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1. Introduction 

The liver has a tremendous capacity to regenerate at all developmental stages (for reviews, 

see (1-3)). Liver cell mass can be restored even after repeated partial hepatectomies as well 

as after toxic injury. The contribution of stem cells to these processes is still under debate. 

Adult liver cells have been shown to regenerate liver tissue repeatedly when transplanted 

serially (4). However, hepatocytes cannot be considered stem cells because they are 

unipotent (for a glossary of terms, see Table 1). This chapter describes various liver 

progenitors that have been found by different researchers in humans and other mammalian 

species. Intra and extra-hepatic progenitors are discussed that can give rise to liver lineages. 

Intra-hepatic progenitors of non-hepatic lineages, such as endothelial or hematopoietic 

restricted progenitors, are not discussed. Although the focus of this chapter is on 

progenitors that have been characterized in normal, non-pathological conditions of the liver, 

oval cells will be described briefly. 

 

Term Description 

Totipotent Capable to give rise to cells of all three embryonic germ layers (i.e.
endoderm, mesoderm and ectoderm) as well as extra-embryonic
tissue of the placenta.  

Pluripotent Capable to give rise to cells of all three embryonic germ layers (i.e.
endoderm, mesoderm and ectoderm) but not to extra-embryonic
tissue. Most commonly used e.g. for embryonic stem cells, which
derive from the inner cell mass of the blastocyst. 

Multipotent Capable to give rise to multiple but not all lineages. For example,
bone marrow mesenchymal stem cells are considered
multipotent. 

Bipotent Able to give rise to two fates. In liver, hepatoblasts are considered
bipotential as they can develop into biliary and hepatic lineages. 

Unipotent Able to give rise to only one cell type. Hepatocytes are considered
unipotential.  

Progenitor Broad term to describe various types of precursors with different
potential. 
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Term Description 

Stem cell Cell, which is capable to differentiate into multiple lineages and is
also able of self-renewal. 

Hepatoblast Hepatic parenchymal cell of the fetal liver. Defined by its
expression of immature protein alpha-fetoprotein and absence of
several mature hepatic functions and proteins. 

Hepatocyte Hepatic parenchymal cell of the adult liver. In non-pathological
conditions defined by its expression of mature functions and
proteins, such as albumin and cytochrome P450 enzymes, and the
absence of immature proteins such as alpha-fetoprotein. 

Oval cell Small cells with oval-shaped nuclei that emerge in livers, which
have been treated with certain toxins. 

Table 1. Common terminology relevant to liver progenitor biology. Further details can be 
found also in (5, 6). 

2. Embryonic liver development 

During embryonic development, the liver arises from the definitive endoderm (for reviews 

on liver development, see (7-9)). The definitive endoderm is an embryonic layer, whereas 

visceral endoderm is a non-embryonic derived layer, also called extra-embryonic endoderm. 

The definitive endoderm is one of the three germ layers, which include also ectoderm and 

mesoderm. The definitive endoderm is initially located beneath the ectoderm and 

mesoderm. In the mouse, the definitive endoderm layer forms a liver bud between E8.5 and 

E9.5. This layer will also form the pancreas, lung, stomach, intestine, and thyroid. The 

cardiac mesoderm and septum transversum mesenchyme release signals, such as fibroblast 

growth factors (FGF) and bone morphogenetic proteins (BMP), which are necessary to 

induce liver specification. The septum transversum mesenchyme has been implicated to 

give rise to stellate cells (also called Ito cells), which are fat and vitamin A-storing and 

extracellular matrix producing liver cells (10); cells positive for the Lim-homeobox gene 

(Lhx2) migrate from the septum transversum into the forming liver bud and become desmin 

and Lhx2 positive stellate cells. Cells in the developing liver bud are termed hepatoblasts 

and express alpha-fetoprotein (AFP). Hepatoblasts have been described as bipotential 

progenitors, developing into mature hepatocytes as well as bile duct epithelial cells 

(cholangiocytes), based on findings from ex vivo and in vitro studies (11-15). Suppression of 

transcription factor CCAAT-enhancer-binding protein alpha (CEBPǂ) has been suggested to 

induce their specification towards biliary differentiation (16, 17). 

3. Human hepatic progenitors in fetal and adult livers 

Different hepatic progenitors in human livers have been described. Based on early findings 
in developmental biology, hepatic stem cells were originally defined as AFP positive 
hepatoblasts. More recent research, however, reveals that hepatic stem cells are AFP 
negative and are the precursors to hepatoblasts (12, 18). Furthermore, stem cells of assumed 
mesendodermal origin capable of multilineage differentiation towards liver- and 
mesenchymal lineages have been discovered (19). An overview about human hepatic 
progenitors that have been isolated and characterized is given in Table 2. 
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Publication Develop-

mental stage 

of liver 

tissue 

Presumable 

lineage 

Term used by 

authors 

Isolation 

method 

Phenotype In vivo 

model for 

repopula-

tion 

In vitro 

characteristics 

Najimi et al. 

2007 (20), 

Khuu et al. 

2011 (21) 

Adult 

M
es

en
ch

y
m

al
 

Adult derived 

human liver 

stem/ 

progenitor cell 

(ADHLSCs) 

Culture  Positive: CD90, 

CD73, CD29, 

CD44, CD13, 

HLA-class I. 

Weak: CD49e, 

CD49b, CD49f. 

Negative: 

CD105, CD133, 

CD117, CD45, 

CD34,  

HLA-DR 

 

uPA+/+-

SCID with 

and 

without 

70% 
hepatectomy 

Hepatic 

functions after 

induced 

differentiation 

Dan et al. 

2006 (19)  

Fetal 

M
es

en
d

o
d

er
m

al
 

Human fetal 

liver 

multipotent 

progenitor 

cells 

(hFLMPC) 

Culture  Positive: CD34, 

CD90, CD117, 

CD326, c-met, 

SSEA4, CK18, 

CK19, CD44h, 

vimentin. 

Negative: 

CD133, CD45, 

AFP, albumin 
 

Rag2-/- Ǆ-/- 

retrorsine/

CCl4 

Long-term 

culture, ~46h 

PDT, 

multipotent 

Herrera et al. 

2006 (22) 

Adult Human liver 

stem cells 

(HLSCs) 

Culture  Positive: 

Albumin, AFP, 

CD29, CD73, 

CD44, CD90, 

vimentin, 

nestin. Weak: 

CK8, CK18. 

Negative: 

CD34, CD45, 

CD117, CD133, 

CK19. 
 

SCID, N-

acetyl-p-

aminophen 

Multipotent, 

high expansion 

potential, ~36h 

PDT 

Schmelzer  

et al. 2006, 

2007 (12, 18) 

Fetal (16-20 

weeks of 

gestation), 

neonatal, 

pediatric, 

adult 

E
n

d
o

d
er

m
al

 

 

Human 

hepatic stem 

cells (hHpSC)

MACS, 

culture 

Positive: 

CD326, CD133, 

CD56, E-

cadherin, 

CD29, CD44h, 

claudin3, 

CK19. Weak: 

albumin. 

Negative: AFP. 

NOD/SCID Long-term 

culture, >150 

population 

doublings, 

precursors of 

hepatoblasts 

Malhi et al. 

2002 (23) 

Fetal Human fetal 

liver 

progenitor/ 

stem cells 

Culture Positive: AFP, 

GGT, CK8, 

CK19, CD34 

SCID CCl4 Long-term 

culture 
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Publication Develop-

mental stage 

of liver 

tissue 

Presumable 

lineage 

Term used by 

authors 

Isolation 

method 

Phenotype In vivo 

model for 

repopula-

tion 

In vitro 

characteristics 

Schmelzer 

et al. 2006, 

2007 (12, 18) 

Fetal (16-20 

weeks of 

gestation) 

Human 

hepatoblasts 

MACS, 

culture 

Positive: AFP. 

Variable: 

CD326 

NOD/SCID Can arise from 

hHpSC 

colonies in 

culture 

Abbreviations: AFP: alpha-fetoprotein; CCl4: Carbon tetrachloride; CD: cluster of differentiation;  
CK: cytokeratin; GGT: Ǆ-glutamyl transpeptidase; HLA: human leukocyte antigen; NOD: non-obese 
diabetic; SCID: severe-combined immunodeficient; MACS: magnetic activated cells sorting;  
PDT: population doubling time; uPA: urokinase-type plasminogen activator. 

Table 2. Progenitors with hepatic potential isolated from human livers. Details are given in 
the respective sections. 

3.1 Human liver multipotent progenitors 

Dan et al. isolated liver stem cells co-expressing endodermal and mesenchymal phenotypes 

from human fetal liver by culture selection on feeder cells (19). These cells could 

differentiate not only into hepatocytes and bile duct cells, but also into fat, bone, cartilage, 

and endothelial cells. Because of their multilineage differentiation potential, these cells were 

termed human fetal liver multipotent progenitor cells (hFLMPC). The in vivo percentage of 

this progenitor was not given, as these cells were isolated by culture selection. Cell surface 

and intracellular markers included: CD34, CD90, CD117, CD326 (also called epithelial cell 

adhesion molecule (EpCAM)), c-met, SSEA4, CK18, CK19, CD44h, and vimentin. Cells were 

negative for albumin, CD133, CD45, and AFP. They could be cultured monoclonal and long-

term for up to 100 population doublings. Cells had population doubling times of 46h. Early 

and late passages demonstrated identical morphology, differentiation potential, and 

telomere length. Cultured cells formed typical clusters with cells having a high nuclear to 

cytoplasm ratio. The morphology of these clusters resembled hepatic stem cells colonies 

described by Schmelzer et al. (12). When transplanted into immunotolerant Rag2-/- Ǆ-/- mice 

(using a modified retrorsine/carbon tetra-chloride model), human-specific albumin in 

mouse serum and human-specific albumin in sections of the liver could be detected. Liver 

sections of transplanted mice demonstrated clusters of human hepatocytes. A repopulation 

of 0.8–1.7% was estimated. The multipotential differentiation potential and resemblance to 

hepatic stem cell colonies suggests that hFLMPC represent mesendodermal precursors of 

hepatic stem cells.     

Herrera et al. isolated a similar population from human adult livers (22) using culture 

selection. These cells also expressed hepatic and mesenchymal markers. Cell surface and 

intracellular markers included albumin, AFP, CD29, CD73, CD44, CD90, vimentin and 

nestin; however, there was a negative expression of CD34, CD45, CD117, CD133, and CK19, 

and a weakly positive expression of CK8 and CK18. The cells were different from those 

described by Dan et al., as albumin and AFP expression could be observed and 

hematopoietic markers CD34 and CD117 were absent. In vitro, progenitors differentiated not 

only into hepatocytes, but also into osteogenic, endothelial, and islet-like, insulin-producing 
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structures. Adipogenic differentiation could not be induced. As these cells were culture-

selected, percentages of their in vivo occurrence were not established. Cells in vitro 

demonstrated exponential growth rates. When transplanted, human cells could be localized 

in vivo within the liver parenchyma of severe-combined immunodeficient (SCID) mice 

treated with N-acetyl-p-aminophen. 

Mesenchymal progenitors isolated from adult human livers were investigated for their 
potential to differentiate into hepatocytes (20, 21). Mesenchymal-like cells were obtained by 
selective culture (not sorting) of total liver cells. FACS analyses of cultured cells revealed a 
phenotype similar to mesenchymal stem cells with positive expression for CD90, CD73, 
CD29, CD44, CD13, and HLA-class I, but negative expression for CD105, CD133, CD117, 
CD45, CD34, and HLA-DR; cells were weakly positive for CD49e and CD49b, and only a 
minor fraction expressed CD49f. When cells were intrasplenically transplanted into uPA+/+-
SCID mice, human albumin and AFP positive cells could be observed and human albumin 
secretion was detected. When transplanted into SCID mice with and without 70% 
hepatectomy, human albumin gene expression could be measured in mice livers that had 
undergone hepatectomy, and human albumin positive cells could be detected in mouse liver 
sections in both models. Potential fusion events were not analyzed. When cells were 
induced to hepatic lineages in vitro (21), hepatic functions were increased compared to non-
induced controls, but lower than those of freshly isolated adult liver cells. 

3.2 Hepatic stem cells in the human liver 

Hepatic stem cells can be isolated from fetal, neonatal, pediatric, and adult human livers 

with identical characteristics (12, 18), as described by Schmelzer et al. Cell surface and 

intracellular markers include CD326, CD133, CD56, E-cadherin, CD29, Patched (24), claudin 

3 (18), CK19, and show weak positivity for albumin. Cells are negative for AFP, CD45, 

CD34, CD38, CD14, CD90, CD235a, VEGFr, vWF, CD31, CD146, desmin, ASMA, transferrin, 

connexins, PEPCK, DPP4, CYP450; CD117 is variably expressed. Sonic and Indian 

Hedgehog signaling pathway components are expressed (24). Stem cells could be selected 

by MACS sorting as well as under selective culture conditions, which included serum-free 

medium and culture on plastic. Under these culture conditions, hepatic stem cell colonies 

formed. These colonies (Figure 1) exhibit a typical epithelial morphology of densely packed, 

small cells with high nucleus-to-cytoplasm ratio. Stem cell colonies are positive for CD326 

(Figure 2), CD44h, CD56, and weakly express albumin, but are negative for AFP.  

Cells were capable of self-renewal, as shown by clonogenic expansion for more than 150 

population doublings. 0.5 – 2.5% of all liver cells from all ages were positive for CD326 

expression. Hepatic stem cells have a small diameter of about 9 μm. In vivo, they are located 

in the ductal plates in fetal and neonatal livers and in the Canals of Hering in pediatric and 

adult livers. The Canal of Hering has been previously described as the reservoir of stem cells 

in postnatal livers (25, 26). Carpentier et al. recently studied lineage tracing by using a Cre 

recombinase Sox9 mouse model and confirmed that ductal plate cells give rise to 

cholangiocytes, periportal hepatocytes, and adult liver progenitor cells (27). Furuyama et al. 

(28) demonstrated that adult intestinal cells, hepatocytes and pancreatic acinar cells are 

physiologically supplied from Sox9-expressing progenitors using Cre-based lineage tracing 

in mice. In CCl4 mediated liver injury, Sox9-positive progenitors contributed to liver 
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regeneration. Hepatic stem cells have been shown to differentiate into biliary and 

hepatocytic lineages in vivo and in vitro (12). Freshly isolated cells or stem cells expanded in 

culture developed into mature liver tissue expressing human-specific proteins when 

transplanted into NOD/SCID mice, and lost their expression of stem cell marker CD326, 

CD133, and CK19. Whether those cells also possess multilineage differentiation potential 

beyond endodermal fates, i.e. mesodermal or ectodermal, has not yet been investigated. 

Khan et al. transplanted human fetal liver derived CD326+ sorted progenitors into patients 

with liver fibrosis (29). Patients demonstrated improvements in clinical and biochemical 

parameters and a decrease in mean MELD (model for end-stage liver disease) score at six-

month follow-up. 

 

Fig. 1. Human hepatic stem cell colony in culture, established from fetal liver cell 

suspensions as described in (12); phase contrast microscopy (A), and fluorescence 

microscopy (B) of proliferating cells with positive nuclei for incorporated thymidine analog 

bromodeoxyuridine (B-I) and corresponding total nuclei stained with 4',6-diamidino-2-

phenylindole (B-II). 

3.3 Hepatoblasts in human liver 

Hepatoblasts are the main parenchymal cell type of the fetal liver and are defined by their 

expression of AFP. AFP positive cells are rare in normal adult livers, except in livers with 

severe injury or disease (30-32) (for review, see (33)). Hepatoblasts can give rise to 

hepatocytes and cholangiocytes, and are therefore also named bipotential progenitors (15). 

AFP-negative hepatic stem cells are the precursors to hepatoblasts that can mature into AFP-

positive hepatoblasts (12). Human fetal hepatoblasts could be cultured long-term and 

clonally, and contributed to liver parenchyma when transplanted into SCID mice (23). 

Hepatoblasts express biliary and hepatocyte markers such as CK19, CK14, gamma glutamyl 

transpeptidase, glucose-6-phosphatase, glycogen, albumin, AFP, E-cadherin (34), ǂ-1 

microglobulin, HepPar1, glutamate dehydrogenase, and dipeptidyl peptidase IV (15, 18). 
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Human hepatoblasts do not express the mesenchymal or hematopoietic markers CD90, 

vimentin, and CD34 (34). In mice, hepatoblasts express the surface marker Dlk-1 (35-37), 

which was subsequently demonstrated to be expressed by human fetal hepatoblasts as well 

(34). Mouse fetal liver cells sorted for Dlk-1 can be cultured long-term; transplantation of 

Dlk-1 positive cells into the spleen gives rise to hepatocytes in the liver. Several signaling 

pathways and transcription factors contribute towards differentiation into either cell type. In 

mice, Notch signaling controls differentiation towards biliary epithelium by upregulation of 

HNF1ǃ but downregulation of HNF1ǂ, HNF4, and C/EBPǂ (38), and, in turn, suppression 

of C/EBPǂ expression in periportal hepatoblasts is suggested to induce biliary epithelial 

differentiation by increasing HNF6 and HNF1ǃ expression (17). 

 

Fig. 2. Human hepatic stem cell colonies established as described in (12) are positive for 

CD326 (A). Fluorescence microscopy for the transmembrane glycoprotein CD326 (also 

named epithelial cell adhesion molecule (EpCAM)) in (A), and corresponding nuclei stained 

with 4',6-diamidino-2-phenylindole in (B). 

4. Murine and rat hepatic progenitors in the fetal and adult liver 

Various surface markers have been applied to identify hepatic stem or progenitor 

populations in rodents. 

Germain et al. described the bipotential capacity of fetal rat liver cells to differentiate into 

hepatic and biliary cells in vitro (39), as did Kubota et al. using clonal cultures (40). Small 

hepatocytes were detected in non-parenchymal fractions of adult rat liver cells (41-44). 

These small hepatocytes produced colonies that expressed hepatic and biliary markers. A 

similar type of colony could be obtained when adult liver cell clusters were placed into 

culture (45). Suzuki et al. sorted progenitor populations from fetal mice and rat livers with a 

phenotype of c-met+, CD49f+, CD117-, CD45-, and TER119- (46-50). Sorted cells developed 

into albumin and glycogen positive cells when transplanted into retrorsine-treated adult rats 

that had undergone two-third partial hepatectomy. Cells negative for c-met or positive for 

CD45 could not repopulate recipient livers. These progenitors could be also cultured 

clonally. Feng et al. (51) demonstrated that these cells could also undergo pancreatic 

differentiation in culture as well as in vivo when transplanted into alloxan-induced diabetic 
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mice. Similarly, Nierhoff et al. (35) demonstrated that fetal mouse liver epithelial cells 

positive for AFP or E-cadherin did not express hematopoietic stem cell markers CD34, 

CD117, Ter119, or CD45, but were positive for progenitor markers Sca-1 and Pan-

cytokeratin. Both E-cadherin positive sorted as well as unsorted fetal liver cell fractions from 

wild type mice gave rise to liver parenchyma when transplanted into retrorsine treated 

DPPIV-/- mice.  

As described for human hepatoblasts above, mouse fetal liver hepatoblasts have been 

shown to express the surface marker Dlk-1 (35-37). Dlk-1 positive sorted mouse fetal liver 

cells can be cultured long-term and, when transplanted into the spleen, give rise to 

hepatocytes in the liver. Dabeva et al. (52) described the re-population potential of wild type 

fetal rat liver cells when transplanted into DPPIV-/- rat models. These models included 

knockouts that had undergone two-third partial hepatectomy and were either treated with 

retrorsine or not. In rats treated with retrorsine, which blocked proliferation of endogenous 

hepatocytes, mainly bipotential, transplanted progenitors were observed expressing AFP, 

albumin, and CK19. In non-treated rats, transplanted cells expressed mainly either 

hepatocytic or biliary markers. 

The positive expression of aldehyde dehydrogenase (ALDH) has been used as a feature to 

select progenitors from adult mouse liver (53). ALDH+ cells were shown to have stem cell 

characteristics and to express markers of human hepatic stem cells such as CD326, CK19, 

CD133, and Sox9. 

Various hepatic progenitor cell lines have been developed from normal, genetically 

modified, or toxin treated rodents (54-62). Several of these lines were described as 

bipotential in vitro or when transplanted in vivo.  

5. Oval cells  

Oval cells were first described in rodents, emerging when the liver is exposed to certain 

toxins (for review, see (63)) (64). Termed “oval cells” because of their oval shaped nucleus, 

these small cells have a diameter of less than 10 μm. They are located near the portal triads 

and expand in the livers of animals exposed to oncogenic insults. The term “oval cells” 

frequently refers to liver stem cells or progenitors. However, oval cells can be distinguished 

from normal hepatic progenitors phenotypically and in their growth regulatory 

requirements (65). Several protocols have been shown to lead to the emergence of oval cells: 

administration of 2-acetylamino fluorine or dipin in combination with partial hepatectomy; 

administration of carbon tetrachloride, 3-methyl-diaminobenzidine, galactosamine, furane, 

or 3,5-diethoxycarbonyl-1,4-dihydrocollidine; etluonine addition to a choline-deficient diet; 

or transgenic albumin-urokinase-type plasminogen-activator mice. 

Oval cells were described as positive for several surface and intracellular markers (including 

hematopoietic and mesenchymal markers not found on normal epithelial hepatic stem cells) 

such as CD34 (66), CD117 (67), AFP, CK14, CK19 (68), GGT, OC.2, OV-6, and CD90 (69). 

CD90, however, was subsequently demonstrated to be expressed not by oval cells but by 

myofibroblasts (70). 

Some primary liver tumors are suggested to emerge from oval cells (71).  
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6. Hepatic progenitors found in various mammalian species 

Few data have been published on hepatic progenitors from species other than human or 
rodent. In general, pigs are used as an animal model closely resembling human physiology 
and metabolic functions. This makes the pig model more favorable than the rodent model. 
However, this model is scarcely used due to obvious constraints in keeping animals. Kano et 
al. (72, 73) investigated hepatic progenitors isolated by culture selection from non-
parenchymal liver cell suspensions of six-seven months old pigs. Cell clusters in culture 
were positive for the hepatic markers AFP, albumin, transferrin, CK18, CK7, and c-met, but 
did they not express biliary markers such as gamma-glutamyltransferase, CK19, and CK14, 
although they were positive for oval cell marker OV6. Duct-like structures emerged from 
clusters expressing biliary epithelial markers. Clonal cell growth could be established (74). 
Comparable cells could be obtained (75) by isolating small liver cells from pigs that had 
undergone partial hepatectomy. In addition to the hepatic markers albumin and AFP, these 
cells also expressed biliary marker CK19 and were positive for OV6. In culture, cells were 
positive for stem-cell factor, CD117, CD90, AFP, CK19, and OV6. Fetal porcine liver cells 
were used to establish colonies of pluripotent progenitors (76, 77). 

7. Extra-hepatic sources of potential liver progenitors 

Several extra-hepatic sources have been described to harbor progenitors able to differentiate 
into hepatic lineages in vitro and in vivo. It is widely debated whether cells of extra-hepatic 
origin are able to differentiate into hepatic cell types or if they fuse with the recipient’s liver 
cells when transplanted. Tissue sources include bone marrow, adipose tissue, umbilical 
cord, and peripheral blood. Hepatic differentiation potentials of embryonic stem cells (ESC), 
placenta derived stem cells, or induced pluripotent stem cells (iPS cells) are not discussed 
here; further literature can be found in reviews (78-82).  

Bone marrow cells or bone marrow derived hematopoietic stem cells have been suggested to 
be able to trans-differentiate into hepatic lineages. Petersen et al. performed initial 
experiments with cross-strain and cross-sex bone marrow and liver transplantations in rats 
(83). When male bone marrow was transplanted into female recipients and liver damage 
was induced, Y-chromosome positive cells could be detected in the female livers. Also, 
when male dipeptidyl peptidase (DPPIV) positive bone marrow was transplanted into 
female DPPIV negative recipients and liver damage was induced, DPPIV positive cells 
could be detected in the female livers. A further approach included transplantations of 
major histocompatibility complex class II L21-6 isozyme negative whole livers into positive 
enzyme expressing rats; after induction of liver damage, positive enzyme expressing cells 
could be detected. Alison et al. (84) investigated human female livers from patients who had 
received male bone marrow transplants. Y-chromosome positive cells that co-expressed CK8 
were detected in the female livers. About 0.5 – 2% of all livers cells were Y-chromosome 
positive. Theise et al. described further in vivo experiments on the possible contribution of 
bone marrow cells towards hepatic lineages in mice (85) and humans (86). Whole bone 
marrow cells or CD34+lin- sorted cells from male mice were transplanted into female 
recipients; up to 2.2% (bone marrow) or about 0.7% (CD34+lin-) Y-chromosome positive cells 
could be detected within the female livers. In human patients who had undergone cross-sex 
bone marrow transplantation, Y-chromosome positive cells could be observed in female 
livers. 4 – 43% of cholangiocytes and 4 – 38% of hepatocytes were positive for Y-
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chromosome. Lagasse et al. (87) intravenously injected adult wild type bone marrow cells in 
FAH–/– mice, an animal model of tyrosinemia type I. The mice were rescued and 
biochemical functions were regained. Only purified hematopoietic stem cells gave rise to 
donor-derived hematopoietic and hepatic regeneration from total bone marrow cells. 
However, subsequently published studies revealed that the majority of those liver cells, 
which were assumed to be donor derived differentiated bone marrow cells, are instead 
rather the product of donor cells fusing with host liver cells (88, 89). Other studies 
demonstrated bone marrow cells contributed nothing or very little to liver lineages in vivo 
(90-92). Jang et al. (93) and Harris et al. (94) could show, however, that a minor percentage 
(up to 0.1%) of bone marrow cells can contribute to liver cells in vivo without fusion. Most 
evidence to date indicates that only a minority of the observed trans-differentiation events is 
actually due to differentiation of bone marrow cells into liver lineages and the majority of 
observed trans-differentiated cells are indeed fusion events. 

Similar to the findings of the above described in vivo studies, in vitro studies of the hepatic 
differentiation potential of hematopoietic stem cells produced contradicting findings (95-99). 
Overall, results from in vitro studies suggest that bone marrow hematopoietic stem cells can 
differentiate only barely, if at all, into hepatic lineages. 

Mesenchymal stem cells (MSCs), which have similar characteristics, have been isolated from 
various tissue sources; MSCs from sources such as bone marrow (100-105), skin (106), 
umbilical cord  (107, 108) and adipose tissues (109-115) have been analyzed for the potential 
to differentiate towards hepatic lineages in vitro and in vivo. MSC markers from various 
tissues show similar surface marker expression profiles, described first as classical MSC 
markers by Pittenger et al (116), which were CD29, CD44, CD71, CD90, CD106, CD120a, and 
CD124. Culture selected clonal bone marrow derived MSCs expressed mesenchymal cell-
specific markers (e.g. CD13, CD29, CD44, and CD90), and were negative for hematopoietic 
markers such as CD3, CD14, CD34, and CD45 (100). When transplanted in SCID mice, non-
fused human cells could be detected in the liver. Adipose tissue derived stem cells were 
described to differentiate into hepatic lineages (109-115). Adipose tissue derived MSCs were 
characterized to potentially express CD9, CD13, CD29, CD44, CD49d, CD54, CD73, CD90, 
CD105, CD146, CD166, osteopontin and osteonectin, and to be negative for hematopoietic 
and endothelial markers such as CD45, CD34 and CD31. Marker expressions and hepatic 
potential are further summarized in current reviews (117, 118). In general, most in vivo 
transplantation studies using MSCs did not exclude donor cell fusion with host cells. Only 
one study (Aurich et al. (112)) demonstrated the integration of non-fused human adipose 
MSCs in the livers of mice that had undergone combined toxin induced liver damage and 
hepatectomy.  

Lee et al. (119) transplanted green fluorescent protein mouse gallbladder epithelial cells into 
non-fluorescent SCID mice that had undergone retrorsine treatment and either partial 
hepatectomy before transplantation or carbon tetrachloride treatment following 
transplantation. Within one to four months after transplantation, green fluorescent protein 
positive cells could be detected within the recipient mice. These cells expressed mostly 
biliary markers, but cells positive for hepatic markers could be detected as well. 

Zhao et al. isolated hematopoietic stem cells from peripheral blood (120) and demonstrated 
their in vitro multilineage differentiation potential; treatment of cultures with HGF induced 
cells to acquire a round or oval-like flattened morphology. Most of the cells were positive 
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for intracellular albumin and AFP expression; some cells demonstrated CK7 expression. Sun 
et al. (121) showed that human umbilical blood cells integrated into livers of rat chimeras,  
and these cells were positive for human hematopoietic, biliary, and hepatic proteins. Crema 
et al. isolated CD133+ cord blood cells (122). Transplantation into liver-damaged SCID mice 
resulted in clusters of human-derived cells expressing human leucocyte antigen-class I, 
HepPar1, and OV6 antigens. Within these clusters, human albumin, AFP, and CK19 could 
be detected. Human umbilical blood cells demonstrated in vitro hepatocyte-like 
differentiation and expression of hepatic proteins when transplanted in rodents with 
induced liver damage (107, 123, 124).  

Conclusively, it appears that extra-hepatic progenitors integrate into the liver only to a very 
minor percentage and only when severe liver damage is induced. The majority of these 
events appear to be due to fusion and not differentiation. The observed improvements of 
liver functions by mesenchymal cells could be attributed to their secretion of growth factors 
and cytokines and immunosuppressive properties (111, 125-127). 

8. Conclusion 

Although there is still some debate about the detailed characteristics that identify hepatic 
progenitors, much progress has been achieved during recent years in defining, isolating, 
characterizing, and transplanting various types of progenitors. This is especially the case for 
hepatic progenitors isolated from human livers. Hepatic progenitors represent a population 
with potential advantages over total liver cell suspensions or hepatocytes for cell 
transplantation in patients (29, 128), for review see (129). Because of their high proliferation 
and differentiation potential a major advantage for transplantation of stem cells over total 
liver cell suspensions would be the requirement for less cell numbers to inject, which would 
decrease the risks associated with transplanting high cell numbers. In addition, because of 
their proliferation and differentiation potential, progenitors could be used in applications 
such as extracorporeal liver support systems (130, 131), and may be used as an alternative 
cell source in pharmacological screening models. Cultures of progenitors also provide an 
easy in vitro tool to study principles of developmental biology. 
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