^2}{6h}$$ (100)

From the relations (79) among the energies of the output α', of the noise j' and the input i',

$$\frac{\pi^2 k^2 T_W^2}{6h} = \frac{\pi^2 k^2 T_0^2}{6h} + W$$ (101)

the effective coding temperature T_W is derivable, $T_W = T_0 \cdot \sqrt{1 + \frac{6h W}{\pi^2 k^2 T_0^2}}$. Using it in (98) gives

$$C(K_{B-E}) = \frac{\pi^2 k T_0}{3h} \left(\sqrt{1 + \frac{6h W}{\pi^2 k^2 T_0^2}} - 1 \right)$$ (102)
For $T_0 \to 0$ the quantum approximation of $C(K_{B-E})$, independent on the heat noise energy (diminishes with temperature's aiming to absolute 0° K)

$$\lim_{T_0 \to 0} C(K_{B-E}) = \lim_{T_0 \to 0} \left(\sqrt{\frac{\pi^4 k^2 T_0^2}{9h^2} + \pi^2 \frac{2W}{3h} - \pi^2 kT_0} \right) = \pi \sqrt{\frac{2W}{3h}} \quad (103)$$

The classical approximation of $C(K_{B-E})$ is gained for temperatures $T_0 \gg 0$ ($T_0 \to \infty$ respectively). It is near to value $\frac{W}{kT_0}$, the Shannon capacity of the wide-band Gaussian channel with the whole noise energy kT_0 and with the whole average input energy W. For T_0 from (101), great enough, is gained that 8

$$C(K_{B-E}) = \frac{\pi^2 kT_0}{3h} \left(\frac{3hW}{\pi^2 k^2 T_0^2} \right) = \frac{W}{kT_0} \quad (104)$$

5.3. Fermi–Dirac wide–band channel capacity

By derivations (86) and (92), (93) is valid that 12

$$C(K_{F-D}) = \frac{1}{\hbar} \int_0^\infty h \left[\frac{p_e(W)}{1 - p_e(W)} \right] \, d\epsilon - \frac{1}{\hbar} \int_0^\infty h \left(\frac{p_e}{1 + p_e} \right) \, d\epsilon = \frac{\pi^2 kT_W}{3h} - \frac{1}{\hbar} \int_0^\infty h \left(\frac{p_e}{1 + p_e} \right) \, d\epsilon \quad (105)$$

For the second integral obviously is valid

$$\frac{1}{\hbar} \int_0^\infty h \left(\frac{p_e}{1 + p_e} \right) \, d\epsilon = \frac{\pi^2 kT_0}{6h} \quad (106)$$

By figuring (105) the capacity of the wide–band F–D channel K_{F-D} is gained,

$$C(K_{F-D}) = \frac{\pi^2 k}{3h} \left(T_W - \frac{T_0}{2} \right) \quad (107)$$

and for $T_W > T_0$ is writable

$$C(K_{F-D}) = C(K_{B-E}) \frac{2T_W - T_0}{2T_W - 2T_0} \quad (108)$$

For the whole average output energy is valid the same as for the B–E case,

$$\frac{1}{\hbar} \int_0^\infty \epsilon \frac{p_e(W)}{1 - p_e(W)} \, d\epsilon = \frac{\pi^2 k^2 T_W^2}{6h} \quad (109)$$

For the whole average F–D wide–band noise energy is being derived

$$\lim_{\tau \to \infty} \frac{1}{\tau} \sum_{\epsilon \in S(\epsilon)} \frac{p_e}{1 + p_e} = \frac{1}{\hbar} \int_0^\infty \epsilon \frac{e^{-\epsilon/T_0}}{1 + e^{-\epsilon/T_0}} \, d\epsilon = \frac{k^2 T_0^2}{h} \int_0^\infty x \frac{e^{-x}}{1 + e^{-x}} \, dx \quad (110)$$

$$= -\frac{k^2 T_0^2}{h} \int_0^1 \ln t \frac{dt}{t + 1} = \frac{\pi^2 k^2 T_0^2}{12h}$$

8 For $|x| < 1$, $\sqrt{1 + x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \ldots \approx 1 + \frac{1}{2}x$ where $x = \frac{6hW}{\pi^2 k^2 T_0^2} < 1$.
From the relation (79) among the whole output, input, and noise energy,

\[
\frac{\pi^2k^2T_W^2}{6h} = \frac{\pi^2k^2T_0^2}{12h} + W
\]

follows the effective coding temperature \(T_W = T_0 \cdot \sqrt{\frac{1}{2} + \frac{6hW}{\pi^2k^2T_0^2}} \). Using it in (107) the result is [24]

\[
C(K_{F-D}) = \frac{\pi^2kT_0}{3h} \left(\sqrt{\frac{1}{2} + \frac{6hW}{\pi^2k^2T_0^2}} - \frac{1}{2} \right)
\]

(112)

For \(T_0 \to 0 \) the quantum approximation capacity \(C(K_{F-D}) \), independent on heat noise energy \(kT_0 \) is gaind (the same as in the B–E case (103),

\[
\lim_{T_0 \to 0} C(K_{F-D}) = \lim_{T_0 \to 0} \left(\sqrt{\pi^4k^2T_0^2} \cdot \frac{1}{2} + \pi^2kT_0 \cdot \frac{1}{2} \right) = \pi \sqrt{\frac{2W}{3h}}
\]

(113)

The classical approximation of the capacity \(C(K_{F-D}) \) is gained for \(T_0 \gg 0^9 \)

\[
C(K_{F-D}) = \frac{\pi^2kT_0}{3h} \left[\frac{1}{\sqrt{2}} \sqrt{1 + \frac{12hW}{\pi^2k^2T_0^2}} - \frac{1}{2} \right] = \frac{\pi^2kT_0}{3h} \left[\frac{1}{\sqrt{2}} \left(1 + \frac{6hW}{\pi^2k^2T_0^2} \right) - \frac{1}{2} \right]
\]

(114)

By (74) the condition for the medium value of the input particles of a narrow–band component \(K_{\varepsilon}, \varepsilon \in S(\varepsilon), \) of the channel \(K_{F-D} \) is valid, \(W_\varepsilon \geq \frac{2p_\varepsilon^2}{1-p_\varepsilon^2} \), from which the condition for the whole input energy of the wide–band channel \(K_{F-D} \) follows. By (95) it is gaind, for \(T_W \geq T_0 > 0 \), that\(^{10}\)

\[
W \geq \lim_{r \to \infty} \sum_{\varepsilon \in S(\varepsilon)} \epsilon W_\varepsilon \geq \lim_{r \to \infty} \frac{1}{r} \sum_{\varepsilon \in S(\varepsilon)} \epsilon \frac{2p_\varepsilon^2}{1-p_\varepsilon^2} = \frac{2}{h} \int_0^\infty \epsilon \frac{e^{-\frac{\epsilon}{x_0}}}{1-e^{\frac{-\epsilon}{x_0}}} \, d\epsilon = \frac{\pi^2k^2T_0^2}{12h} = W_{\text{crit}} > 0
\]

(115)

6. Physical information transfer and thermodynamics

Whether the considered information transfers are narrow–band or wide–band, their algebraic-information description remains the same. So let be considered an arbitrary stationary physical system \(\Psi \) of these two band–types as usable for information transfer.

Let a system state \(\theta' = \sum_{i=1}^n q(i|\theta') \pi(\psi_i) \in \Theta \) of the system \(\Psi \) is the successor (follower, equivocant) of the system state \(\theta = \sum_{i=1}^n q(i|\theta) \pi(\psi_i) \in \Theta \), \(\theta \rightarrow \theta' \) is written. The

\(^9\) For \(\sqrt{1+x} = 1 + \frac{1}{2} x \) when \(|x| < 1; \ x = \frac{12hW}{\pi^2k^2T_0^2}. \)

\(^{10}\) If, in the special case of F–D channel, it is considered that the value \(W \) given by the number of electrons as the average energy of the modulating current entering into a wire, over a time unit, then it is the average power on the electric resistor \(R = 1\Omega \) too.
distribution \(q(i|\theta') = \sum_{j=1}^{n} p(i|j) q(j|\theta) \), \(p(i|j) = (\psi_i, \psi_j)^2 = u_{ij}^2 \) and \(\theta \to \theta' \), ensures existence of the transformation matrix \([u_{ij}]\) of a base of the space \(\Psi = \{\Psi\}_{i=1}^{n} \) into the base \(\{\Psi'\}_{i=1}^{n} \). \(^{11}\)

From the relation \(\theta \to \theta' \) also is visible that it is reflexive and transitive relation between states and, thus, it defines (a partial) arrangement on the set space \(\Theta \). The terminal, maximal state for this arrangement is the equilibrial state \(\theta^+ \) of the system \(\Psi \): it is the successor of an arbitrary system state, including itself.

The statistic, Shannon, information) entropy \(H(\cdot) \) is a generalization of the physical entropy \(\mathcal{H}(\theta) \). The quantity I-divergence \(I(\cdot|\cdot) \) is, by (21), a generalization of the physical quantity \(I(p||d) = \mathcal{H}(\theta^+) - \mathcal{H}(\theta) \) where the state

\[
\theta^+ = \frac{1}{n} \sum_{i=1}^{n} \theta_i \in \Theta \quad \text{for} \quad \theta_i = \pi(q_i), \quad i = 1, 2, ..., n
\]

is the equilibrial state of the system \(\Psi \). The probability distribution into the canonic components \(\theta_i \) of \(\theta^+ \) is uniform and thus

\[
\mathcal{H}(\theta^+) = \ln n = \ln \dim(\Psi) \quad (117)
\]

Information divergence \(I(p||d) \geq 0 \) expresses the distance of the two probability distributions \(q(\cdot|\theta) \) and \(q(\cdot|\theta^+) \) of states (stochastic quantities)

\[
\theta = [S, q(\cdot|\theta)] \quad \text{and} \quad \theta^+ = [S, q(\cdot|\theta^+)]
\]

(118)

In the physical sense the divergence \(I(p||d) \) is a measure of a not-equilibriality of the state \(\theta \) of the physical (let say a thermodynamic) system \(\Psi \). Is maximized in the initial (starting), not-equilibrium state of the (time) evolution of the \(\Psi \). It is clear that \(I(p\|d) \equiv T(\alpha, \theta) \)

6.0.0.5. \(\mathcal{H} \)-Theorem, II. Second Principle of Thermodynamics:

Let for states \(\theta, \theta' \in \Theta \) of the system \(\Psi \) is valid that \(\theta \to \theta' \). Then

\[
\mathcal{H}(\theta') \geq \mathcal{H}(\theta) \quad (119)
\]

and the equality arises for \(\theta = \theta' \) only \([12, 38]\).

6.0.0.6. Proof:

(a) For a strictly convex function \(f(u) = u \cdot \ln u \) the Jensen inequality is valid \([23]\)

\[
f\left(\sum_{j=1}^{n} p(i|j) q(j|\theta) \right) \leq \sum_{j=1}^{n} p(i|j) f[q(j|\theta)], \quad i = 1, 2, ..., n
\]

(120)

\[
\sum_{i=1}^{n} f\left(\sum_{j=1}^{n} p(i|j) q(j|\theta) \right) \leq \sum_{i=1}^{n} p(i|j) \sum_{j=1}^{n} f[q(j|\theta)]
\]

\[
= \sum_{j=1}^{n} f[q(j|\theta)] = \sum_{j=1}^{n} q(j|\theta) \ln q(j|\theta) = -H[q(\cdot|\theta)] = -\mathcal{H}(\theta) \quad \text{due to} \quad \sum_{i=1}^{n} p(i|j) = 1
\]

\(^{11}\) It is the matrix of the unitary operator \(u(t) \) expressing the time evolution of the system \(\Psi \).
and for distributions \(q(i|\theta') \) is valid \(\mathcal{H}(\theta') \geq \mathcal{H}(\theta) \):

\[
\sum_{i=1}^{n} f \left(\sum_{j=1}^{n} p(i|j) q(j|\theta) \right) = \sum_{i=1}^{n} q(i|\theta') \ln q(i|\theta') = -\mathcal{H}(\theta') \leq -\mathcal{H}(\theta)
\]

(b) The equality in (119) arises if and only if the index permutation \([i(1), i(2), ..., i(n)]\) exists that \(p(i|j) = \delta(i|i(j)) \), \(j = 1, 2, ..., n \); then \(q[i(j)|\theta'] = q(j|\theta), j = 1, 2, ... \).

Let a fixed \(j \) is given. Then, when \(0 = p(i|j) = (\psi'_i, \psi_j)^2, i \neq i(j) \), the orthogonality is valid

\[
\mathbf{\Psi}(\psi'_j|\psi_j) \perp \left[\sum_{\neq i(j)} \mathbf{\Psi}(\psi'_i|\psi_i) \right], \quad \psi_j = \pi\{\psi_j\} = \theta_j, \quad \psi'_i = \pi\{\psi'_j\} = \theta'_i \quad (121)
\]

and, consequently, \(\psi_j \in \mathbf{\Psi}[\psi'_i|\psi_i(j)] \), \(p[i(j)|j] = (\psi'_i, \psi_j)^2 = 1 \). It results in \(\psi_j = \psi'_i\). This proves that the equality \(\mathcal{H}(\theta') = \mathcal{H}(\theta) \) implies the equality \(q(j|\theta) \pi\{\psi_j\} = q(i(j)|\theta) \pi\{\psi'_j\} \) and \(\theta = \theta' \).

\(\mathcal{H} \)-theorem says, that a reversible transition is not possible between any two different states \(\theta \neq \theta' \). From the inequality (119) also follows that any state \(\theta \in \Theta \) of the system \(\Psi \) is the successor of itself, \(\theta \rightarrow \theta \) and, that any reversibility of the relation \(\theta \rightarrow \theta' \) (the transition \(\theta' \rightarrow \theta \) is not possible within the system only, it is not possible without opening this system \(\Psi \). The difference

\[
\mathcal{H}(\theta^+) - \mathcal{H}(\theta) = \max_{\theta' \in \Theta} \mathcal{H}(\theta') - \mathcal{H}(\theta) = H[q(\cdot|\theta^+)] - H[q(\cdot|\theta)] \quad (122)
\]

represents the information-theoretical expressing of the Brillouin (maximal) entropy defect \(\Delta H \) (the Brillouin negentropic information principle [2, 30]). For the state \(\theta^+ \) is valid that \(\theta \rightarrow \theta^+, \forall \theta \in \Theta \). It is also called the terminal state or the attractor of the time evolution of the system \(\Psi \).

6.0.0.7. Gibbs Theorem:

For all \(\theta, \tilde{\theta} \in \Theta \) of the system \(\Psi \) is valid

\[
\mathcal{H}(\theta) \leq -\text{Tr}(\theta \ln \tilde{\theta}) \quad (123)
\]

and the equality arises only for \(\theta = \tilde{\theta} \) [38].

6.0.0.8. Proof:

Let for \(\theta, \tilde{\theta} \in \Theta \) is valid that \(\theta = \frac{1}{n} \sum_{i=1}^{n} q(i|\theta) \pi\{\psi_j\}, \tilde{\theta} = \frac{1}{n} \sum_{i=1}^{n} q(i|\tilde{\theta}) \pi\{\psi'_j\} \) and let the operators \(a, \theta \) are commuting \(a\theta = \theta a \), \(D(a) = \{D_\alpha : a \in S(\alpha)\} \), \(D(\theta) = \{D_\theta : \theta \in S(\theta)\} \), are their spectral decompositions. Let be the state \(\theta' \) the successor of \(\theta, \theta \rightarrow \theta' \) and relations \(p(\alpha|\theta') = \sum_{i \in D_a} q(i|\theta') = p(\alpha|\theta') \) and \(\mathcal{H}(\theta') \geq \mathcal{H}(\theta) \) are valid. For the matrix \((\theta_{ij}) \) of the

\[\text{In this sense, the physical entropy } \mathcal{H}(\theta) \text{ (19), (21) determines the direction of the thermodynamic time arrow } [2, \Delta t] = \frac{\partial \mathcal{H}}{\partial t} \geq 0, \quad \Delta t = t_{\theta'} - t_{\theta} > 0. \text{ The equality occurs in the equilibrium (stationary) state } \theta^+ \text{ of the system } \Psi \text{ and its environment.}\]
operator θ in the base $\{\psi'_1, \psi'_2, \ldots, \psi'_n\}$ is obtained that $\theta_{ij} = \sum_{k=1}^{n} u_{ki} u_{kj} q(k|\theta)$ and thus for operators $\ln \theta$ and $\text{Tr}(\theta \ln \theta)$ is valid that

$$
\ln \theta = \sum_{i=1}^{n} \ln q(i|\theta) \pi\{\psi'_i\} \quad \text{and} \quad -\text{Tr}(\theta \ln \theta) = -\sum_{i=1}^{n} \left[\sum_{k=1}^{n} u_{ki}^2 q(k|\theta) \right] \ln q(i|\theta)
$$

(124)

For the information divergence of the distributions $q(\cdot|\theta')$, $q(\cdot|\theta)$ and the entropy $\mathcal{H}(\theta')$ is valid that

$$
I[q(\cdot|\theta')||q(\cdot|\theta)] = \sum_{i=1}^{n} q(i|\theta') \ln \frac{q(i|\theta')}{q(i|\theta)} \geq 0, \quad -\mathcal{H}(\theta') \geq \sum_{i=1}^{n} q(i|\theta) \ln q(i|\theta).
$$

(125)

By (119) for $\theta \rightarrow \theta'$ is writable that $\mathcal{H}(\theta) \leq \mathcal{H}(\theta') \leq -\text{Tr}(\theta \ln \theta)$. By (123) $-\text{Tr}(\theta' \ln \theta) \geq \mathcal{H}(\theta') \geq \mathcal{H}(\theta)$ are valid; the first equality is for

$$
I[q(\cdot|\theta')||q(\cdot|\theta)] = 0, \quad \mathcal{H}(\theta') = \mathcal{H}(\theta), \quad q(i|\theta') = q(i|\theta), \quad i = 1, 2, \ldots, n, \quad \theta' = \theta
$$

(126)

the second equality is for $\theta' = \theta$. The Gibbs theorem expresses, in the deductive (matematical-logical) way, the phenomenon of Gibbs paradox.\(^\text{13}\)

From formulas (47), (55), (56) and (68), (72), (73) for the narrow-band B–E and F–D capacities follows that

$$
e^{-\frac{\varepsilon}{T_W}} \cdot e^{\frac{\varepsilon}{T_0}} \geq 1, \quad e^{\frac{(T_W-T_0)}{T_W}} \geq e^0, \quad \varepsilon > 0, \quad T_0 > 0 \rightarrow T_W \geq T_0 \rightarrow \frac{T_W - T_0}{T_W} \triangleq \eta_{\text{max}} \geq 0
$$

(127)

and it is seen that the quantity temperature is decisive for studied information transfers. The last relation enforces, inevitably, such an opinion, that these transfers are able be modeled by a direct reversible Carnot cycle with efficiency $\eta_{\text{max}} \in (0, 1)$). Conditions leading to $C_{B,E}$ < 0 mean, in such a direct thermodynamic model, that its efficiency should be $\eta_{\text{max}} < 0$. This is the contradiction with the Equivalence Principle of Thermodynamics [19]; expresses only that the transfer is running in the opposite direction (as for temperatures).

As for B–E channel; for the supposition $W < 0$ the inequalities $T_W < T_0$ and $p(W) < p$ would be gained which is the contradiction with (35), (36) and (47). It would be such a situation with the information is transferred in a different direction and under a different operation mode. Our sustaining on the meaning about the original organization of the transfer, for $T_W > T_0$, then leads to the contradiction mentioned above saying only that we are convinced mistakenly about the actual direction of the information transfer. In the case $T_W = T_0$ for the capacity $C_{B,E}$ from (50) is valid that $C_{B,E} = 0$. Then $W = W_{\text{Krit}} [= 0]$ for $p(W) = p$.

As for F–D channel; for the supposition $W < \frac{2p^2}{1-p^2} T_W < T_0$ and $p(W) < p$ is gained which is the contradiction with (68). For $T_W = T_0$ is for $C_{F,D}$ from (71) valid\(^\text{13}\)

\(^{13}\) Derived by the information-thermodynamic way together with the I. and II. Thermodynamic Principle and with the Equivalence Principle of Thermodynamics in [16, 17, 19].
\[C_{F-D} = \frac{h(p)}{1 - p} + \frac{p}{1 + p} \cdot \ln p - \ln(1 + p). \]

Let be noticed yet the relations between the wide-band B–E and F–D capacities and the model heat efficiency \(\eta_{\text{max}} \). For the B–E capacity (98) is gained that
\[
C(K_{B-E}) = \pi^2 k T_W \left(\frac{T_W - T_0}{T_W} \right) = \frac{\pi^2 k T_W}{3h} \eta_{\text{max}} \xrightarrow{\eta_{\text{max}} \to 1} \frac{\pi^2 k T_W}{3h} = C_{\text{max}} (K_{B-E})
\]
(128)

\[C(K_{B-E}) > 0, \quad T_W > T_0, \quad C(K_{B-E}) \xrightarrow{\eta_{\text{max}} \to 0} 0, \quad T_W \to T_0 \]

It is the information capacity for such a direct Carnot cycle where \(H(X) = \frac{\pi^2 k T_W}{3h} = C_{\text{max}} (K_{B-E}) \).

For the wide-band F–D capacity from (105) is valid
\[
C(K_{F-D}) = \frac{\pi^2 k T_W}{3h} - \frac{\pi^2 k T_0}{6h}, \quad T_W \geq T_0 \quad \text{and for} \quad T_W > T_0,
\]
(129)
\[
C(K_{F-D}) = \frac{\pi^2 k T_W}{3h} \cdot \frac{2T_W - T_0}{2T_W} = \frac{\pi^2 k T_W}{3h} \cdot \frac{2T_W - T_0}{2(T_W - T_0)} \cdot \eta_{\text{max}}
\]
\[= C(K_{B-E}) \cdot \frac{2T_W - T_0}{2(T_W - T_0)} \]

Due to \(1 - \eta_{\text{max}} = \frac{T_0}{T_W} \) is valid \(T_0 = T_W (1 - \eta_{\text{max}}) \) and also \(C(K_{F-D}) = \frac{\pi^2 k T_W}{6h} \cdot (1 + \eta_{\text{max}}) \).

Then,
\[
C(K_{F-D}) = \xrightarrow{\eta_{\text{max}} \to 1} \frac{\pi^2 k T_W}{3h},
\]
(130)
\[
C(K_{F-D}) \xrightarrow{T_W \to T_0} \frac{1}{2} H(i) = \frac{1}{2} \mathcal{H}(\theta) = \frac{\pi^2 k T_W}{6h}
\]
\[
C(K_{F-D}) \in \left(\frac{\pi^2 k T_W}{6h}, \frac{\pi^2 k T_W}{3h} \right) = \left(\frac{1}{2} \mathcal{H}(\theta), \mathcal{H}(\theta) \right)
\]

Again the phenomenon of the not-zero capacity is seen here when the difference between the coding temperature \(T_W \) and the noise temperature \(T_0 \) is zero. Capacities \(C(K_{F-D}) \geq 0 \) are, surely, considerable for \(T_W \in (\frac{T_0}{2}, T_0) \) and being given by the property of the F–D phase space cells. Capacities \(C(K_{B-E}) < 0 \) and \(C(K_{F-D}) < 0 \) are without sense for the given direction of information transfer.

14 Nevertheless the capacity \(C_{F-D} \) for this case \(W < W_{\text{Krit}} \) is set in [12, 13]. Similar results as this one and (74) are gained for the Maxwell–Boltzmann (M–B) system in [13].
Nevertheless, it will be shown that all these processes themselves are not organized cyclically ‘by themselves’.

Further the relation between the information transfer in a wide–band B–E (photonic) channel organized in a cyclical way and a relevant (reverse) heat cycle will be dealt with. But, firstly, the way in which the capacity formula for an information transfer system of photons was derived in [30] will be reviewed.

6.1. Thermodynamic derivation of wide–band photonic capacity

A transfer channel is now created by the electromagnetic radiation of a system \(\mathcal{L} \cong K_{L-L} \) of photons being emitted from an absolute black body at temperature \(T_0 \) and within a frequency bandwidth of \(\Delta \nu = R^+ \), where \(\nu \) is the frequency. Then the energy of such radiation is the energy of noise. A source of input messages, signals transmits monochromatic electromagnetic impulses (numbers \(a_i \) of photons) into this environment with an average input energy \(W \). This source is defined by an alphabet of input messages, signals \(\{a_i\}_{i=1}^n \), with a probability distribution \(p_i = p(a_i) \), \(i = 1, 2, ..., n \).\(^{15}\) The output (whole, received) signal is created by additive superposition of the input signal and the noise signal. The input signal \(a_i \), within a frequency \(\nu \), is represented by the occupation number \(m = m(\nu) \), which equates to the number of photons of an input field with an energy level \(\epsilon(\nu) = h\nu \). The output signal is represented by the occupation number \(l = l(\nu) \). The noise signal, created by the number of photons emitted by absolute black body radiation at temperature \(T_0 \), is represented by the occupation number \(n = n(\nu) \). The medium values of these quantities (spectral densities of the input, noise and output photonic stream) are denoted as \(\bar{m} \), \(\bar{n} \), and \(\bar{l} \). In accordance with the Planck radiation law, the spectral density \(\bar{\rho} \) of a photonic stream of absolute black body radiation at temperature \(\Theta \) and within frequency \(\nu \), is given by the Planck distribution,

\[
\bar{\rho}(\nu) = \frac{p(\nu, \Theta)}{1 - p(\nu, \Theta)}, \quad \bar{n}(\nu) = \frac{p(\nu, T_0)}{1 - p(\nu, T_0)}, \quad \bar{l}(\nu) = \frac{p(\nu, T_W)}{1 - p(\nu, T_W)}, \quad p(\nu, \Theta) = e^{-\frac{h\nu}{k\Theta}} \tag{131}
\]

Thus, for the average energy \(P \) of radiation at temperature \(\Theta \) within the bandwidth \(\Delta \nu = R^+ \) is gained that

\[
P(\Theta) = \int_0^\infty \bar{\rho}(\nu, \Theta) d\nu = \frac{\pi^2k^2\Theta^2}{6h} \quad \text{where} \quad \bar{\rho}(\nu, \Theta) = \bar{\rho}(\nu)h\nu \quad \text{and} \quad \frac{dP(\Theta)}{d\Theta} = \frac{\pi^2k^2\Theta}{3h}. \tag{132}
\]

Then, for the average noise energy \(P_1 \) at temperature \(T_0 \), and for the average output energy \(P_2 \) at temperature \(T_W \), both of which occur within the bandwidth \(\Delta \nu = R^+ \) is valid that

\[
P_1(T_0) = \frac{\pi^2k^2T_0^2}{6h}, \quad P_2(T_W) = \frac{\pi^2k^2T_W^2}{6h}. \tag{133}
\]

The entropy \(H \) of radiation at temperature \(\theta \) is derived from Clausius definition of heat entropy and thus

\[
H = \int_0^\theta \frac{1}{k\Theta} \frac{dP(\Theta)}{d\Theta} d\Theta = \frac{\pi^2k\theta}{3h} = \frac{2P(\theta)}{k\theta} \tag{134}
\]

\(^{15}\)To distinguish between two frequencies mutually deferring at an infinitesimally small \(d\nu \) is needed, in accordance with Heisenberg uncertainty principle, a time interval spanning the infinite length of time, \(\Delta t \rightarrow \infty \); analog of the thermodynamic stationarity.
Thus, for the entropy H_1 of the noise signal and for the entropy H_2 of the output signal on the channel \mathcal{L} is

$$H_1 = \frac{\pi^2 k T_0}{3h} = 2\frac{P_1}{k T_0}, \quad H_2 = \frac{\pi^2 k T_W}{3h} = 2\frac{P_2}{k T_W}$$

(135)

The information capacity C_{T_W,T_0} of the wide-band photonic transfer channel \mathcal{L} is given by the maximal entropy defect [2, 30] by

$$C_{T_0,T_W} = H_2 - H_1 = \int_{T_0}^{T_W} \frac{1}{k \Theta} \frac{d P(\Theta)}{d \Theta} d \Theta = \frac{\pi^2 k}{3h} \int_{T_0}^{T_W} d \Theta = \frac{\pi^2 k}{3h} (T_W - T_0).$$

(136)

For $P_2 = P_1 + W$, where W is the average energy of the input signal is then valid that

$$\frac{\pi^2 k^2 T_W^2}{6h} = \frac{\pi^2 k^2 T_0^2}{6h} + W \rightarrow T_W = T_0 \cdot \left(1 + \frac{6h \cdot W}{\pi^2 k^2 T_0^2} \right)$$

(137)

Then, in accordance with (102), (103), (104) [30]

$$C_{T_0,W}(K_{L-L}) = \frac{\pi^2 k T_0}{3h} \cdot \left(\sqrt{1 + \frac{6h \cdot W}{\pi^2 k^2 T_0^2}} - 1 \right)$$

(138)

7. Reverse heat cycle and transfer channel

A reverse and reversible Carnot cycle O_{rev} starts with the isothermal expansion at temperature T_0 (the diathermic contact [31] is made between the system \mathcal{L} and the cooler \mathcal{B}) when \mathcal{L} is receiving the pumped out, transferred heat ΔQ_0 from the \mathcal{B}. During the isothermal compression, when the temperature of both the system \mathcal{L} and the heater A is at the same value T_W, $T_W > T_0 > 0$, the output heat ΔQ_W is being delivered to the A

$$\Delta Q_W = \Delta Q_0 + \Delta A$$

(139)

where ΔA is the input mechanical energy (work) delivered into \mathcal{L} during this isothermal compression. It follows from [2, 8, 28] that when an average amount of information ΔI is being recorded, transmitted, recorded, etc. at temperature Θ, there is a need for the average energy $\Delta W \geq k \cdot \Theta \cdot \Delta I$; at this case $\Delta W \triangleq \Delta A$. Thus O_{rev} is considerable as a thermodynamic model of information transfer process in the channel $\mathcal{K} \cong \mathcal{L}$ [14]. The following values are changes of the information entropies defined on \mathcal{K}:

$$H(Y) \triangleq \frac{\Delta Q_W}{k T_W}, \quad H(X) \triangleq \frac{\Delta A}{k T_W}, \quad H(Y|X) \triangleq \frac{\Delta Q_0}{k T_W}$$

(140)

where k is Boltzman constant. The information transfer in $\mathcal{K} \cong \mathcal{L}$ is without losses caused by the friction, noise heat ($\Delta Q_{0x} = 0$) and thus $H(X|Y) = 0$.

By assuming that for the changes (140) and $H(X|Y) = 0$ the channel equation (4), (5) and (23) is valid The result is

$$T(X;Y) = \frac{\Delta A}{k T_W} - 0 = \frac{\Delta Q_W}{k T_W} \cdot \eta_{max} = H(X)$$

(141)

$$T(Y;X) = \frac{\Delta Q_0 + \Delta A}{k T_W} - \frac{\Delta Q_0}{k T_W} = \frac{\Delta A}{k T_W} = H(X).$$

16 In information units Hartley, nat, bit; $H(\cdot) = \Delta H(\cdot)$, $H(\cdot|\cdot) = \Delta H(\cdot|\cdot)$.
But the other *information arrangement, description* of a reverse Carnot cycle will be used further, given by

\[\Delta Q_0 \sim H(X), \quad \Delta Q_W \sim H(Y) \quad \text{and} \quad \Delta A \sim H(Y|X), \quad H(X|Y) = 0 \] \hspace{1cm} (142)

In a general (reversible) *discrete* heat cycle \(O \) (with temperatures of its heat reservoirs changing in a discrete way) considered as a model of the information transfer process in a transfer channel \(K \equiv L \) [17, 19] is, for the *elementary* changes \(H(\Theta_k) \cdot \eta_{\text{max}} \) of information entropies of \(L \), valid that

\[H(\Theta_k) \cdot \eta_{\text{max}} \triangleq \frac{\Delta Q(\Theta_k)}{k\Theta_k} \cdot \eta_{\text{max}}, \quad k = 1, 2, \ldots, n \] \hspace{1cm} (143)

where \(n \geq 2 \) is the maximal number of its *elementary* Carnot cycles \(O_k \).\(^{18}\) The change of heat of the system \(L \) at temperatures \(\Theta_k \) is \(\Delta Q(\Theta_k) \).

In a general (reversible) *continuous* cycle \(O \) [with temperatures changing continuously, \(n \to \infty \) in the previous discrete system, at \(\Theta \) will be \(\Delta Q(\Theta) \)] considered as an information transfer process in a transfer channel \(K \equiv L \) is valid that

\[
dH(\Theta) \triangleq \frac{\delta Q(\Theta)}{k\Theta} \frac{d\Theta}{k\Theta} \quad \text{and} \quad H(\Theta) = \int_0^\Theta \frac{\delta Q(\theta)}{k\Theta} d\theta; \quad \Delta Q(\Theta) = \int_0^\Theta \delta Q(\theta) d\theta \] \hspace{1cm} (144)

For the whole cycle \(O_{\text{rev}}, T_W > T_0 > 0 \), let be \(H(X|Y) = 0 \) and then

\[
H(X) = \frac{S(T_W)}{k} - \frac{S(T_0)}{k} = \int_{O_{\text{rev}}} \frac{\delta A(\Theta)}{k\Theta} = \int_{T_0}^{T_W} dH(\Theta) = \frac{2\Delta Q_W}{kT_W^2} \cdot (T_W - T_0) \] \hspace{1cm} (145)

\[
H(Y) = \frac{S(T_W)}{k} = \int_{T_0}^{T_W} \frac{\delta Q_W(\Theta_W)}{k\Theta_W} = \int_{T_0}^{T_W} dH(\Theta) = \frac{2\Delta Q_W}{kT_W} \quad [H(X) = H(Y) \cdot \eta_{\text{max}}]
\]

\[
H(Y|X) = H(Y) - H(X) = \int_{T_0}^{T_W} dH(\Theta) - \int_{T_0}^{T_W} dH(\Theta) = \int_{T_0}^{T_W} dH(\Theta)
\]

\[
= \int_{T_0}^{T_W} \frac{\delta Q_W(\Theta)}{k\Theta} = \frac{S(T_0)}{k} = \frac{2\Delta Q_W}{kT_W^2} \cdot T_0 = \frac{2\Delta Q_W}{kT_W} \cdot \frac{T_0}{T_W} = H(X) \cdot \beta
\]

\[
T(Y; X) = H(Y) - H(Y|X) = \int_{T_0}^{T_W} dH(\Theta) - \int_{T_0}^{T_W} dH(\Theta) = \int_{T_0}^{T_W} dH(\Theta)
\]

\[
= \int_{O_{\text{rev}}} \frac{\delta A(\Theta)}{k\Theta} = \frac{2\Delta Q_W}{kT_W} \cdot \eta_{\text{max}} = H(Y) \cdot \eta_{\text{max}} = H(X) = \Delta I
\]

Obviously, \(T(X; Y) = H(X) - H(X|Y) = T(Y|X) \). Further it is obvious that \(T(X; Y) \) is the capacity \(C_{T_W,T_0} \) of the channel \(K \equiv L \) too,

\[C_{T_W,T_0} = T(X; Y) = H(X) = \int_{O_{\text{rev}}} \frac{\delta A(\Theta)}{k\Theta} = \int_{T_0}^{T_W} \frac{\delta Q_W(\Theta)}{k\Theta} \] \hspace{1cm} (146)

\[= \frac{2\Delta Q_W}{kT_W^2} \cdot (T_W - T_0), \quad C_{T_W,T_0}^{\text{max}} = H(Y) \]

\(^{17}\) In reality for the least elementary heat change \(\delta Q = h \nu \) is right where \(h = \frac{k}{2\pi} \) and \(h \) is *Planck constant*.

\(^{18}\) It is provable that the Carnot cycle itself is elementary, *not dividible* [18].
7.1. Triangular heat cycle

Elementary change \(d\Theta \) of temperature \(\Theta \) of the environment of the general continuous cycle \(\mathcal{O} \) and thus of its working medium \(\mathcal{L} \) (both are in the diathermic contact at \(\Theta \)) causes the elementary reversible change of the heat \(Q^*(\Theta) \) delivered, (radiated) into \(\mathcal{L} \), just about the value \(\delta Q^*(\Theta) \),

\[
\delta Q^*(\Theta) = \frac{\partial Q^*(\Theta)}{\partial \Theta} \ d\Theta, \quad Q^*(\Theta_W) = \int_0^{\Theta_W} \frac{\partial Q^*(\Theta)}{\partial \Theta} d\Theta
\]

The heat \(Q^*(\Theta_W) \) is the whole heat delivered (reversibly) into \(\mathcal{L} \) (at the end temperature \(\Theta_W \)). For the infinitesimal heat \(\delta Q^*(\Theta) \) delivered (reversibly) into \(\mathcal{L} \) at temperature \(\Theta \) and in accordance with the Clausius definition of heat entropy \(S^*_{\mathcal{L}} [22] \) is valid that

\[
\delta Q^*(\Theta) = \Theta \cdot dS^*_{\mathcal{L}}(\Theta), \quad dS^*_{\mathcal{L}}(\Theta) = \frac{\delta Q^*(\Theta)}{\Theta}
\]

For the whole change of entropy \(\Delta S^*_{\mathcal{L}}(\Theta_W) \), or for the entropy \(S^*_{\mathcal{L}}(\Theta_W) \) respectively, delivered into the medium \(\mathcal{L} \) by its heating within the temperature interval \((0, \Theta_W) \), is valid that

\[
\Delta S^*_{\mathcal{L}}(\Theta_W) = \int_0^{\Theta_W} dS^*_{\mathcal{L}}(\Theta) = \int_0^{\Theta_W} \frac{\delta Q^*(\Theta)}{\Theta} d\Theta = \int_0^{\Theta_W} \frac{\partial Q^*(\Theta)}{\partial \Theta} d\Theta = S^*_{\mathcal{L}}(\Theta_W)
\]

when \(S^*_{\mathcal{L}}(0) \overset{\text{Def}}{=} 0 \) is set down. By (148) for the whole heat \(Q^*(\Theta_W) \) delivered into \(\mathcal{L} \) within the temperature interval \(\Theta \in (0, \Theta_W) \) also is valid that

\[
Q^*(\Theta_W) = \int_0^{\Theta_W} \Theta dS^*_{\mathcal{L}}(\Theta)
\]

Then, by medium value theorem\(^{19}\) is valid that \(\Theta_{(0,\Theta_W)} = \frac{0 + \Theta_W}{2} = \frac{\Theta_W}{2} \) and

\[
Q^*(\Theta_W) = \int_{S^*_{\mathcal{L}}(0)}^{S^*_{\mathcal{L}}(\Theta_W)} \Theta dS^*_{\mathcal{L}}(\Theta) = [S^*_{\mathcal{L}}(\Theta_W) - S^*_{\mathcal{L}}(0)] \cdot \Theta_{(0,\Theta_W)}
\]

For the extremal values \(T_0 \) a \(T_W \) of the cooler temperature \(\Theta \) of \(\mathcal{O} \) and by (151)

\[
\begin{align*}
Q_0^* \overset{\Delta}{=} Q^*(T_0) &= \int_0^{T_0} \delta Q^*_{\mathcal{L}}(\Theta) \quad \text{and} \quad Q_W^* \overset{\Delta}{=} Q^*(T_W) = \int_0^{T_W} \delta Q^*_{\mathcal{L}}(\Theta) \\
Q_0^* &= \int_{S^*_{\mathcal{L}}(0)}^{S^*_{\mathcal{L}}(T_0)} \Theta dS^*_{\mathcal{L}}(\Theta) = [S^*_{\mathcal{L}}(T_0) - S^*_{\mathcal{L}}(0)] \cdot \Theta_{(0,T_0)}, \quad \Theta_{(0,T_0)} = \frac{T_0}{2} \\
Q_W^* &= \int_{S^*_{\mathcal{L}}(0)}^{S^*_{\mathcal{L}}(T_W)} \Theta dS^*_{\mathcal{L}}(\Theta) = [S^*_{\mathcal{L}}(T_W) - S^*_{\mathcal{L}}(0)] \cdot \Theta_{(0,T_W)}, \quad \Theta_{(0,T_W)} = \frac{T_W}{2}
\end{align*}
\]

With \(S^*_{\mathcal{L}}(0) = 0 \) for the (end) temperatures \(\Theta, T_0, T_W \) of \(\mathcal{L} \) and the relevant heats and their entropies is valid

\[
\begin{align*}
Q^*(\Theta) &= S^*_{\mathcal{L}}(\Theta) \cdot \frac{\Theta}{2} \quad \text{and then} \quad S^*_{\mathcal{L}}(\Theta) = \frac{2Q^*(\Theta)}{\Theta} \\
Q_W^* &= S^*_{\mathcal{L}}(T_W) \cdot \frac{T_W}{2} \quad \text{and then} \quad S^*_{\mathcal{L}}(T_W) = \frac{2Q_W^*}{T_W} \\
Q_0^* &= S^*_{\mathcal{L}}(T_0) \cdot \frac{T_0}{2} \quad \text{and then} \quad S^*_{\mathcal{L}}(T_0) = \frac{2Q_0^*}{T_0}
\end{align*}
\]

\(^{19}\) Of Integral Calculus.
For the change $\Delta S^*_{\mathcal{L}}$ of the thermodynamic entropy $S^*_{\mathcal{L}}$ of the system \mathcal{L}, at the temperature Θ running through the interval $\langle T_0, T_W \rangle$, by gaining heat from its environment (the environment of the cycle \mathcal{O}), is valid

$$\Delta S^*_{\mathcal{L}} = S^*_{\mathcal{L}}(T_W) - S^*_{\mathcal{L}}(T_0) = 2 \left(\frac{Q^*_{SW}}{T_W} - \frac{Q^*_{SO}}{T_0} \right) = \int_{T_0}^{T_W} \delta Q^*(\Theta) + \Theta \frac{dS^*_{\mathcal{L}}}{d\Theta} \tag{154}$$

By (149) for the entropy $S^*_{\mathcal{L}}(\Theta)$ of \mathcal{L} at variable temperature $\Theta \in (0, \Theta_W)$, $\Theta_W \leq T_W$, is gained that

$$S^*_{\mathcal{L}}(\Theta) = \int_{0}^{\Theta_W} \left(\frac{\partial}{\partial \Theta} \left[\frac{S^*_{\mathcal{L}}(\Theta) \cdot \Theta}{2} \right] \right) d\Theta = 2 \cdot \frac{1}{2} \int_{0}^{\Theta_W} dS^*_{\mathcal{L}}(\Theta) \tag{155}$$

and then

$$S^*_{\mathcal{L}}(\Theta) = \int_{0}^{\Theta_W} S^*_{\mathcal{L}}(\Theta) d\Theta + \frac{1}{2} \int_{0}^{T_W} S^*_{\mathcal{L}}(\Theta) d\Theta \tag{156}$$

By the result of derivation (155)-(156) for an arbitrary temperature Θ of medium \mathcal{L} is valid that

$$S^*_{\mathcal{L}}(\Theta) = I \cdot \Theta, \quad I = \frac{2Q^*(\Theta)}{\Theta^2} \quad \Rightarrow \quad Q^*(\Theta) = \lambda \cdot \Theta^2, \quad \lambda = \frac{l}{2} \tag{157}$$

Obviously, from (154) for $\Theta \in (T_0, T_W)$ is derivable that

$$\Delta S^*_{\mathcal{L}} = I \cdot (T_W - T_0) = I \cdot T_W \cdot (1 - \beta), \quad \beta = \frac{T_0}{T_W} \tag{158}$$

Let such a reverse cycle is given that the medium \mathcal{L} of which takes, through the elementary isothermal expansions at temperatures $\Theta \in (T_0, T_W)$, the whole heat ΔQ_0

$$\Delta Q_0 = \int_{T_0}^{T_W} \delta Q^*(\Theta) = \int_{T_0}^{T_W} I \Theta d\Theta = \frac{l}{2} \cdot \left(T_W^2 - T_0^2 \right) = Q^*_{SW} - Q^*_{SO} \tag{159}$$

or, with medium values

$$\Delta Q_0 = \int_{T_0}^{T_W} \delta Q^*(\Theta) = \int_{S^*_{\mathcal{L}}(T_W)}^{S^*_{\mathcal{L}}(T_0)} \Theta dS^*_{\mathcal{L}}(\Theta) \tag{159}$$

and thus equivalently

$$\Delta Q_0 = (T_W + T_0) \cdot \lambda \cdot [T_W - T_0] = \lambda T_W^2 \cdot (1 - \beta^2), \quad \beta = \frac{T_0}{T_W} \tag{159}$$

For a reverse reversible Carnot cycle \mathcal{O}'_{rev}, equivalent with the just considered general continuous heat cycle \mathcal{O}, drawing up the same heat ΔQ_0, consuming the same mechanical

\[\int_{\frac{f(x)}{x}} \frac{dx}{x} = \int \frac{df(x)}{x} \text{ or } \frac{df(x)}{f(x)} = \frac{dx}{x}, \text{ then } \ln |f(x)| = \ln |x| + \ln L, \quad L > 0, \quad \ln |f(x)| = \ln (L \cdot |x|), \quad f(x) = l \cdot x, \quad l \in \mathbb{R}.\]
work ΔA and giving, at its higher temperature t_W (the average temperature of the heater of our general cycle), the same heat ΔQ_W, is valid that $\Delta Q_0 = \Delta Q_W \cdot \gamma$ where $\gamma = \frac{T_0 + T_W}{2t_W}$ is the transform ratio.

Then

$$\Delta Q_W = \Delta Q_0 \cdot \frac{2t_W}{T_0 + T_W} = \frac{1}{2} \left(T_W^2 - T_0^2 \right) \cdot \frac{2t_W}{T_0 + T_W} = l \cdot t_W \cdot (T_W - T_0)$$ \hspace{1cm} (160)

$$\Delta A = \Delta Q_W \cdot (1 - \gamma) = l \cdot t_W \cdot (T_W - T_0) \cdot \left(1 - \frac{T_0 + T_W}{2t_W} \right)$$ \hspace{1cm} (161)

$$= \frac{1}{2} \cdot (T_W - T_0) \cdot (2t_W - T_0 - T_W)$$

For the elementary work $\delta A(\cdot, \cdot)$ corresponding with the heat $Q_*(\Theta)$ pumped out (reversibly) from L at the (end, output) temperature Θ of L and for the entropy $S_*(L)(\Theta)$ of the whole environment of O (including L with O) is valid

$$S_*(L)(\Theta) \cdot \frac{d\Theta}{\Theta} = \frac{Q_*(\Theta)}{\Theta} \cdot \frac{d\Theta}{\Theta} \triangleq \frac{\delta A(\Theta, d\Theta)}{\Theta} = dS_*(L)(\Theta) = l \cdot d\Theta$$ \hspace{1cm} (162)

$$\delta A(\Theta, d\Theta) = S_*(L)(\Theta) d\Theta = l \cdot \Theta d\Theta \text{ and } \delta A(d\Theta, d\Theta) = l \cdot d\Theta d\Theta = dS_*(L)(\Theta) d(\Theta) \triangleq \delta A$$

$$\left(\int_{T_0}^{\Theta} l d\theta \right) d\Theta = l \cdot (\Theta - T_0) d\Theta \triangleq \delta A(\Theta, d\Theta; T_0)$$ \hspace{1cm} (163)

For the whole work $\Delta A(\Theta_W; T_0)$ consumed by the general reverse cycle O between temperatures T_0 and Θ_W, being covered by elementary cycles (162), is valid that

$$\Delta A(\Theta_W; T_0) = \int_{T_0}^{\Theta_W} \left[\int_{T_0}^{\Theta} dS_*(L)(\theta) \right] d\Theta = \int_{T_0}^{\Theta_W} \left[\int_{T_0}^{\Theta} l d\theta \right] d\Theta = l \cdot \int_{T_0}^{\Theta_W} (\Theta - T_0) d\Theta$$ \hspace{1cm} (164)

$$= \frac{1}{2} \cdot (\Theta_W^2 - T_0^2) - l \cdot T_0 (\Theta_W - T_0) = \frac{1}{2} \cdot \Theta_W^2 + \frac{l}{2} \cdot T_0^2 - \frac{2l}{2} \cdot T_0 \Theta_W = \lambda \cdot (\Theta_W - T_0)^2$$

$$\triangleq \int_{O_{(T_W, T_0)}} \delta A = \lambda \cdot T_W^2 \cdot (1 - \beta)^2$$, when it is valid that $\Theta_W = T_W$, $\beta = \frac{T_0}{T_W}$

But, then for the results for ΔA in (160), (161) and (164) follows that

$$t_W = \frac{T_W + \Theta_W}{2} = T_W \text{ and then } t_W = T_W = \text{const.}$$ \hspace{1cm} (165)

Thus our general cycle O is of a triangle shape, $O \triangleq O_{rev\triangle}$ with the apexes

$$[IT_0, T_0], [IT_W, T_W], [IT_0, T_W]$$ \hspace{1cm} (166)

and its efficiency is $1 - \gamma = \frac{1 - \beta}{2} = \frac{1}{2} \cdot \eta_{\text{max}}$. Thus, the return to the initial (starting) state of the medium L is possible by using the oriented abscissas (in the $S - T$ diagram)

$$[IT_W, T_W], [IT_W, T_W] \text{ and } [IT_0, T_W], [IT_0, T_0]$$ \hspace{1cm} (167)
For works $\delta A(\Theta, d\Theta; T_0)$ of elementary Carnot cycles covering cycle O'_{rev} (166), the range of their working temperatures is $d\Theta$ and, for the given heater temperature $\Theta \in (T_0, \Theta_W)$ is, by (162)-(163) valid that

$$\delta A(\Theta, d\Theta; T_0) = \Delta Q_W(\Theta) \cdot \frac{d\Theta}{\Theta} = l \cdot (\Theta - T_0) \cdot \frac{d\Theta}{\Theta} = l \cdot (\Theta - T_0) d\Theta \tag{168}$$

$$\Delta Q_W(\Theta) = l \cdot (\Theta - T_0) \text{ and for } \gamma \text{ used in (160) is gained that}$$

$$\Delta Q_0(\Theta) = \Delta Q_W(\Theta) \cdot \gamma(\Theta) = l \cdot (\Theta - T_0) \cdot \frac{\Theta + T_0}{2\Theta} = \lambda \cdot \left(\Theta^2 - T_0^2\right)$$

For the whole heats ΔQ_0 a ΔQ_W being changed mutually between the working medium \mathcal{L} of the whole triangular cycle O'_{rev} and its environment (166), and for the work ΔA, in its equivalent Carnot cycle O'_{rev}^\prime with working temperatures $T_0 + T_W$ and T_W, will be valid that 21

$$\Delta Q_0 = \int_{T_0}^{T_W} \left[\int_0^\Theta l \cdot d\Theta \right] = 2 \cdot T_W^2 \cdot (1 - \beta^2) \triangleq W = \frac{l}{2} \cdot (T_W - T_0) \cdot T_0 + \frac{l}{2} \cdot (T_W - T_0)^2 \tag{169}$$

$$\Delta Q_W = \int_{T_0}^{T_W} \left[\int_0^\Theta l \cdot d\Theta \right] = l \cdot (T_W - T_0) \cdot T_W = l \cdot T_W^2 \cdot (1 - \beta)$$

$$\Delta A = \frac{l}{2} \int_{T_0}^{T_W} \left[\int_0^\Theta l \cdot d\Theta \right] = l \cdot T_W^2 \cdot (1 - \beta) - l \cdot T_W^2 \cdot (1 - \beta) \tag{170}$$

$$= l \cdot T_W^2 \cdot (1 - \beta) \cdot \left[1 - \frac{l}{2} (1 + \beta) \right] = \frac{l}{2} \cdot T_W^2 \cdot (1 - \beta)^2 = \int_{O'_{\text{rev}}} \delta A$$

7.2. Capacity corrections for wide-band photonic transfer channel

The average output energy $P_2(\Theta_W)$ of the message being received within interval $(0, T_W)$ of the temperature Θ of the medium $\mathcal{L} \equiv \mathcal{K}_{L-L}$ from [30], when $0 < \Theta_0 \leq \Theta \leq \Theta_W$ and $\Theta_0 \leq T_0$ and $\Theta_W \leq T_W$ are valid, is given by the sum of the input average energy $W(\Theta_W, \Theta_0)$ and the average energy $P_1(\Theta_0)$ of the additive noise

$$P_2(\Theta_W) = P_1(\Theta_0) + W(\Theta_W, \Theta_0) \tag{171}$$

The output message bears the whole average output information $H_2(\Theta_W)$. By the medium value theorem is possible, for a certain maximal temperature $\Theta_W \leq T_W$ of the temperature $\Theta \in (0, \Theta_W)$, consider that the receiving of the output message is performed at the average (constant) temperature $\overline{\Theta_W} = \frac{\Theta_W}{2}$. Then for the whole change of the output information entropy $\Delta H_2 \triangleq H_2(\Theta_W)$ [the thermodynamic entropy $S_{\mathcal{L}}(\Theta_W)$ in information units] is valid

$$H_2(\Theta_W) = \frac{P_2(\Theta_W)}{k \Theta_W} = \frac{P_1(\Theta_0) + W(\Theta_W, \Theta_0)}{k \Theta_W} \triangleq H_1(\Theta_W, \Theta_0) + H[W(\Theta_W, \Theta_0)] \tag{172}$$

21 Further it will be laid down $\lambda = \frac{\pi^2 k^2}{6h}$, $l = \frac{\pi^2 k^2}{3h} = 2 \cdot \lambda$.
By (153) is valid that \(Q^*(\Theta) = \lambda \Theta^2\) and \(\delta Q^*(\Theta) = l \Theta d\Theta\). Thus for \(\Theta \in (0, T_0)\) a \(\Theta \in (0, T_W)\) is valid

\[
dH_{\Theta W}(y) = \frac{\delta Q^*(\Theta W)}{k\Theta W} = \frac{1}{k} d\Theta W, \quad dH_{\Theta W}(y|X) = \frac{2l \Theta d\Theta}{k\Theta W}.
\]

(173)

With \(\Theta_W = T_W\) and \(\Theta_0 = T_0\) and with the reducing temperature \(\frac{T_W}{2}\) is possible to write

\[
P_2 = W + P_1 \triangleleft Q^* = \lambda T_W^2 \triangleleft Y
\]

(174)

\[
H_2 = H(Y) = \int_0^{T_W} \frac{P_2}{k} \Theta d\Theta = \frac{1}{k} T_W = \frac{P_2}{k \frac{T_W}{2}} = \frac{2(W + P_1)}{k T_W} = \frac{2\lambda T_W^2}{k T_W} = \frac{IT_W}{k}
\]

\[
P_1 = Q^* = \lambda T_0^2 \triangleleft Y|X
\]

\[
H_1 = H(Y|X) = \int_0^{T_0} \frac{2l \Theta d\Theta}{k T_W} = \frac{1}{k T_W} \cdot \frac{T_0^2}{k \frac{T_W}{2}} = \frac{2\lambda T_0^2}{k T_W} = \frac{IT_0^2}{k T_W}
\]

\[
W = Q^* - Q^* = X
\]

\[
H[W(T_W, T_0)] \triangleleft H(X) = \frac{W}{k \frac{T_W}{2}} = \frac{2\lambda}{k T_W} \cdot (T_W^2 - T_0^2)
\]

(175)

By the channel equation (4), (5) and by equations (23)-(24) and also by definitions (174)-(175) and with the loss entropy \(H(X|Y) = 0\) it must be valid for the transinformation \(T(\cdot ; \cdot)\) that

\[
T(Y; X) = H(Y) - H(Y|X) = \frac{1}{k} \cdot (T_W - T_0) \cdot (1 + \beta) = H(X)
\]

(176)

\[
T(X; Y) = H(X) - H(X|Y) = H(X) = T(X, Y) \quad \text{and by using } l = \frac{\pi^2 k^2}{3h}, \quad \beta = \frac{T_0}{T_W},
\]

\[
T(Y; X) = \frac{\pi^2 k}{3h} \cdot T_W \cdot (1 - \beta^2) = \frac{\pi^2 k}{3h} \cdot T_W \cdot (1 - \beta) \cdot (1 + \beta) = C_{T_0, W}(K_{L-L}) \cdot (1 + \beta)
\]

For the given extremal temperatures \(T_0, T_W\) the value \(T(X; Y)\) stated this way is the only one, and thus also, it is the information capacity \(C'_{T_0, T_W}(W)\) of the channel \(K_{L-L}\) (the first correction)

\[
C'_{T_0, T_W} = (W) = T(X; Y) = \frac{\pi^2 k T_0}{3h} \cdot \left(\sqrt{1 + \frac{6h \cdot W}{\pi^2 k^2 T_0^2}} - 1 \right) \cdot (1 + \beta)
\]

(177)

The information capacity correction (177) of the wide–band photonic channel \(K_{L-L}\) [30], stated this way, is \((1 + \beta)\)-times higher than the formulas (102) and (138) say. The reason is in using two different information descriptions of the oriented abscissa \([0, 0], [IT_W, T_W]\) in derivation (138) and (177) which abscissa \([0, 0], [IT_W, T_W]\) is on one line in \(S - T\) diagram and is composed from two oriented abscissas,

\[
[0, 0], [IT_0, T_0] \quad \text{and} \quad [IT_0, T_0], [IT_W, T_W]
\]

(178)

The first abscissa represents the phase of noise generation and the second one the phase of input signal generation. The whole composed abscissa represents the phase of whole output signal generation.
For the sustaining, in the sense repeatable, cyclical information transfer, the renewal of the initial or starting state of the transfer channel $K_{L-L} \cong L$, after any individual information transfer act - the sending input and receiving output message has been accomplished, is needed. Nevertheless, in derivations of the formulas (102), (177) and (138) this return of the physical medium L, after accomplishing any individual information transfer act, into the starting state is either not considered, or, on the contrary, is considered, but by that the whole transfer chain is opened to cover the energetic needs for this return transition from another, outer resources than from those ones within the transfer chain itself. In both these two cases the channel equation is fulfilled. This enables any individual act of information transfer be realized by external and forced out, repeated starting of each this individual transfer act.

If for the creation of a cycle the resources of the transfer chain are used only, the need for another correction, this time in (177) arises. To express it it will be used the full cyclical thermodynamic analogy K of K_{L-L} used cyclically, K'_{L-L}. The information transfer will be modeled by the cyclical thermodynamic process O_{rev} of reversible changes in the channel $K \cong K'_{L-L} \cong L$ and without opening the transfer chain. (Also $K \cong K'_{B-E}$).

7.2.1. Return of transfer medium into initial state, second correction

Now the further correction for capacity formulas (102), (138) and (177) will be dealt with for that case that the return of the medium L into its initial, starting state is performed within the transfer chain only. It will be envisaged by a triangular reverse heat cycle O_{rev} created by the oriented abscissas within the apexes in the $S-T$ diagram (166), $[IT_0,T_0]$, $[IT_W,T_W]$, $[IT_0,T_W]$. The abstract experiment from [30] will be now, formally and as an analogy, realized by this reverse and reversible heat cycle O_{rev}, described informationally, and thought as modeling information transfer process in a channel $K \cong K'_{L-L} \cong L \cong L$. Thus the denotation $K \equiv K_{\Delta}$ is usable. By (153)-(157) it will be

$$Q^*(\Theta) = \frac{\pi^2 k^2 \Theta^2}{6l} = \frac{l}{2} \cdot \Theta^2, \quad Q^W = \frac{l}{2} \cdot T_W^2, \quad Q^0 = \frac{l}{2} \cdot T_0^2$$

(179)

The working temperature Θ_0 of cooling and Θ_W of heating are changing by (157),

$$\Theta_0 = \frac{1}{T} \cdot S_{*L}(\Theta_0) \in \langle T_0,T_W \rangle \quad \text{and} \quad \Theta_W = T_W \quad \text{const.}$$

(180)

and the heat entropy $S_{*L}(\Theta)$ of the medium L is changing by (155)-(156),

$$dS_{*L} = \frac{\partial Q^*(\Theta)}{\partial \Theta} d\Theta \cdot \frac{1}{\Theta} \quad \text{and then} \quad S_{*L}(\Theta) = \frac{2Q^*(\Theta)}{\Theta}$$

(181)

Using integral (149) it is possible to write that

$$Q^*(\Theta) = \int_0^\Theta \delta Q^*(\theta) = \int_0^\Theta \frac{\partial Q^*(\theta)}{\partial \theta} d\theta = \int_0^\Theta \Theta d\Theta$$

(182)

22 For these both cases is not possible to construct a construction-relevant heat cycles described in a proper information way.

23 But the modeling by the direct cycle such as in (128) is possible for the II. Principle of Thermodynamics is valid in any case and giving the possibility of the cycle description.
For the whole heats ΔQ_0 and ΔQ_W being changed mutually between \mathcal{L} with the cycle O_{rev} and its environment and, for the whole work ΔA for the equivalent Carnot cycle O'_{rev} with working temperatures $\frac{T_0 + T_W}{2}$ and T_W is valid, by (169)-(170), that
\[
W = \Delta Q_0 = \frac{1}{2} \cdot T_W^2 \cdot (1 - \beta^2) \triangleq X, \quad \Delta Q_W = l \cdot T_W^2 \cdot (1 - \beta) \triangleq Y
\]
(183)

\[
\Delta Q_W - \Delta Q_0 = \Delta A = \frac{1}{2} \cdot T_W^2 \cdot (1 - \beta)^2 \triangleq Y|X
\]

For the whole work ΔA delivered into the cycle O_{rev}, at the temperature T_W, and the entropy S_{rev} of its working medium \mathcal{L} is valid
\[
\frac{\Delta A}{T_W} = \int_{O_{\text{rev}}} \frac{\delta A}{T_W} = \int_{T_0}^{T_W} l(\Theta - T_0) \cdot \frac{d\Theta}{T_W} \tag{184}
\]
\[
\int_{O_{\text{rev}}} \frac{\delta A}{T_W} = \frac{1}{2} \int_{T_0}^{T_W} \left[\int_{T_0}^{T_W} dS_{\text{rev}}(\Theta) \right] \frac{d\Theta}{T_W} = \int_{T_0}^{T_W} \left[S_{\text{rev}}(T_W) - S_{\text{rev}}(T_0) \right] \frac{d\Theta}{2T_W}
\]
\[
= \frac{1}{2T_W} \cdot (T_W - T_0)^2 = \frac{1}{2} \cdot T_W \cdot (1 - \beta)^2 = \frac{\Delta A}{T_W}
\]

Following (4), (5) and (23) and the triangular shape of the cycle O_{rev}, the changes of information entropies by expressions (142), (169)-(170) are defined, valid for the equivalent O'_{rev} see (124), see (185)
\[
H(X) \overset{\text{Def}}{=} \frac{\Delta Q_0}{kT_W} = \int_{T_0}^{T_W} \left[\int_{0}^{\Theta} \frac{\delta Q_0}{\Theta} \right] \frac{d\Theta}{kT_W} = \int_{T_0}^{T_W} \left[\int_{0}^{\Theta} \frac{l}{kT_W} \right] \frac{1}{kT_W} d\Theta
\]
\[
H(Y) \overset{\text{Def}}{=} \frac{\Delta Q_W}{kT_W} = \int_{T_0}^{T_W} \left[\int_{0}^{\Theta} \frac{\delta Q_W}{\Theta} \right] \frac{d\Theta}{kT_W} = \int_{T_0}^{T_W} \left[\int_{0}^{\Theta} l d\Theta \right] \frac{1}{kT_W} d\Theta
\]
\[
H(Y|X) \overset{\text{Def}}{=} \frac{\Delta A}{kT_W} = \frac{1}{2} \int_{T_0}^{T_W} \left[\int_{T_0}^{T_W} \frac{\delta A}{\Theta} \right] \frac{d\Theta}{kT_W} = \frac{1}{2} \int_{T_0}^{T_W} \left[\int_{T_0}^{T_W} l d\Theta \right] \frac{1}{kT_W} d\Theta
\]
\[
T(Y;X) = H(Y) - H(Y|X) = \frac{1}{2kT_W} \int_{T_0}^{T_W} \left[2 \int_{T_0}^{T_W} d\Theta - \int_{T_0}^{T_W} l d\Theta \right] d\Theta
\]

and by figuring these formulas with $l = \frac{\pi^2 k}{3h}$ is gained that
\[
H(X) = \frac{1}{2k} \cdot T_W \cdot (1 - \beta^2) = \frac{\pi^2 kT_W}{6h} \cdot (1 - \beta^2)
\]
\[
H(Y) = \frac{1}{k} \cdot T_W \cdot (1 - \beta) = \frac{\pi^2 kT_W}{3h} \cdot (1 - \beta)
\]
\[
H(Y|X) = \frac{1}{2k} \cdot T_W \cdot (1 - \beta)^2 = \frac{\pi^2 kT_W}{6h} \cdot (1 - \beta)^2 = \int_{O_{\text{rev}}} \frac{\delta A}{kT_W}
\]
\[
T(Y;X) = \frac{1}{k} \cdot T_W \cdot (1 - \beta) - \frac{1}{2k} \cdot T_W \cdot (1 - \beta)^2 = \frac{1}{2k} \cdot T_W \cdot (1 - \beta) \cdot (2 - 1 + \beta)
\]
\[
= \frac{1}{2k} \cdot T_W \cdot (1 - \beta^2) = \frac{\pi^2 kT_W}{6h} \cdot (1 - \beta^2) = H(X) = T(X;Y)
\]
\[
H(X|Y) = 0
\]

\[\text{24 In accordance with the input energy delivered and the extremal temperatures used in [30].}\]
It is visible that the quantity \(H(Y) \) \(= H(X) + H(Y|X) \) is introduced correctly, for by (185) is valid that
\[
H(Y) = \frac{1}{2k} \cdot T_W \cdot (1 - \beta)^2 + \frac{1}{2k} \cdot T_W \cdot (1 - \beta^2) = \frac{1}{2k} \cdot T_W \cdot (1 - \beta) \cdot (1 - \beta + 1 + \beta) \quad (186)
\]
\[
= \frac{1}{k} \cdot T_W \cdot (1 - \beta)
\]

For the transinformation and the information capacity of the transfer organized this way is valid (177),
\[
T(X; Y) = \frac{1}{2} C'_{T_0, T_W}(W) \quad (187)
\]

With the extremal temperatures \(T_0 \) and \(T_W \) the information capacity \(C*_{T_0, T_W}(W) \) is given by
\[
T(X; Y) = C*_{T_0, T_W}(W) \quad \text{and then} \quad C^\text{max} = \lim_{T_0 \to T_W} C*_{T_0, T_W}(W) = H(Y) \quad (188)
\]

From the difference \(\Delta Q_0 \overset{\triangle}{=} W = Q_0^* - Q^*_W \) (in \(\mathcal{L} \)) follows that the temperature
\[
T_W = T_0 \cdot \sqrt{1 + \frac{6h \cdot W}{\pi^2 k^2 T_0^2}}.
\]

Then, for the transinformation, in the same way as in (187), is now valid
\[
T(X; Y) = \frac{\pi^2 k}{6h} \left(1 - \beta^2 \right) = \frac{\pi^2 k}{3h} \cdot (T_W - T_0) \cdot \frac{1 + \beta}{2} = \frac{\pi^2 k T_0}{3h} \cdot \left(\sqrt{1 + \frac{6h \cdot W}{\pi^2 k^2 T_0^2}} - 1 \right) \cdot \frac{1 + \beta}{2} \quad (189)
\]

The transformation \(T(X; Y) \) is the capacity \(C(K_\triangle) \) and it is possible to write
\[
T(X; Y) = C(K_\triangle) = C*_{T_0, T_W}(W) = \frac{\pi^2 k T_0}{6h T_W} \cdot \left(\sqrt{1 + \frac{6h \cdot W}{\pi^2 k^2 T_0^2}} - 1 \right) \cdot (T_0 + T_W) \quad (190)
\]
\[
= C*_{T_W}(W) = \frac{W}{k T_W} = C*_{T_0}(W) = \frac{W}{k T_0} \cdot \sqrt{1 + \frac{6h \cdot W}{\pi^2 k^2 T_0^2}} \overset{\triangle}{=} C(K'_L - L; B - E)
\]

which value is \(2 \times \) less than (177) and \(\frac{2}{1 + \beta} \times \) less than (138).

For \(T_0 \to 0 \) the quantum approximation \(C(W) \) of the capacity \(C*_{T_0, T_W}(W) \) is obtained, independent on the noise energy (the noise power diminishes near the absolute \(0^\circ K \))
\[
C(W) = \lim_{T_0 \to 0} \left(\sqrt{\frac{\pi^4 k^2 T_0^2}{6^2 h^2} + \frac{\pi^2 W}{6h} - \frac{\pi^2 k T_0}{6h}} \right) \cdot (1 + \beta) = \pi \cdot \sqrt{\frac{W}{6h}} \quad (191)
\]

The classical approximation \(C_{T_0}(W) \) of \(C*_{T_0, T_W}(W) \) is gained for \(T_0 \gg 0 \). This value is near Shannon capacity of the wide–band Gaussian channel with noise energy \(k T_0 \) and with the whole average input energy (energy) \(W \); in the same way as in (104) is now gained
\[
C_{T_0}(W) = \frac{\pi^2 k T_0}{6h} \left(\frac{3h \cdot W}{\pi^2 k^2 T_0^2} \right) \cdot (1 + \beta) = \frac{W}{2 k T_0} \cdot (1 + \beta) \to \frac{W}{k T_0} \quad (192)
\]
The mutual difference of results (189) and and (102), (138) [12, 30] is given by the necessity of the returning the transfer medium, the channel $K_\Delta \cong K_\Delta'$ into its initial state after each individual information transfer act has been accomplished and, by the relevant temperature reducing of the heat ΔQ_0 [by T_W in (183)-(189)]. Thus, our thermodynamic cyclical model $K_\Delta \cong O_{rev\Delta}$ for the repeatible information transfer through the channel K_Δ' is of the information capacity (189), while in [12, 30] the information capacity of the one-act information transfer is stated. By (189) the whole energy costs for the cyclical information transfer considered is countable.

8. Conclusion

After each completed ‘transmission of an input message and receipt of an output message’ (‘one-act’ transfer) the transferring system must be reverted to its starting state, otherwise the constant (in the sense repeatable) flow of information could not exist. The author believes that either the opening of the chain was presupposed in the original derivation in [30], or that the return of transferring system to its starting state was not considered at all, it was not counted-in. In our derivations this needed state transition is considered be powered within the transfer chain itself, without its opening. Although our derivation of the information capacity for a cyclical case (using the cyclic thermodynamic model) results in a lower value than the original one it seems to be more exact and its result as more precise from the theoretic point of view, extending and not ceasing the previous, original result [12, 30] which remains of its technology-drawing value. Also it forces us in being aware and respecting of the global costs for (any) communication and its evaluation and, as such, it is of a gnoseologic character.

Author details

Bohdan Hejna
Institute of Chemical Technology Prague, Department of Mathematics, Studentská 6, 166 28 Prague 6, Czech Republic

9. References

25 For one-act information transfer the choose between two information descriptions is possible which result in capacity (138) or (177).

26 For the energy $T(X; Y) - T_W$ on the output the energy $\frac{2}{1+\beta} T_W \times greater$ is needed on the input of the transfer channel which is in accordance with the II. Principle of thermodynamics for $\frac{2}{1+\beta} > 1$ is valid.

