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1. Introduction 

Electromagnetic composite materials have a number of promising applications in various 
radio-frequency (RF), microwave and high-speed digital electronic devices, and allow for 
solving problems related to electromagnetic compatibility (EMC) and electromagnetic 
immunity (EMI) [1]. For this reason, study and prediction of frequency-dependent radio-
frequency RF and microwave properties of materials currently attract much attention. The 
problem of interest is the analytical description of wideband RF/microwave permittivity and 
permeability behavior of materials. This is necessary, in particular, to numerically optimize 
wideband electromagnetic performance of materials and devices at the design stage.  

This chapter discusses frequency dependences of effective material parameters (permittivity 
and permeability) of different types of composites. The chapter consists of three sections. 
Section I presents a review of approaches for predicting effective material parameters of 
composites, such as mixing rules, the Bergman–Milton spectral theory, and the percolation 
theory. Section II suggests on how to select the most appropriate mixing rule for the analysis 
of properties of a particular composite. Section III considers the dielectric microwave 
properties of composites filled with fiber-shaped inclusions.  

2. Approaches to describe effective material parameters of composites 

2.1. Basic mixing rules 

In most studies, two-component mixtures are considered, where identical inclusions are 
imbedded in a homogeneous host matrix. Effective properties of such a composite depend 
on the intrinsic properties of the inclusions and the host matrix, as well as on the 
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morphology of the composite. The morphology is a characterization of the manner, in which 
inclusions are distributed in the composite, including their concentration, shape, and 
correlations in the location. Therefore, the morphology determines how inclusions are 
shaped and distributed, whether they are mutually aligned/misaligned in the composite, 
and what concentrations of inclusion phases and a matrix material are.  

A conventional approach to describe the properties of composites employs mixing rules, i.e., 
equations that relates the intrinsic properties of inclusions and the host matrix with the 
effective properties of composite based on a simple idealized model considering an 
ellipsoidal-shaped inclusion. Typically, the characterization of the concentration and the 
shape of inclusions are included explicitly in the mixing rules, and the account for other 
morphological characteristics is attempted by a proper selection of the mathematical form of 
mixing rules.  

A number of mixing rules are found in the literature. The basic mixing rules are the Maxwell 
Garnet equation (MG) [2], Bruggeman's Effective Medium Theory (EMT) [3], and the 
Landau-Lifshitz-Looyenga mixing rule (LLL) [4, 5]. The MG mixing rule,  
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is equivalent to the Clausius–Mossotti approximation, and also complies with the Ewald-
Oseen extinction theorem [6]. Bruggeman's EMT,  
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is often referred to as the Polder-van Santen mixing rule in the theory of magnetic 
composites [7]. The Landau−Lifshitz−Looyenga mixing rule (LLL) is written as  

     1 3 1 3
eff incl1 1 1 1p      . (3) 

Eqs. (1)–(3) are written for the generalized susceptibilities of inclusions, χincl, and the 
effective susceptibility, χeff, both normalized to the susceptibility of the host matrix, since all 
susceptibilities of a certain composite, including the effective permittivity and permeability, 
are governed by the same mixing rule [8], with a possible correction for the tensor nature of 
the susceptibilities. If permittivity ε=ε’–iε” is under consideration, then χincl=εincl/εhost–1 and 
χeff=εeff/εhost–1. For the permeability μ=μ’–iμ”, χincl= μincl–1 and χeff= μeff–1, because most 
magnetic composites are based on a non-magnetic host matrix. In Eqs. (1)–(3), n is the form 
factor, i.e., either depolarization or demagnetization factor, and p is the volume fraction of 
inclusions.  

Starting from the basic mixing rules, simple empirical models of a composite may be suggested.  

The MG mixing rule considers the total polarizability of inclusions represented by the right 
part of Eq.(1) and assumes that this polarizability is acquired to a homogeneous medium. As 
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a consequence, this mixing rule defines the weakest possible cooperative phenomena 
between neighboring inclusions that are feasible for the given volume fraction of inclusions. 
The MG mixing rule is an accurate result for the case, when excitation of inhomogeneous 
fields due to multiple scattering on inclusions and the effect of neighboring inclusions are 
negligible. Therefore, it coincides with the lower Hashin−Shtrikman limit [9] that provides 
the smallest possible material parameter in the case, when loss is negligible. The MG mixing 
rule is believed to be valid for regular composites, i.e., those comprising regularly arranged 
inclusions, and for the case of conducting inclusions covered with an isolating shell [10, 11].  

The physical model for the EMT assumes that the host matrix consists of particles having 
the same shape that inclusions have, and both the inclusions and the host matrix particles, 
are embedded in an effective medium with the material constant equal to the effective 
material constant the composite. The sum of the polarizabilities of these two types of 
particles must be zero, which corresponds to a homogeneous medium. Though a practical 
realization of the EMT involves a very special morphology of a composite [12], this mixing 
rule is widely used, because it incorporates the percolation threshold when modeling a 
metal-dielectric mixture. The percolation threshold, pc, is the lowest concentration, at which 
a macroscopic conductivity appears in the mixture. From the standpoint of the mathematics, 
the EMT is reduced to a quadratic equation for the effective permittivity. Below and above 
the percolation threshold, different solutions of the equation must be selected according to 
the physical selection rules. Equation (2) yields pc=n. In the MG mixing rule (1), the 
percolation threshold is pc=1.  

The LLL mixing rule is built up by an iterative procedure starting from a homogeneous 
material of inclusions and replacing small amount of this material by the material of the host 
matrix. After that, the resulting “effective” material is regarded as the homogeneous 
component for the succeeding substitution step, and so on, which results in Eq. (3). The 
mixing rule obtained by the same iterative procedure starting with the homogeneous host 
matrix is referred to as the asymmetric Bruggeman approximation. The result of the LLL 
mixing rule is independent of the form factor of inclusions. For a metal-dielectric composite, 
the LLL mixing rule always provides a conductive mixture, so that pc=0. 

The LLL mixing rule is known to be an accurate result for the case when the material 
parameter of inclusions differs slightly from that of the host matrix. In particular, this mixing 
rule is valid for all material parameters of composites at very high frequencies, because any 
intrinsic susceptibility of any material approaches zero with the frequency tending to infinity. 
Agreement of both the MG and EMT mixing rules with the LLL mixing rule in the case of the 
susceptibility of inclusions slightly differing from zero is attained only if n=1/3.  

When the volume fraction of inclusions is small, p<< pc, and the interaction between the 
inclusions is negligible, all three theories are reduced to the small perturbation limit,  
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Strictly speaking, Eqs. (1), (2), and (4) are valid for the case of inclusions of perfectly spherical 
shape, which have the shape factor equal to 1/3. Otherwise, the equations are not consistent 
with the LLL mixing rule in the limiting case of high frequencies. For non-spherical particles, 
the polarizability of inclusions must be averaged over all three principal axes of the inclusion 
[13]. Two particular cases of non-spherical inclusions are of practical interest - nearly spherical 
inclusions and highly elongated inclusions (long fibers or platelets). For nearly spherical 
inclusions, the composites are conventionally described by Eqs. (1), (2), (4) with averaged form 
factor involved, which is found empirically and may differ from 1/3. For elongated inclusions, 
the form factor along the shorter axis (in the platelet case), or the sum of two form factors 
along the shorter axes (in the fiber case) is close to unity, and the polarization of inclusion is 
these directions can be neglected. In this case, the above equations are valid again, with a 
randomization factor, κ, included in the right-hand part of the equations to account for an 
alignment of non-spherical inclusions. For a fiber-filled composite, κ=1/3, when the fibers are 
randomly oriented in space, and κ=1/2, when the fibers are randomly oriented in plane and the 
wave vector in perpendicular to the plane. For composites filled with platelet-shaped 
inclusions, κ=2/3 for the 3D isotropic orientation. For the permeability of composites filled with 
non-spherical particles, possible anisotropy of magnetic moment, associated with 
crystallographic anisotropy of particle material, should be also taken into account, see, e.g., [14].  

2.2. The Bergman-Milton theory 

A generalization of mixing rules may be made with the use of the Bergman-Milton spectral 
theory (BM) [8]. The theory expresses the effective material parameter of a composite as  
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where the spectral function, b(n), is introduced as a quantitative characterization of the 
composite morphology. As is seen from Eq. (5), the BM theory accounts for a distribution in 
effective form factors of inclusions in a composite. This distribution may be associated with 
the following statistical parameters and processes within the composite: a spread in shapes 
of individual inclusions comprising the composite; possible agglomeration of inclusions to 
clusters; and the effects of multiple scattering and inhomogeneous fields excited by 
neighboring inclusions. Again, the spectral function is the same for all susceptibilities of a 
particular composite.  

The sum rules,  
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relate the spectral function b(n) to the volume fraction of inclusions p for a macroscopically 
isotropic composite in D dimensions. The practically important cases are D=3 (an isotropic 
3D composite with non-aligned randomly distributed inclusions, the shape of which is 
arbitrary in the general case) and D=2 (an assembly of infinitely long cylinders). The sum 
rules provide an agreement of the spectral theory with the LLL mixing rule at χincl→0.  



 
Frequency-Dependent Effective Material Parameters of Composites as a Function of Inclusion Shape 335 

The spectral theory provides a complete characterization of the frequency dependence of the 
effective material parameters. The concentration dependence of effective material 
parameters is implicit in the spectral theory, with the volume fraction involved in the 
spectral function as a parameter. The analysis of concentration dependences is a powerful 
tool for understanding properties of composites. However, application of the spectral function 
approach is not convenient for such analysis. 

Another reason that prevents the BM theory  from the wide use for the analysis of measured 
data is that the theory exploits an unknown function, which is difficult to find from the 
experiment. There are just a few published examples of how to apply the BM theory to the 
measured data analysis and predicting frequency characteristics of composites [15]. A 
conventional approach is to accept a functional dependence b(n) as a function of some 
parameters and to search for these parameters from the measured data [16−18].  

Figure 1 shows the calculated spectral functions b(n) for some mixing rules. The spectral 
function for the MG mixing rule is a delta-function, as is shown in Fig. 1a. The spectral 
function for the EMT mixing rule presented in Fig. 1b is a semi-circle when plotted as nb(n) 
against n. Plots d, e, and f show the spectral functions for the McLachlan, Sheng, and Musal–
Hahn mixing rules, correspondingly, which are discussed in Subsection 1.4. The latter two 
plots are composed of several distinct peaks of spectral function even at n=1/3. Other 
examples of calculated spectral functions for mixing rules are found in [19]. In case of 
elongated inclusions, or if a composite is composed of inclusions with significantly different 
aspect ratios, the spectral function may consist of two or larger number of separated peaks. 
Also, several distinct peaks of the spectral function are found to appear due to the 
interaction between inclusions in periodical composite structures [8].  

2.3. The percolation theory 

A different approach is provided by the percolation theory, see, e.g., [17]. The percolation 
theory considers the quasi-static permittivity of a metal-dielectric mixture at concentrations 
close to the percolation threshold. The main assumption of the theory is that the properties 
of the material are due to statistical properties of large conductive clusters in this case, rather 
than due to individual properties of inclusions. The theory predicts a power dependence of 
static permittivity of the mixture on the difference between the concentration, p, and the 
percolation threshold, pc:  

 
 
 

eff

eff

, , 0.7

, , 1.8

s
c c

t
c c

p p p p s

p p p p t





    

    
 (7) 

The values of critical indices, s and t, are believed to be universal, i.e., independent of 
detailed structure of composite. 

A consequence of Eqs. (7) is a power dependence of the real and imaginary permittivity on 
frequency f:  
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Figure 1. The spectral function, b(x), calculated for various mixing rules: (a) MG, n=1/3: 1 − p=0.1, 2 − p= 
0.2, 3 − p=0.5; (b) EMT, n=1/3: p=0.01, 2 − p= 0.1, 3 − p=0.25; (c) Asymmetric Bruggemann’s mixing rule: 1 
− p=0.1, 2 − p= 0.3, 3 − p=0.6, (d) McLachlan’s theory, n=1/3, s=1.8, t=0.7: p=0.01, 2 − p= 0.1, 3 − p=0.25; (e) 
Sheng theory, n=1/3: 1 − p=0.25, F=0.25,, 2 − p=0.1, F=0.25, 3 − p=0.25, F=0.75; (f) Musal–Hahn theory: 
n=1/3, p=0.4, F =0.2.  

(a) (b)

(c) (d)

(e) (f)
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 eff host eff,Y Yf f         (8) 

The equality of critical indices for the real and imaginary permittivity established by Eq. (8) 
follows from the Kramers−Krönig relations, if the frequency dependence of permittivity is 
governed by law (8) within the whole frequency range. In this case, the dielectric loss 
tangent, ε”/ε’, is independent of frequency and equal to tan(πY/2). It follows from the 
percolation theory that Y=s/(s+t)≈0.28. In practice, observed values of Y are typically closer to 
zero [20].  

The physical reason for the powder dependence of the permeability on frequency may be 
understood as follows. Assume that the frequency response of an individual inclusion in the 
composite is governed by the Debye frequency dispersion law,  
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where ε0 is the static permittivity, ε∞ is the optical permittivity, and τ is the characteristic 
relaxation time, which is reciprocal to the linear relaxation frequency frel: τ=1/frel. The Debye 
dispersion law governs the frequency dependence of composites filled with conducting 
inclusions in most cases. When individual inclusions form large clusters of various sizes, a 
spread of the characteristic relaxation times τ appears. In this case, the total permittivity is 
written as: 
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where B(y) is the distribution function of the relaxation times, and  
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The cumulative dispersion curve becomes more gently sloping. With a special form of the 
distribution,  
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the Cole-Davidson frequency dispersion, see, e.g., [21], is obtained,  
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Dispersion law (13) involves a frequency region governed by a power frequency 
dependence of the permittivity. The form of the distribution does not significantly affect the 
result provided that the distribution is wide, which can be a kind of justification for the 
percolation theory.  
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When the property under consideration is the permeability, the percolation behavior is not 
readily observed [22].  

2.4. Complex mixing rules 

There are many practical scenarios when none of the simple mixing laws agree with the 
measured data on a practical composite. A classical example is related to carbonyl iron 
composites. Despite almost perfect spherical shape of carbonyl iron particles, the form factor 
restored from the volume fraction dependence of the permittivity or permeability frequently 
differs greatly from 1/3 [18, 23]. The reason is an agglomeration of the inclusions.  

Another example is the percolation threshold study in composites composed of the same 
carbon black and different polymer host matrices [24]. Depending on a polymer, the 
percolation threshold may vary from 5 to 50%. Polymerization with different polymers 
results in different morphology of the composites. The reason is agglomeration or de-
agglomeration of inclusions, which depends on the properties of the interface between 
inclusions and the host matrix. The importance of spatial distribution of inclusions in a 
composite for validity of mixing rules is discussed in [25].  

Practically, in describing properties of composites, many other factors must be accounted 
for. Among these factors, there are the distribution of inclusions in shape [26−28] and size 
[29]; the presence of an oxide layer on the surface of conducting particles, statistical spread 
of intrinsic material parameters of inclusions, e.g., their conductivities [30], as well as 
possible cones of orientations, if elongated particles are aligned or randomly oriented [31]. 
For these reasons, fitting parameters are typically unavoidable in accurate description of 
material properties of composites.  

Therefore, taking into account peculiarities of a composite morphology may be crucial for 
accurate description of composite performance, especially in the case of permittivity of 
metal-dielectric mixtures, where the intrinsic permittivity of inclusions is infinity in the 
quasi-static case, and the effective permittivity of composite is determined solely by the 
shape of inclusions.  

Conventionally, a composite morphology is accounted for using more complex mixing rules, 
which involve some fitting parameters. Three examples of such mixing rules are discussed 
below. These theories combine the above mentioned basic approaches, and allow for 
introducing appropriate fitting parameters.  

A well known example of such combination is the Lichtenecker mixing rule [32], which is 
written for the case of the effective permittivity as  

  eff incl host1k k kp p     . (14) 

In Eq. (14), k has a physical meaning of a critical exponent, which is conventionally treated 
as a fitting parameter to obtain an agreement with measurements. Equation (14) may be 
considered as an empirical combination of the LLL mixing rule and the percolation theory.  
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A combination of the EMT mixing rule and the percolation theory is MsLachlan’s 
Generalized Effective Medium Theory [33]:  
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In this equation, which is also written for the case of permittivity, the EMT equation (2) is 
supplemented with percolation indices s and t. These indices, together with the effective 
depolarization factor of inclusions n, are also treated as the fitting parameters.  

Another approach for developing complex mixing rules is to divide inclusions in composite 
into two groups (e.g., a part of inclusions are considered as isolated and the other part are 
assumed to compose dense clusters [34], or any other way of subdivision into groups), and 
then to mix these groups with different mixing rules. The value of F, 0<F<1, a fraction of 
inclusions attributed to one of the groups, provides a fitting parameter. An example of this 
approach is Sheng’s theory [35]:  

  1 21 0FP F P   , (16) 

where P1 and P2 are the effective polarizabilities of the two groups of particles; for the case 
of spherical inclusions, P1 and P2 are found in Sheng’s theory as   
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Equation (17) describes the polarizability of a spherical particle consisting of an inclusion 
material and then coated by a shell of the host matrix material. Equation (18) represents the 
inverse structure, with the shell made of the inclusion material and the core made of the 
host matrix material. Both Eqs. (17) and (18) are consistent with the MG formalism. The 
effective structures are mixed with each other according to the EMT equation (16). An 
analogous approach is suggested by Musal and Hahn [36], with the only difference that the 
EMT equation (16) describing a mixture of the two groups is substituted in the MG equation 
(1). Doyle and Jacobs [34, 37] suggested the model, where the two groups of inclusions 
comprise isolated inclusions and clusters of closely packed inclusions.  

The complex mixing rules are suggested and provide rather good/reasonable agreement 
with measured data mostly for the concentration dependences of the permittivity in metal-
dielectric mixtures. However, these theories may fail when describing frequency 
dependences of material parameters. The reason is that the complex mixing rules have the 
spectral function consisting of several isolated peaks even in the case of nearly-spherical 
inclusions, as is seen in Fig. 1 e and f. A physical meaning can hardly be attributed to these 
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peaks in case of a random composite filled with spherical inclusions, because, as is shown 
below, the appearance of isolated peaks of spectral function generally results in the 
appearance of several isolated regions of frequency dispersion of material parameters.  

Another approach to the problem of the permittivity dependence on concentration for 
metal-dielectric mixtures has been suggested by Odelevskiy [38]. He was the first who 
noticed the analogy between the MG and EMT equations, in which the concentration 
dependence of the permittivity for conducting inclusions are written as  
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respectively. Odelevskiy suggested an equation that generalizes these two theories in the 
case of a metal-dielectric mixture:  
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In Eq. (21), the form factor n and percolation threshold pc are the two fitting parameters. 
With these fitting parameters, the equation demonstrates an excellent agreement with 
measured data for a variety of different metal-dielectric mixtures [39], if the concentration of 
inclusions is not very close to the percolation threshold. Equation (21) cannot be considered 
as an independent mixing rule, because it does not leave a room for the permittivity of 
inclusions different from infinity.  

3. Frequency-dependent behavior of composites and validity of mixing 
rules 

Effective properties of composites in the majority of mixing rules and theories are 
considered in the quasi-static approximation. Because of this, the frequency dependence of 
effective material parameter appears due to the difference in frequency dependences of 
material parameters of constituents.  

Frequency dispersion of permittivity in a composite frequently appears due to the different 
frequency behavior of its dielectric host matrix and of conducting inclusions. Host matrices 
are typically considered as non-dispersive over a frequency range of interest, while the 
permittivity of metallic inclusions is imaginary and reciprocal to frequency. There are other 
dielectric materials possessing dielectric dispersion at microwaves, e.g., water, some 
ferroelectrics [40], some lossy polymers, but necessity of accounting for this dispersion is a 
fairly rare.  
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In contrast, a multitude of magnetic materials exhibit frequency dispersion of permeability 
at microwaves. The reason is that all magnets lose their magnetic properties at frequencies 
below several gigahertz, as is shown in Subsection 2.2. These are the microwaves, or even 
lower frequencies, where the permeability changes from large static permeability to unity. 
Notice that the intrinsic permeability of magnetic powders is generally unknown. It 
depends not only on the composition of the material, but also on manufacturing and 
treatment technology, and the latter dependence may be essential.  

In the first-order approximation, the frequency dependence of material parameters may be 
considered as an assembly of loss peaks accompanied by corresponding frequency 
dispersion of the real part, according to the Kramers-Kronig relations. In many cases, the 
Lorentzian (resonance) dispersion law,  
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provides a good fitting of measured dependences of susceptibility χ on frequency f. In Eq. 
(22), m is the number of the resonance terms involved in the dispersion law, and χst,i, frel,i, 
and fres,i are the static susceptibility, relaxation frequency, and resonance frequency 
attributed to i-th resonance term, respectively.  

3.1. Frequency-dependent behavior of composites 

Almost all mixing rules deduce the effective material parameters from the polarizability,  

 incl
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
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embedded in either a host matrix or the effective medium. From Eq. (23), two limiting cases 
are clearly seen, nχincl<<1 and nχincl>>1.  

In the case of nχincl<<1, the LLL mixing rule (3) is a rigorous result. For majority of practical 
cases, Eq. (3) may be rewritten just as the perturbation limit given by Eq. (4). In this case, the 
effective material parameter is just the intrinsic material parameter multiplied by the 
volume fraction of inclusions. This means that the effect of interaction between inclusions is 
negligible. The morphology of the composite, including the shape of inclusions, does not 
affect the effective material parameter. This case is typical for the microwave permeability of 
composites filled with either fibrous or platelet inclusions, as well as for all effective 
susceptibilities at very high frequencies.  

In the other limiting case, nχincl>>1, the effective material parameter depends on the 
morphology only. Here, the effective static susceptibility increases non-linearly with the 
concentration of inclusions, according to the percolation behavior and Odelevskiy equation 
(21). It is the case, for which most of the complex mixing rules have been developed. The 
case is related to the permittivity of metal-dielectric mixtures, since the imaginary part of the 
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permittivity of metal inclusions is so high that the absolute value of the microwave 
permittivity can be considered as infinite. As to the permeability, this case may be observed 
in some composites filled with ferromagnetic inclusions of spherical shape, or for low-
frequency magnetic materials, whose permeability may be very high.  

Let the effective material parameter be considered in a wide frequency range. Assume that 
the host matrix of the composite is lossless and non-dispersive. Then, the frequency 
dispersion in the composite is due to the frequency dispersion of inclusions. It is well known 
that a material parameter of any medium approaches unity with the frequency tending to 
infinity. Because of that, the case of nχincl<<1 is always observed at very high frequencies, 
where the LLL mixing rule (3) describes material parameters of composites.  

If the intrinsic susceptibility of inclusions is low, the LLL mixing rule is valid for low 
frequencies as well. In this case, the frequency dependence of any effective material 
parameter is just proportional to the dependence for the intrinsic material parameter, and 
the volume fraction of inclusions is the coefficient of proportionality. The loss peak in the 
composite and the loss peak of inclusions are located at the same frequency. The 
concentration dependence of the effective parameter is linear over the entire frequency 
range.  

Another possibility is when the inequality nχincl>>1 holds at low frequencies. In this case, the 
frequency dispersion in the composite appears, when the absolute value of nχincl is about 
unity. The loss peak in the composite is shifted towards higher frequencies as compared to 
the loss peak of inclusions. As the concentration of inclusions increases, the loss peak is 
shifted to the lower frequencies. At frequencies above the peak, the effective susceptibility is 
again proportional to the intrinsic susceptibility. At frequencies below the peak, the effective 
permeability depends mostly on the composite morphology and is independent of the 
intrinsic susceptibility. The concentration dependence of the effective susceptibility is non-
linear.  

This case is typical for metal-dielectric mixtures. However, the conductivity of metals is 
usually too high to provide a loss peak of permittivity at microwaves. The microwave 
permittivity for most metal-dielectric composites may be considered as non-dispersive and 
low-loss. An exception is the percolation behavior, which will be discussed in Section 3.  

If the frequency dependence of the intrinsic material parameter is Lorentzian (22) with m=1, 
and the mixing rule describing the composite is the MG, then the frequency dependence of 
the effective material parameter is Lorentzian as well. The parameters of the dispersion law 
for the effective material parameters are given by the simple equations [41]  
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Figure 2. The frequency dependence of effective permeability of a composite calculated by the EMT (2) 
with p=0.25 and n=1/3 (solid curves, blue curve for real permeability and red curve for imaginary 
permeability). Inclusions in the composite exhibit the Lorentzian frequency dispersion (22) with m=1, 
χst=100, fres=1 GHz, and frel=2 GHz. The dashed curves are the best fit of the solid line with the 
Lorentzian dispersion law with m=1, the dotted curves − with a sum of two Lorentzian terms, m=2.  

and 

  res,eff res,incl st,incl 1 1f f n p   , (26) 

where subscript “incl” indicates the Lorentzian parameters of the intrinsic permeability of 
inclusions and subscript “eff” is related to the Lorentzian parameters of the effective 
susceptibility of composite. It is clearly seen from the equations that the non-linear 
concentration dependence of static susceptibility is accompanied by a low-frequency shift of 
both the characteristic frequencies. A general validation of this fact is given in the next 
subsection.  

As is seen from Eqs. (25) and (26), the MG mixing rule retains the shape of effective 
susceptibility loss peak characteristic for the intrinsic susceptibility of inclusions. From the 
standpoint of the BM spectral theory, the reason is that additional loss due to mixing may 
arise over the entire range of effective form factors, where the spectral function has non-zero 
values. The spectral function for the MG mixing law is a delta-function, therefore, additional 
loss, which may distort the loss peak, does not appear. 

Other mixing rules are characterized by a spectral function of a finite width and may 
therefore result in distorted shape of the loss peak. Figure 2 shows the frequency 
dependence of effective permeability of a composite calculated by the EMT (2). Inclusions 
in the composite are assumed to exhibit the Lorentzian frequency dispersion (22) with m=1. 
In the figure, the dashed curves are the best fit of the calculated permeability with the 
Lorentzian dispersion law with m=1, the dotted curves are obtained for the sum of two 
Lorentzian terms, m=2. It is seen that the EMT produces a large distortion of the Lorentzian 
dispersion curve, when the concentration is close to the percolation threshold. The 
distortion has a form of the increased loss at the high-frequency slope of the loss peak, 
because the spectral function peak for the EMT is extended to the region of large 
arguments, see Fig. 1b.  
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3.2. Integral relations for the frequency dependences in composites 

The low-frequency shift of the loss peak appearing with increasing volume fraction and 
accompanied by non-linear concentration dependence of static susceptibility is a general 
rule. Let us consider two integrals,  

 1
0

2I f df




    and  2
0

2I df




  , (27) 

which are analogous to the well-known sum rule for the Kramers-Kronig relations,  
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    (28) 

The difference between (28) and (27) is that the values of I1 and I2 are determined by the 
high-frequency asymptote of the susceptibility, rather than by the low-frequency asymptote, 
which defines the value of integral (28). In composites, this asymptotic behavior is governed 
by the LLL mixing law. Therefore, integrals I1 and I2 for any composite are equal to the 
corresponding values for the bulk material of inclusions multiplied by the volume fraction 
of inclusions [42,43]  

 ,composite ,inclusions.i iI pI  (29) 

Consideration of Eq. (29) makes sense if the integrals are convergent and have a non-zero 
value. For I1, this is true for the Lorentzian dispersion law (22) that has the high-frequency 
asymptote given by:  
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For I2, the convergence is provided by the Debye dispersion law (9), which is the limiting 
case of (22) at fres→∞ and has the high-frequency asymptote represented as:  
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In the theory of magnetic material, these integrals are employed to validate ultimate values 
of high-frequency permeability. The corresponding constants for magnetic materials depend 
on the saturation magnetization of the material, Ms. If the frequency dependence of effective 
permeability is either single-term Lorentzian or Debye, then the values of the integrals are 
related to the static magnetic susceptibility and the resonance frequency  

  2 2
1 st,eff res,effsI p M f    , (32) 
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  2 st,eff rel,eff .sI p M f     (33) 

 
Figure 3. The static susceptibility as a function of cut-off frequency calculated with Acher’s law (32) 
(red line, κ=1/3) and Snoek’s law (33) (blue line, κ=2/3). In both the cases, Ms=2.15 T, p=1.  

In Eqs. (32) and (33), γ≈3 GHz/kOe is the gyromagnetic ratio, and κ is the randomization 
factor. For I2, typically κ=2/3; for I1, different possibilities are discussed in [14]. Equations 
(32) and (33) represent the well known Acher’s law [44] and Snoek’s law [45], respectively. 
Then I1 has a meaning of Acher’s constant, and I2 is Snoek’s constant. For most materials, 
Snoek’s law is valid, which involved Debye frequency dependence and integral I2. For some 
materials, such as hexagonal ferrites and thin ferromagnetic films, Acher’s law is valid, so 
that integral I1 is calculated as Eq. (32), and much larger high-frequency permeability values 
can be obtained. The laws (32) and (33) are used for estimating high-frequency magnetic 
behavior of materials. A magnetic material may have high permeability value at frequencies 
below the cut-off frequency, which is the least of fres and frel, where the permittivity falls to 
values close to unity. As the saturation magnetization of magnetic materials is typically 
below approximately 2 T, it follows from (32) and (33) that magnetic materials with high 
static permeability are permeable at frequencies of microwave range or lower.  

Figure 3 shows the ultimate values of the static magnetic susceptibility as a function of the 
cut-off frequency calculated with Acher’s law (32), red line, and Snoek’s law (33), blue line. 
In both cases, Ms=2.15 T and p=1, which corresponds to a homogeneous sample of pure iron. 
For Snoek’s law, κ=2/3; for Acher’s law, κ=1/3 is accepted, which corresponds to random 
distribution of thin platelets. It is seen from the figure that with low values of the cut-off 
frequency, below 1 GHz, Acher’s law enables a large advantage over Snoek’s law in feasible 
values of the static permeability. At higher frequencies, this advantage eliminates, and both 
the laws permits rather small ultimate values of static permeability with cut-off frequencies 
of several dozen gigahertz.  

For the permittivity of a metal-dielectric mixture, the frequency dependence is of Debye 
type, and an analogue of Snoek’s law may be introduced. As ε”incl=2σ/f, where σ is the 
conductivity of inclusions, the analogue of Snoek’s constant for permittivity would be just 
the doubled conductivity of inclusions, 

 2 2 .I p  (34) 
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Figure 4. The measured frequency dependence of permeability of hexagonal ferrite composites (black 
curves, left: the real part, right: the imaginary part) for the Co2Z composites. The volume fractions of 
ferrite are: 1, p=0.1; 2, p=0.3; and 3, p=0.5. The red curves show the results of fitting the measured data 
with the Lorentzian dispersion law (22) with m=1 [41].  

 

 
Figure 5. Left: the static permittivity (red dots) and static permeability (blue dots); right: the resonance 
frequency (red dots) and relaxation frequency (blue dots). The data are obtained for hexagonal ferrite 
composites by fitting the measured frequency dependences of permeability with the Lorentzian 
dispersion law (22) with m=1. The curves are the best fit of corresponding dots with Eqs. (24−26) [41].  

3.3. Applicability of the MG mixing rule 

The MG mixing rule usually agrees closely with the measured data, when nχincl ~1. This is a 
frequent occasion for the microwave permeability of magnetic composites. The intrinsic 
permeability of magnetic materials does not exceed several units at microwaves due to the 
fast decrease with frequency, according to Snoek’s and Acher’s laws. With these relatively 
low intrinsic permeability values, the dependence of the effective material parameters on the 
shape of inclusions appears. In particular, a low-frequency shift of the loss peak is observed 
as p increases. However, the dependence is still weak and may therefore be characterized by 
an averaged demagnetization factor n.  
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Figure 6. The measured ratio of Acher’s constant to the volume fraction plotted against the volume 
fraction (dots). The line show the linear fit of the measured data [41].  

An example of measured data having a good agreement with the MG mixing rule is taken 
from [41], where composites filled with powders of hexagonal ferrite have been studied. 
Figure 4 shows the measured microwave permeability for three of the samples. Application 
of the single-term Lorentzian dispersion law (22) provides a good agreement with the 
measured data for all volume fractions. This is seen from Fig. 5, where the static permittivity 
and the Lorentzian characteristic frequencies, obtained by the best fits of the measured 
magnetic dispersion curves, are plotted as functions of volume fraction. The curves in the 
figure are obtained by fitting the experimental points (dots) with Eqs. (24−26). For the bulk 
hexagonal ferrite, the retrieved static values are εst,incl=16 and μst,incl=11, and n≈0.33, which 
indicates that the ferrite particles are of nearly spherical shape. Therefore, nχst,incl is the range 
from 3 to 5, and is reasonably close to unity. The measured data on the microwave material 
parameters of the composites under study agree with the MG mixing rule calculations, 
which is evidenced by close agreement of the dots and the fitting curves in Fig. 5.  

However, an accurate analysis of the data reveals some disagreement. Acher’s constant of 
the composites, calculated from the data for different volume fractions does not agree with 
Eq. (32). As Fig. 6 shows, Acher’s constant depends on the volume fraction of inclusions, 
which should not be the case. The reason could be a distribution of shapes of individual 
inclusions that may result in deviation of the morphology from that postulated in the MG 
approach. This problem is discussed in more details in the next Subsection.  

3.4. Account for the distribution in shapes of inclusions 

A case, which may require a sophisticated mixing rule, is a composite filled with conducting 
ferromagnetic inclusions, whose both permittivity and permeability must be predicted, for 
example, to describe electromagnetic performance of the composite. In this case, two  
products of the form factor and the static susceptibility are involved, for the dielectric and 
magnetic susceptibility, which enlarges the range of variation of this value with a result of 
necessity for a more sophisticated theory to obtain better agreement between the measured 
data and theory.  
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Figure 7. Black curves: the measured frequency dependencies of permeability of composites filled with 
milled iron powder (black lines), left − real permeability, right − imaginary permeability. Red curves − 
fitting of the measured data with theory (35). Volume fractions of inclusions are 15.0% (1), 17.7% (2), 
23.6% (3), 30.3% (4) [39].  

Recently, a new theory, which unites the MG and EMT approaches, has been proposed [46]. This 
theory allows for introducing the percolation threshold through a general quadratic equation, the 
same as the EMT, postulating two requirements to the solution. The On the one hand, the 
solution must be consistent with the LLL mixing rule (3) for the case of low intrinsic material 
parameter; on the other hand, it should satisfy the Odelevskiy equation (21) for the case of 
intrinsic material parameter tending to infinity. This produces a unique solution for the equation, 
which can be considered as a new mixing rule, which generalizes the EMT and MG mixing rules,  
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where D is the dimensionality of composite. Mixing rule (35) involves two fitting 
parameters: the effective form factor of inclusions, n, and the percolation threshold, pc, that 
can be found from the concentration dependence of the effective permittivity. In fact, these 
parameters are related to peculiarities of morphology of composites, such as the distribution 
of inclusions in shape.  

The derivation of Eq. (35) is based on the assumption that the spectral function has a single 
wide peak. It is shown [46] that Eq. (35) allows for a variation of these parameters over the 
ranges,  
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These conditions correspond to the case of nearly-spherical inclusions. Derivation of similar 
approach for composites filled with highly-elongated inclusions, such as thin platelets or 
fibers, must incorporate a spectral function comprising two separated peaks, which would 
require more sophisticated mathematical approaches. However, to develop such approach is 
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not a challenging problem. As is shown above, the dilute limit approximation is sufficient 
for the analysis of microwave magnetic performance of such composites.  

With the fitting parameters retrieved from the concentration dependence of permittivity, 
the intrinsic permeability of inclusions may be found from the measured effective 
permeability at each volume fraction of inclusions in the composite, as is described in [39]. 
An agreement of the data on the intrinsic permeability of inclusions found from different 
concentrations of inclusions provides an additional test for the validity of the mixing rule. 
It is found that the theoretical predictions agree closely with the measured microwave 
permittivity and permeability of composites filled with milled Fe powders [39], see Fig. 7. 
In the figure, the intrinsic permeability of inclusions was calculated for each concentration 
of inclusions, after which the average value was used to calculate the theoretical curve for 
each concentration. This is the reason for the noise observed in the theoretical curves in 
Fig. 7.  

4. Composites with fibrous inclusions 

4.1. Measured microwave permittivity of fiber-filled composites 

Frequency dispersion of permittivity typically is not observed in composites over the 
microwave range. One of the rare examples of microwave dielectric dispersion is provided 
by composites filled with carbonized organic fibers. The conductivity of such fibers is much 
lower that that of metals. The thickness of the fibers is about a few microns, and their length 
can be on the order of several millimeters. The form factor of the fiber is very low, and the 
region of frequency dispersion may be at microwaves, as is seen in Fig. 8 [47].  

Figure 8 shows the measured frequency dependence of permittivity for a composite filled 
with carbon fibers with length l=1.5 mm, thickness d=8 μm, and resistivity of 10 000 
Ohm×cm. The volume fraction of the fibers in the composite is p=0.01%. The sample is a 
sheet polymer-based composite of thickness of less than 1 mm. Fibers are parallel to the 
sheet material plane, and they are distributed and oriented randomly in this plane. 
Experimental details are given in [47]. The frequency dependence of permittivity is of the 
Debye type. The low-frequency permittivity varies linearly with the volume fraction. The 
measured frequency and concentration dependences of permittivity agree well with the 
dilute limit approximation (4), written for the case under consideration as 
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where σ is the conductivity of the fibers, κ is a factor describing the averaged polarizability 
of inclusions, and n is the depolarization factor of the fibers, 
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Figure 8. The measured frequency dependence of real (blue dots) and imaginary (red dots) 
permeability of a composite filled with carbon fibers of 1.5 mm in length with the resistivity of 10 000 
Ohm×cm. The volume fraction of the fibers is 0.01% [47]. Curves are the result of fitting of measured 
data with the Debye dispersion law.  

The value of κ =1/3 in Eq. (37) for the case under consideration, that is a product of the value 
of ½, which accounts for the isotropic in-plane orientations of the fibers in a sheet sample, 
and the value of 2/3, which accounts for cylindrical shape of fibers instead of ellipsoidal 
shape considered by the theories.  

The type of the frequency dependence observed in fiber-filled composites is determined by 
the conductivity of fibers. In the general case, the dielectric dispersion curve is of the 
Lorentzian type with the parameters written as [48]  
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The resonance of the permittivity arises from the half-wavelength resonance excited within 
the fibers. 

Figure 9 shows the measured frequency dependence of permittivity for a composite filled 
with aluminum-coated fibers of 10 mm long [47]. The volume fraction the fibers is 0.01%. 
Due to high conductivity of the fibers, the frequency dependence of permittivity is of 
pronounced resonance (Lorentzian) type.  

It is seen from Fig. 9 that the quality factor of the dielectric resonance is much lower than 
that predicted by Eq. (39). This is because Eq. (39) does not account for the radiation 
resistance of the fibers. The radiation resistance of a half-wavelength dipole is 
approximately 75 Ohm in the free space, which is much larger than the ohmic resistance of 
the fiber, and contributes dominantly to the quality factor of the resonance.  

In fact, such composites behave as a kind of a metamaterial over the frequency range near 
the resonance, because they contain inhomogeneities, whose characteristic dimensions are 
close to the wavelength, and the principal features of their dielectric dispersion depend on 
the resonance scattering on the fibers. This is also evidenced by the facts that the measured 
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permittivity is less than that produced by the MG mixing law, and that the radiation 
resistance makes a dominant contribution into the quality factor of the dielectric resonance. 
Rigorously, metamaterials cannot be described in terms of effective material parameters. 
However, an experimental observation of deviation of microwave performance of the 
composites from Fresnel law has required special measurement conditions, see [49] for 
details.  

 
Figure 9. The measured frequency dependence of real (blue dots) and imaginary (red dots) 
permeability of a composite filled with aluminum-coated fibers 20 mm long. The volume fraction of the 
fibers is 0.01% [47]. Curves are the result of fitting of measured data with the Lorentzian dispersion law.  

4.2. Theories for the effective properties of fiber-filled composites 

A typical feature of fiber-filled composites is a low value of the percolation threshold: pc
d/l, see [47] for the measured data. Although the percolation threshold is conventionally 
considered as a structure-dependent parameter, the dependence has been validated with 
composites based on a random mixture of conducting and non-conducting fibers, so that the 
dependence on agglomeration would be minimized. The standard EMT produces even 
lower values, pc  (d/l)2, and a large disagreement with the measured permittivity values at 
concentrations close to the percolation threshold can be observed. Mixing rules for the fiber-
filled composites were primarily aimed at obtaining proper dependence of the percolation 
threshold on the aspect ratio of fibers.  

Historically, the first theories describing the effective properties of fiber-filled composites 
have been suggested in [37] and [50]. However, the theory [37] describes the case of infinite 
conductivity of inclusions and is not suitable for describing of frequency dependences in 
metal-dielectric composites. Theory [50] is a modification of the EMT. It is based on the 
assumption of strong anisotropy of the effective medium in the vicinity of a particular fiber, 
which results in the equations  
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Figure 10. Dots: the measured dielectric dispersion curves for a composite filled with carbon fibers 1.8 
mm long with the resistivity of 1400 Ohm×cm. The volume concentration of the fibers is 0.52%. Curves: 
calculation by Eq. (42) [47].  

The two equations (40) and (41) are used for the search of two values of the effective 
permittivity, εeff,|| and εeff,┴, in the directions parallel and perpendicular to a fiber, 
respectively; n is given by Eq. (38), n┴ =(1−n)/2, and the observed effective permittivity of the 
composite is found by averaging of εeff,|| and εeff,┴. The value of the randomization factor κ, 

defined in the Subsection 2.1, equals to 1/3, and is substituted in Eqs. (40) and (41). The 
theory [50] predicts correctly the dependence of the percolation threshold on the aspect ratio 
of fibers, but disagrees with the dilute limit approximation, and, therefore, with the 
measured permittivity of composites at low concentrations of fibers.  

Theory [51] allows for a better quantitative agreement over a wide range of volume fractions 
below the percolation threshold. The theory is based on the assumption that, in the vicinity 
of a particular fiber, the permittivity of effective medium ε* is a function of the distance 
from to fiber z:  
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where x is a parameter of the theory. This assumption results in the EMT equation written as  
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which is conventionally used in microwave studies of fiber-filled composites, see, e.g., [52].  
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There is lack of measured data on the frequency-dependent dielectric performance of fiber-
filled composites near the percolation threshold in the literature; one of examples of the data 
is given in Fig. 10 [45]. It is seen from the figure that the EMT predicts a gradual shift of the 
loss peak. The measured dielectric loss peak differs from that predicted by the theory. In 
contrast, the measured variation of the loss peak appearing as approaching the percolation 
threshold looks like a rise of the low-frequency loss level, with a well-defined trace of the 
loss peak associated with individual fibers.  

This difference between the theory and measurements may be associated not with the 
geometrical distribution of shapes of conducting clusters, as the percolation theory 
suggests, but with other low-frequency loss mechanisms near the percolation threshold. 
For example, imperfect electric contacts between fibers comprising a conductive cluster 
may contribute to the low-frequency loss [20]. The conductivity of such contacts must be 
much lower than the conductivity of the fibers. Therefore, imperfect contacts may result in 
a large low-frequency shift of dielectric loss. Because of a low value and wide distribution 
of the conductivity of contacts, this loss forms a very smooth dispersion curve, which is 
seen in Fig. 10.  

The same may be true for composites filled with carbon black or carbon nanotubes, which 
are known to have the percolation type of frequency dispersion at microwaves, see, e.g., 
[20]. Dielectric loss appearing at low frequencies might be associated with very prolate 
conductive clusters, if the conductivity of clusters is on the same order of magnitude as the 
conductivity of inclusions. Account for the imperfect contacts would allow for more realistic 
assumptions on the shape of conducting clusters.  

In principle, the effect of contacts may be understood as a presence of a comparatively low-
conductive shell covering the surface of conducting inclusions. For an individual inclusion, 
the presence of such a shell leads to a low-frequency shift of the loss peak, without change in 
its shape. To get an agreement with the measured data, a distribution of these conductivities 
should be included in the model. By the analogy to the Cole-Cole dispersion law, such 
distribution would results in the power frequency dependences of the permittivity. Hence 
the difference between measured critical indices and universal values derived from 
geometrical considerations can be observed, but there is no theory explaining and 
quantifying such phenomena in the literature.  

The available data of the microwave permeability of composites filled with magnetic fibers 
are consistent with the dilute limit approximation [53, 54].  

5. Conclusions 

The problem of describing of the effective permittivity as a function of concentration of 
inclusions in a metal-dielectric mixture is well studied. However, newly developed mixing 
rules still appear in the literature. This means that the solution for the problem is not 
satisfactory to some extent, and is typically related to the description of frequency 
dependences of material parameters.  
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The above consideration allows for determining the validity limits of various mixing rules. 
These limits are dependent on the difference between the susceptibilities of inclusions and 
the host matrix, and on the elongation of inclusions.  

For microwave permeability, the difference is typically not high, and the effective properties 
of composites are well described by the MG mixing rule. For lower frequencies, the intrinsic 
permeability may be high, and a more sophisticated mixing rule may be needed. For 
composites containing platelet and fibrous magnetic inclusions, the microwave permeability 
is described by the dilute limit approximation. The same is true for composites with 
dielectric fibers.  

For microwave permittivity of a metal-dielectric mixture, the difference is typically large, 
and the effective properties are determined by the morphology of the composite. But fitting 
of measured data to the theoretical results is typically rather simple, because the frequency 
dispersion of permittivity is a rare occasion at microwaves. In metal-dielectric composites, 
the region of frequency dispersion is located at much higher frequencies, as can be estimated 
from typical conductivity of metals and feasible dimensions of inclusions.  

For simultaneous modeling of the permittivity and permeability of composites with 
conducting inclusions, sophisticated mixing rules are unavoidable, with an account for a 
distribution of inclusions in shape. This case is the most difficult, because both concentration 
and frequency dependences of material parameters may be non-trivial.  
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