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1. Introduction 

A major distinguishing feature of the vertebrate nervous system is the formation of myelin 
sheaths. The myelin sheath has two main functions. First, it electrically insulates the axon 
thereby enabling saltatory conduction and highly increasing conduction velocity. This also 
strongly reduces energy consumption since restoration of ion gradients occurs only at the 
nodes of Ranvier (i.e. at less than 1 % of the axonal surface). Second, the myelin sheath is 
important for trophic support and protection of the axon (Nave, 2010).  

Oligodendrocytes (OLG) are the myelinating cells of the central nervous system (CNS). In 
contrast to Schwann cells, the myelinating cells of the peripheral nervous system (PNS), 
OLG form multiple extensions. Each of these extensions forms a myelin sheath after 
contacting an axon. Due to the synthesis and maintenance of multiple myelin sheaths OLG 
are highly metabolic active and thus produce large amounts of reactive oxygen species. 
Moreover, they contain a large amount of iron, which can cause free radical formation. 
Accordingly, OLG are highly vulnerable to lipid peroxidation and DNA damage due to 
oxidative stress. It is therefore not surprising that OLG cell death as well as myelin 
degradation (demyelination) are features of many acute and chronic diseases of the CNS, 
e.g. trauma, ischemia, spinal cord injury, Alzheimer’s Disease and even schizophrenia 
(McTigue & Tripathi, 2008; Bradl & Lassmann, 2010). Ultimately demyelination results in 
axonal degeneration and decline of neuronal functions.  

Demyelination or dysmyelination (impaired myelin synthesis) are the defining feature of 
CNS white matter diseases (leukodystrophies). Primary and secondary leukodystrophies 
can be distinguished. Whereas in primary leukodystrophies, myelin and OLG are directly 
affected, in secondary leukodystrophies the function of other cells, e.g. astrocytes, is 
perturbed resulting indirectly in OLG cell death and demyelination. Examples for primary 
leukodystrophies are Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2 
(SPG2), which are characterized by dysmyelination in the CNS (Inoue, 2005), as well as 
globoid cell leukodystrophy (Krabbe’s disease) and metachromatic leukodystrophy. These 
diseases are caused by impaired degradation of the major myelin lipids galactosylceramide 
(GalCer) and sulfatide, respectively, and are characterized by progressive demyelination 
and mental retardation (Wenger et al., 2000; Gieselmann, 2003). The best example for an 
inherited secondary leukodystrophy is Alexander disease, which is caused by mutation of 
the astrocytic intermediate filament protein GFAP (Johnson, 2004). 
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The most common demyelinating diseases are multiple sclerosis (MS) and neuromyelitis 
optica (NMO), which are both characterized by an autoimmune attack of the immune 
system on the CNS. Whereas it is generally accepted that, in MS, OLG are the primary target 
of the immune attack, it has been recently discovered that aquaporin 4, localized in 
astrocytes, is the primary target in NMO (Roemer et al., 2007; Parratt & Prineas, 2010). The 
resulting dysfunction and death of astrocytes then causes demyelination and OLG death.  

After demyelination the function of the affected area is restored by remyelination, the 
intrinsic repair mechanism after demyelination. Remyelination of demyelinated axons in the 
CNS occurs when OLG progenitor cells (OPC) proliferate, migrate to the site of damage, 
locally differentiate into mature OLG and finally produce new myelin sheaths that are 
wrapped around the naked axon (C. Zhao et al., 2005). Therefore remyelination largely 
resembles the developmental myelination process and accordingly knowledge of all steps 
relevant for developmental OLG differentiation and myelination is essential for potential 
therapies based on tissue regeneration (Franklin & ffrench-Constant, 2008).  

Here I will review main aspects of myelin formation in the CNS starting with the synthesis 
and transport of myelin components and the morphological differentiation of OLG, which 
culminates in the formation of multiple myelin sheaths. I will then discuss intrinsic and 
extrinsic factors that regulate OLG differentiation. Finally, I will address specific aspects of 
remyelination and will draw attention to differences between developmental myelination 
and remyelination, e.g. due to changes in the CNS microenvironment.  

2. Differentiation of oligodendrocytes 

Most aspects of OLG biology have been studied in rodents and in rodent-derived cells. 

These studies have revealed that the differentiation of OLG is a highly regulated process, in 

which several stages can be distinguished. During embryonal development neural stem cells 

in the ventral ventricular zone of the CNS (and later also in more dorsal areas) develop into 

OPC. These cells are characterized by the expression of the ganglioside A2B5, the 

chondroitin sulfate proteoglycan NG2 and the platelet-derived growth factor receptor ┙ 

(PDGFR┙; Nishiyama et al., 1999). OPC proliferate and migrate throughout the CNS to their 

final destination. Around birth the OPC start to differentiate and extend multiple processes. 

Those branches that do not find an axon retract and OPC that cannot make axonal contact 

undergo apoptotic cell death. When a process makes contact with an axon, the cell 

synthesizes myelin components and vast amounts of membrane, which is wrapped several 

times around the axon. After extrusion of the cytoplasm the formation of the compact 

myelin sheath is completed (Baumann & Pham-Dinh, 2001; Bradl & Lassmann, 2009). These 

stages are characterized by the sequential expression of cellular marker molecules. 

Concomitantly, OPC-specific marker molecules are lost (see Fig. 1).  

2.1 Myelin structure and composition 

The myelin sheath is not homogeneous. The compact myelin, which is important for the 
electrical insulation of the axon, can be distinguished from several regions of non-compact 
myelin (Sherman & Brophy, 2005). These include the adaxonal and abaxonal plasma 
membranes, which face the axon and the extracellular matrix (ECM), respectively, the radial 
component, important for energy and metabolite transport within the myelin sheath, and 
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the paranodal loops. These are the main contact sites between myelin and axon and are 
especially relevant for the functionality as well as structural integrity of the nodes of Ranvier 
(Tait et al. 2000).   

 

Fig. 1. Schematic representation of OLG developmental stages. Indicated are stages of OLG 
differentiation ultimately resulting in myelin sheath formation (black) as well as proteins 
and lipids specific for these developmental stages (adapted from Maier et al., 2005). 

To fulfil its function of electrical insulation, the myelin sheath is highly enriched in lipids, 
which comprise approx. 70 % of its dry weight. The most abundant myelin lipids are 
cholesterol and the glycosphingolipids GalCer and its sulfated form sulfatide. Cholesterol 
is essential for myelin formation (Saher et al. 2005) while GalCer and sulfatide are 
important for the correct formation of the paranodal loops (Dupree et al., 1998; Marcus et 
al. 2006). The major myelin proteins are proteolipid protein (PLP), its derivative DM20 
and myelin basic protein (MBP), which comprise together approx. 80 % of the total myelin 
proteins (Brunner et al. 1989: Griffiths et al., 1998). PLP/DM20 and MBP are localized in 
the compact internodal myelin and are required for the compaction of the myelin sheath. 
Important non-compact myelin proteins are, e.g., 2’3’-cyclic nucleotide 3’-
phosphodiesterase (CNP), localized throughout the non-compact myelin, myelin-
associated glycoprotein (MAG) in the adaxonal membrane, myelin/oligodendrocyte 
glycoprotein (MOG) in the abaxonal membrane and the 155 kDa isoform of neurofascin 
(NF155) in the paranodal loops (Brunner et al., 1989; Schachner & Bartsch, 2000; Tait et al., 
2000). For a comprehensive description of myelin composition see, e.g., Baumann & 
Pham-Dinh, 2001; Aggarwal et al., 2011. 

2.2 Synthesis and transport of myelin components 

Each OLG myelinates all contacted axons simultaneously and completes the initial 
wrapping of axons within 12 to 18 hours (Watkins et al., 2008). To achieve this task OLG 
have to synthesize tremendous amounts of myelin in a very short time (Pfeiffer et al., 1993). 
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Accordingly, synthesis and transport of myelin components must be highly coordinated in 
time and space. Moreover, since the composition of the myelin membrane and the 
membrane of the OLG soma differ significantly, myelin components must be sorted prior to 
their transport to the myelin sheath. Three main steps required for this polarized transport 
can be distinguished: i) the sorting of proteins and lipids destined for the different plasma 
membrane domains, ii) the directed transport towards the different plasma membrane 
domains along the cytoskeleton and finally iii) the specific targeting to and incorporation 
into the correct membrane domain. Since these aspects are relevant for the understanding of 
OLG differentiation, here I will discuss briefly some features of the synthesis and transport 
of myelin proteins and consequences of incorrect protein synthesis and/or transport, 
focussing on the major proteins PLP and MBP. Due to space limitations I will not address 
the directed transport and targeting to the myelin sheath (see, e.g., Krämer et al., 2001, 
Anitei & Pfeiffer, 2006; Maier et al., 2008)  

The exact routes by which transmembrane proteins are transported to the myelin sheath are 

not well understood and distinct transport pathways towards the myelin sheath have been 

discussed (Krämer et al., 2001; Anitei & Pfeiffer, 2006; Maier et al., 2008). In general, 

transmembrane proteins, such as PLP, are synthesized at the endoplasmic reticulum and 

transported via the Golgi apparatus to the plasma membrane. For PLP there is good 

evidence that the newly synthesized protein is first transported to the plasma membrane of 

the cell soma. From there it is internalized and stored in late endosomes before it is finally 

transported by a transcytotic pathway to the myelin sheath (Trajkovic et al., 2006; Feldmann 

et al., 2011). Surprisingly, although PLP deletion results in neuronal degeneration, it has 

only minor effects on myelin formation (Garbern et al. 2002). In contrast, overexpression of 

PLP causes its accumulation in late endosomes and/or lysosomes together with cholesterol 

and results in missorting of several membrane markers indicating that major trafficking 

pathways are affected thereby ultimately interfering with myelination and OLG viability 

(Simons et al., 2002). Indeed, most cases of PMD are caused by PLP gene duplication 

resulting in a massive overexpression of PLP demonstrating the relevance of these findings 

for human disease. In addition, missense mutations in PLP can result in PMD or SPG2 due 

to the accumulation of PLP in the ER resulting in an unfolded protein response and finally 

in OLG cell death (Krämer-Albers et al., 2006).  

MBP is a multi-functional protein and several isoforms of MBP have been described (Boggs, 

2006). In contrast to PLP, MBP is a cytoplasmic protein and is therefore synthesized at free 

ribosomes in the cytoplasm. Myelin-specific MBP isoforms mediate myelin compaction by 

interconnecting the cytoplasmic leaflets of the myelin membrane. Accordingly, MBP must 

have strong adhesive properties. To preclude these adhesive properties taking effect in the 

cell soma, the MBP messenger RNA (mRNA) is transported into the OLG processes where 

the protein is synthesized and directly associates with the myelin membrane. To prevent 

premature MBP protein synthesis the MBP mRNA is incorporated into granules which are 

transported along microtubules into the OLG branches (Barbarese et al., 1995). This 

incorporation is mediated by the mRNA binding factor hnRNP A2, which is highly 

expressed during OLG differentiation (Maggipinto et al., 2004). The importance of correct 

MBP expression for myelination is demonstrated by the finding that MBP absence causes 

dysmyelination. This is exemplified by the severe reduction of compact myelin in the so 

called shiverer mouse due to partial MBP deletion (Roach at al., 1985). 
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2.3 Morphological differentiation: role of the cytoskeleton 

An intact cytoskeleton is essential for all aspects of OLG biology. Both actin filaments and 
microtubules are essential for the coordinated transport of myelin components to the myelin 
sheath and the actin cytoskeleton is important for OPC migration. Of particular interest is 
the role of the cytoskeleton during the morphological differentiation of the OLG. 

Each of the multiple branches of the OLG forms a myelin sheath upon axonal contact. One 
OLG can thus myelinate up to 40 different axons (Pfeiffer et al., 1993). Outgrowth of cellular 
processes is therefore a fundamental property of OLG and both microtubules and actin 
filaments are essential to coordinate the morphological changes accompanied with OLG 
differentiation (Richter-Landsberg, 2008; Bauer et al., 2009). In general, microtubules are 
especially important for process outgrowth and stabilization whereas actin filaments are 
more important for the formation of the lamellipodium that initiates the formation of the 
myelin sheath. 

Both depolymerization and stabilization of microtubules perturb the formation of myelin-
like membrane sheets in vitro indicating that microtubule turnover is required for correct 
myelination (Benjamins & Nedelkoska, 1994). Nevertheless, a stable microtubular 
cytoskeleton is required to promote outgrowth and maintenance of cellular processes 
during OLG differentiation. Indeed, acetylated tubulin, indicative for stable microtubules is 
present in OLG branches. Moreover, microtubules can be stabilized by associated proteins 
such as MAP2c and tau (Richter-Landsberg & Gorath, 1999). Tau, in particular, has been 
implicated in stabilization of microtubules in OLG branches. Whereas OPC express tau 
isoforms with three microtubule binding domains, differentiating OLG predominantly 
express tau isoforms containing four microtubule binding domains, which may promote 
microtubule stability. Moreover, phosphorylation of tau is decreased during OLG 
differentiation, thereby promoting interaction of tau with microtubules and microtubule 
stabilization (Richter-Landsberg, 2008). In addition to stabilizing proteins, microtubules are 
modulated by proteins that promote their disassembly. One prominent protein that 
mediates microtubule disassembly is stathmin. Accordingly, stathmin expression is 
downregulated during OLG differentiation (Liu et al., 2003). 

Similar to microtubules actin filaments are important for outgrowth and stabilization of 

OLG extensions. The actin cytoskeleton has been especially implicated in the formation of 

the lamellipodium, which initiates the enwrapment of the axon. Important regulators of 

actin cytoskeleton dynamics are proteins of the Rho family of GTPases (Ridley, 2006). 

Indeed, several members of this family, namely RhoA, Rac and Cdc42 have been implicated 

in OLG process outgrowth and myelination (Liang et al., 2004, Thurnherr et al., 2007, 

Rajasekharan et al., 2009). Activation of both Rac and Cdc42 promotes myelination, whereas 

activation of RhoA inhibits OLG differentiation. An important downstream effector of Rho 

GTPases that has been implicated in OLG process outgrowth and myelination is the 

neuronal Wiskott Aldrich Syndrome Protein (nWASP) (Bacon et al. 2007). Activation of 

nWASP, e.g. by Cdc42, can activate the Arp2/3 complex, which acts as a nucleating factor 

for actin filament polymerization thereby promoting the formation of the actin network 

required for lamellipodium formation (Ridley, 2006).      

Not surprisingly, several myelin components are interacting with the cytoskeleton thereby 
facilitating the coordination of the myelination process. Of particular relevance are the 
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cytoplasmic myelin proteins CNP and MBP (Dyer & Benjamins, 1989). CNP can interact 
with both actin filaments and microtubules and acts as a microtubule assembly protein (De 
Angelis et al., 1996; Lee et al., 2005). Consequently, CNP is essential for OLG arborization 
and membrane expansion during myelination. Although cytoplasmic, CNP is anchored to 
the plasma membrane by isoprenylation and inhibition of CNP isoprenylation perturbs 
arborization and OLG differentiation (Lee et al., 2005; Smolders et al., 2010). Similar to CNP, 
MBP can interact with both actin filaments and microtubules and is important for 
cytoskeleton integrity in OLG. Dephosphorylated MBP, which is predominantly localized in 
myelin, stabilizes microtubules and enhances microtubule polymerization (Galiano et al., 
2006). Moreover, dephosphorylated MBP can act as membrane anchoring protein for actin 
filaments (Boggs, 2006). 

3. Regulation of oligodendrocyte differentiation 

OLG differentiation is a highly regulated multistep process. Here I will discuss intrinsic and 
extrinsic factors that regulate OLG differentiation and myelination. Although the 
understanding of the interplay between the intrinsic and extrinsic factors that orchestrate 
OLG myelination is far from complete, I will also address how these factors can initiate and 
modulate signaling pathways implicated in OLG differentiation. 

3.1 Intrinsic factors 

In culture, OPC synthesize myelin components and form myelin-like membrane sheets in 
absence of CNS-derived factors suggesting that differentiation into mature OLG is an 
intrinsic property of these cells. Differentiation is predominantly regulated on the level of 
gene transcription and protein translation and much progress has been made in the 
characterization of these intrinsic factors for OLG differentiation. However, it is still far from 
understood how the function of these intrinsic factors is coordinated to mediate OLG 
differentiation.  

On the level of gene transcription promoting and repressing transcription factors of OLG 

differentiation have been identified. Transcription factors that promote differentiation of 

OPC into mature OLG are, e.g., Olig1, Olig2 and Nkx2.2 and Sox10 (Liu & Casaccia, 2010; 

Miron et al., 2011). Especially relevant for the initiation of OLG differentiation is the 

concomitant expression of Olig2 and Nkx2.2 (Zhou et al., 2001). Most transcription factors 

that promote differentiation are, however, expressed in all stages of OLG development 

indicating that their presence is not sufficient to induce OLG differentiation. Indeed, several 

transcription factors that are expressed in OPC, such as Hes5, Id2, Id4, Sox5 and Sox6, 

strongly inhibit OLG differentiation (Liu & Casaccia, 2010; Miron et al., 2011). Blocking the 

expression of these inhibitory factors is essential to promote OLG differentiation and there is 

increasing evidence that this is achieved by epigenetic mechanisms.  

In principle, epigenetic inhibition of gene expression can be achieved by two major 
mechanisms: i) repression of transcription by DNA or histone modification and ii) 
inhibition of protein translation by microRNAs (miRNAs). Both mechanisms are 
operational during OLG differentiation. The predominant modification of histones 
relevant for OLG differentiation is deacetylation, which inhibits gene transcription. 
Indeed, activity of histone deacetylases is essential for OPC generation and their 
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development into mature OLG. Histone deacetylases can, e.g., bind to the promoter 
region of OLG differentiation repressors such as Hes5 and Id4 thereby preventing their 
expression and thus promoting OLG differentiation (Liu & Cassacia, 2010; Copray et al., 
2011). In addition, expression of other proteins can be regulated by histone deacetylation. 
Thus, the expression of stathmin is repressed by this mechanism during OLG 
differentiation (Liu et al., 2003) thereby promoting microtubule polymerization and 
stabilization of the outgrowing OLG branches.  

MiRNAs are small non-coding RNAs of approximately 23 nucleotides that are processed 
from larger precursor RNAs by the RNaseIII enzymes Dicer and Drosha. By binding to the 
3’ untranslated region of mRNAs one miRNA can inhibit the translation of multiple mRNAs 
(Bartel, 2004). Expression of Dicer increases during OLG differentiation and conditional 
knockout of Dicer in OLG results in dys- or demyelination depending on the stage of Dicer 
repression (Dugas et al., 2010; X. Zhao et al., 2010).  In these studies miR219 and miR338 
have been identified as important regulators of OLG differentiation. Both miR219 and 
miR338 can directly suppress the inhibiting transcription factors Sox6 and Hes5 thereby 
promoting OLG differentiation (Dugas et al., 2010; X. Zhao et al., 2010). An additional target 
of miR219 is the PDGFR┙, (Dugas et al., 2010), which, although important for OPC 
proliferation and migration, inhibits OLG differentiation (see next section).    

3.2 Extrinsic factors  

Although in vitro OLG can form myelin-like membranes in the absence of axons, there is 
ample evidence that in vivo myelination is coordinated by the presence of axons. 
However, in contrast to the PNS, where axonal expression of neuregulin-1 type III 
determines the myelination by Schwann cells (Taveggia et al., 2005), no master regulator 
for myelination in the CNS has been identified. It is more likely that several factors act 
together to initiate and promote myelination in the CNS. In general, signals modulating 
OLG differentiation can be divided into two classes: long-range signals such as growth 
factors and short-range signals such as ECM and cell adhesion molecules (see Table 1 for 
important factors regulating OLG behavior). Since the differentiation into a myelinating 
phenotype is an intrinsic property of OLG while myelination of the axon has to be tightly 
controlled, it is perhaps not surprising that many axonal factors inhibit OLG 
differentiation. Here I will address some of the exogenous factors that modulate 
myelination and subsequently discuss how these signals may be integrated to result in the 
induction and modulation of myelin formation.      

3.2.1 Modulation of oligodendrocyte differentiation by neurons 

During embryonic development neurons prevent premature differentiation of OPC. For this 
purpose they express inhibitory proteins at the axonal surface, e.g. the polysialylated form 
of the neural cell adhesion molecule (PSA-NCAM), which is a general inhibitor of cell 
adhesion (Charles et al., 2000). In addition, neurons express molecules that can directly 
inhibit OLG differentiation. Examples are Jagged and the Leucine-rich repeats and Ig 
domain-containing, neurite outgrowth inhibitor (Nogo) receptor-interacting protein-1 
(LINGO-1). Jagged is the axonal ligand of the Notch receptor in the OLG membrane and 
activation of the Notch signaling pathway interferes with OLG development (S. Wang et al., 
1998). LINGO-1 is part of the Nogo-66 receptor complex in the axonal membrane and 
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interaction of this receptor complex with OLG proteins such as Nogo-A and MAG can 
inhibit axonal growth. Conversely, inactivation of LINGO-1 promotes myelination 
suggesting that LINGO-1 is a key inhibitor of OLG differentiation (Mi et al., 2005). Since 
LINGO-1 is also expressed by OLG, homophilic LINGO-1 interactions may also interfere 
with OLG development.  

An important factor for the induction of OLG differentiation is the electrical activity of 
neurons (Demerens et al., 1996) most likely by the release of adenosine which may activate 
purinergic receptors at the OLG surface (Stevens et al., 2002). Very recently it has been 
shown that also the neurotransmitter glutamate, released at the synapse upon action 
potentials, can promote OLG differentiation (Wake et al., 2011).  

It is likely that in vivo the direct contact of an OLG extension with the axon is important to 
initiate OLG myelination. The best candidate for an axonal molecule required to induce 
myelination is the ECM molecule laminin-2, since laminin-2 deficiency causes myelination 
defects in mice and humans (Chun et al., 2003; Colognato et al., 2005). In addition, 
neuregulin-1 promotes OLG differentiation (Z. Wang et al., 2007). Other molecules that 
may be involved in the interaction between OLG and axon and thus promote OLG 
maturation are gangliosides, which can bind to MAG at the OLG cell surface (Yang et al., 
1996).  

3.2.2 Modulation of oligodendrocyte differentiation by astrocytes 

The intimate relationship of OLG with astrocytes is demonstrated by the formation of gap 

junctions between these cell types (Orthmann-Murphy et al., 2008). In addition to the direct 

exchange of molecules via these cell-cell interaction sites, astrocytes modulate OLG function 

by the release of growth factors and by the deposition of ECM molecules.  

Astrocytes are the primary source of growth factors in the CNS (Moore et al., 2011). 
Among these are, e.g., PDGF-AA and fibroblast growth factor-2 (FGF-2), which mediate 
proliferation and migration of OPC (Milner et al., 1997; Baron et al., 2000). PDGF-AA is 
also important for OLG survival in presence of laminin-2 (Baron et al., 2003). However, 
both PDGF-AA and FGF-2 inhibit OLG differentiation at least in vitro (Noble et al., 1988; 
Bansal & Pfeiffer, 1994). Moreover, astrocytes inhibit OLG maturation during CNS 
development by secretion of bone morphogenetic proteins (BMP), which are strong 
suppressors of OLG differentiation (See et al., 2004). Besides these inhibitory factors, 
however, several factors secreted by astrocytes promote OLG differentiation and 
myelination. Prominent examples are insulin-like growth factor-1 (IGF-1), leukemia 
inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) (McMorris et al., 1986; 
Stankoff et al., 2002). Interestingly, electrical activity of axons causes the release of LIF 
from astrocytes (Ishibashi et al., 2005), providing a link between neuronal and astrocytic 
modulation of myelination. Moreover, astrocytes affect OLG function by synthesizing 
ECM-molecules, such as fibronectin and tenascin C (Price & Hines, 1985; Götz et al., 1997). 
Fibronectin promotes proliferation and migration of OPC (Milner et al., 1996; Baron et al., 
2002), which is important during embryonal development. However, fibronectin impairs 
morphological differentiation of OLG in vitro (Buttery & ffrench-Constant, 1999; Maier et 
al., 2005). Similarly, tenascin C inhibits process outgrowth and myelin membrane 
formation of OLG (Czopka et al., 2009).   
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Factor 
Predominant 
source 

Effect on OLG 

Soluble Factors   

Adenosine  neurons  promotes differentiation 

Glutamate  neurons promotes differentiation 

PDGF-AA astrocytes 
promotes migration and proliferation; inhibits 
differentiation 

FGF-2 astrocytes 
promotes migration and proliferation; inhibits 
differentiation   

IGF-1 astrocytes promotes differentiation 

CNTF astrocytes promotes differentiation 

LIF astrocytes promotes differentiation 

BMP astrocytes inhibits differentiation 

   
Membrane 
proteins 

  

LINGO-1 neurons inhibits differentiation 

Jagged neurons inhibits differentiation 

PSA-NCAM neurons inhibits interaction with axon 

Neuregulin-1 neurons promotes myelination 

   

ECM molecules   

Laminin-2 neurons promotes differentiation 

Fibronectin astrocytes 
promotes migration and proliferation; inhibits 
differentiation 

Tenascin C astrocytes inhibits migration and differentiation 

   

Other factors   

Electrical 
activity 

neurons promotes differentiation 

Table 1. Neuronal and astrocytic factors that regulate OLG behaviour and differentiation 

3.2.3 Modulation of oligodendrocyte signaling pathways by extrinsic factors  

It is obviously essential that the signals supplied by these extrinsic factors are integrated at 

the OLG cell surface, followed by signal transduction into the cell and modulation of 

signaling pathways resulting in OLG differentiation. Here I will focus on two main aspects 

that are important to coordinate signaling pathways in the developing OLG. First, the 

interaction of ECM molecules, in particular laminin-2 and fibronectin, with receptors on the 

OLG cell surface and the modulation of these interactions by growth factors. Second, the 

multiple roles of the Src-family non-receptor tyrosine kinase Fyn in OLG maturation.   

ECM molecules such as laminin-2 and fibronectin interact predominantly with integrin 
receptors in the plasma membrane. Integrins are heterodimeric proteins consisting of one ┙- 
and one ┚-subunit. OLG express a limited number of integrins, namely ┙v┚1-, ┙v┚3-and 
┙v┚5-integrins, which bind to ECM-molecules containing an RGD-motif such as fibronectin 
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and vitronectin, and ┙6┚1-integrin, which can bind to laminin-2. Proliferation and migration 
of OPC, stimulated by PDGF, are mediated by activation of ┙v┚1 and ┙v┚3-integrins, 
implicating RGD-containing ECM-molecules in these processes (Milner et al., 1996; Baron et 
al., 2002). The importance of ┙6┚1 integrin for myelination was indicated by applying 
antagonists of the ┚1-subunit, which inhibit myelination in vitro and in vivo (Buttery and 
ffrench-Constant, 1999; Relvas et al., 2001). However, the OLG-specific knockout of the ┚1-
subunit does not cause demyelination (Benninger et al., 2006) indicating that another 
laminin-2 receptor is present in the OLG membrane. Indeed, dystroglycan has been 
identified as a receptor for laminin-2, which is required for myelination (Colognato et al., 
2007). The ┚1-subunit in OLG is, however, important for cell survival in vivo (Benninger et 
al., 2006). Interestingly, in presence of laminin-2 the PDGFR┙ dissociates from ┙v-containing 
integrins and instead interacts with ┙6┚1-integrin causing a change in signaling from cell 
proliferation to cell survival (Baron et al., 2003). Similarly, laminin-2 causes the interaction of 
the neuregulin receptor erbB2 with ┙6┚1-integrin. This causes a switch in neuregulin 
signaling from cell proliferation towards cell survival and differentiation (Colognato et al., 
2004). These examples show how integrins coordinate short range (ECM-mediated) and 
long range (growth factors, cytokines) signals, which are both required to regulate cell 
behaviour.           

Although it is still far from understood how the signals received at the plasma membrane 

are further processed to promote OLG differentiation, several signaling pathways have 

been identified. For example, binding of laminin-2 to ┙6┚1-integrin promotes OLG 

differentiation and myelination by the activation of integrin-linked kinase (Chun et al., 

2003). Moreover, activated ┙6┚1 integrin  binds to the Src family kinase Fyn and this 

interaction is important for the modulation of the PDGF and neuregulin signaling 

pathways described above and thus for OLG survival and differentiation (Colognato et 

al., 2004). Indeed, Fyn has been identified as a key regulator of OLG differentiation. The 

relevance of Fyn for myelination is exemplified by the finding that the OLG-specific 

knockout of Fyn results in hypomyelination in vivo (Biffiger et al., 2000). Fyn has been 

implicated in various aspects of OLG biology ranging from migration to myelination. 

Importantly, Fyn kinase activity is activated by interaction with cell adhesion molecules 

such as NCAM120 and contactin in the OLG membrane which may interact with axonal 

proteins thereby initiating myelination (Krämer et al, 1999). Moreover, Fyn can act as a 

bridge between integrins or other membrane receptors and the cytoskeleton and, 

depending on the developmental stage of the OLG and the corresponding expression of 

potential interaction partners, Fyn may bind to different proteins thereby explaining its 

diverse roles in OLG differentiation. In OPC, binding of PDGF to its receptor PDGFR┙ 

results in recruitment of Fyn and modulation of the actin cytoskeleton thereby increasing 

OPC migration (Miyamoto et al., 2008). Later in OLG development, integrin signaling via 

Fyn promotes morphological differentiation by activating Rac and Cdc42 and inactivating 

RhoA, again implicating modulation of the actin cytoskeleton in this process (Liang et al., 

2004). Interestingly, LINGO-1 suppresses OLG differentiation and myelination by 

inactivation of Fyn kinase thereby activating RhoA signaling pathways (Mi et al., 2005). 

Besides modulating the actin cytoskeleton, Fyn can also affect the microtubular network 

via binding to tau thereby stabilizing microtubules and thus promoting process 

outgrowth and OLG differentiation (Klein et al., 2002).   
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4. Remyelination 

Remyelination as the natural regenerative mechanism after a demyelinating insult is the 

basis of the functional recovery of the affected neurons (Bruce et al., 2010). Since mature 

OLG are incapable to myelinate nude axons (Crang et al., 1998; Watkins et al., 2008), 

remyelination requires the de novo differentiation of OPC. Importantly, OPC, characterized 

by the expression of NG2 and PDGFR┙, are present throughout the adult CNS (Polito and 

Reynolds, 2006) and remyelination is usually very effective after transient demyelination. 

However, the new myelin sheaths are frequently shorter and thinner than the original 

sheaths thus giving rise to so-called shadow plaques (Franklin and ffrench-Constant, 2008). 

Moreover, in chronic diseases, such as MS, remyelination is often incomplete and ultimately 

fails in most patients resulting in increased neurodegeneration and progressive disease. A 

main goal for the treatment of chronic demyelinating diseases is therefore to increase the 

remyelination of the affected axons and thus at least partially restore axonal function. 

Two main strategies are followed to improve remyelination: promotion of the endogenous 
remyelinating capacity and transplantation of exogenous stem cells or progenitor cells. Cell 
transplantation studies are predominantly performed in animals suffering from 
dysmyelination, such as the shiverer mouse, or by chemically induced demyelination to 
ensure that the observed myelination is due to the transplanted cells. In such studies it has 
been shown that several cell types are able to (re)myelinate CNS axons, such as neural stem 
cells, Schwann cell precursor cells, olfactory ensheathing cells and OPC (J. Yang et al., 2009). 
Of these, fetal OPC, possibly derived from induced stem cells, are probably suited best for 
CNS remyelination (Franklin, 2002; Tepavcevic & Blakemore, 2005). One problem in 
studying the potential of exogenous OPC to differentiate and (re)myelinate axons after 
transplantation is that endogenous OPC inhibit the migration and survival of transplanted 
OPC (O'Leary and Blakemore, 1997). Accordingly, endogenous OPCs have to be eliminated, 
e.g. by X-ray treatment (Hinks et al., 2001), which may cause conditions that differ from 
those in most demyelinating diseases. Several other obstacles in cell transplantation are: i) 
finding a cell source that is abundant enough to repopulate the CNS without causing ethical 
problems, ii) the delivery of the cells to the CNS and iii) their migration through the CNS to 
the demyelinated areas.  

Irrespective of these considerations, the most useful strategy depends predominantly on the 

disease one wants to treat. Thus in primary inherited leukodystrophies, such as PMD, the 

most useful therapy would be the transplantation of allogeneic OPC. In contrast, in MS 

endogenous OPC are present in and around chronic demyelinated lesions indicating that 

the environment that these OPC encounter is not permissive for differentiation (Wolswijk, 

1998). It is therefore unlikely that transplanted cells will be able to sufficiently migrate and 

differentiate under these conditions. Irrespective of the cellular source it is therefore 

essential to modulate the environment resulting in conditions that are permissive for 

remyelination.  

4.1 Inhibitors of remyelination in the diseased CNS 

Although remyelination does occur in MS and can be very efficient in a subset of MS 
patients even after a long disease course (Patrikios et al., 2006; Patani et al., 2007), 
remyelination eventually fails in most patients. Two obvious potential reasons for 
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remyelination failure are axonal loss or depletion of the endogenous OPC pool. Although 
such a scenario cannot be excluded in some cases, it is unlikely to be the predominant 
reason for remyelination failure since in most lesions axons are still preserved and OPC are 
present in or around the lesion site, often in close proximity of a demyelinated axon. This 
strongly suggests that inhibitory factors are present in the lesion area that impair OLG 
differentiation and remyelination. Indeed, in MS a block of OLG differentiation in chronic 
lesions has been observed (Kuhlmann et al., 2008). This impaired remyelination is 
characterized by the accumulation of OPC that remain in an undifferentiated stage resulting 
in a failure to generate myelinating OLG (Goldschmidt et al., 2009). In general, disease-
dependent and disease-independent factors can be distinguished that may affect 
remyelination and in this section I will summarize several of these factors. 

The demyelinated axons themselves may repress the interaction with OLG branches and 
thus their remyelination by the expression of inhibitory cell adhesion molecules. Nude 
axons in chronic MS-lesions re-express PSA-NCAM, which inhibits OLG differentiation 
during development (Charles et al., 2000, 2002). Similarly, there is good evidence that 
expression of LINGO-1 in the lesion area inhibits efficient remyelination (Mi et al., 2007). 
Moreover, OPC functions may be changed in demyelinating diseases. It has, e.g., been 
shown that stathmin levels are increased in MS patients, which may contribute to reduced 
OLG differentiation and remyelination failure in MS lesions (Liu et al., 2005).  

Several changes in the environment surrounding the recruited OPC may contribute to the 
inhibition of cell differentiation. Most relevant in the context of demyelinating diseases is 
that myelin components strongly inhibit OLG differentiation and (re-)myelination, which is 
at least partially due to inactivation of Fyn kinase activity (Kotter et al., 2006; Baer et al, 
2009). Accordingly, it is essential that the myelin debris that is present in the lesion due to 
the demyelination process is efficiently removed to allow OPC differentiation and thus 
remyelination to proceed. Clearance of myelin debris is mediated predominantly by 
activated microglia, the resident immune cells of the CNS, and macrophages that have 
entered the CNS parenchyma from the periphery (Neumann et al., 2009). However, it 
should be kept in mind that microglia can act as antigen presenting cells after ingestion of 
myelin debris and thus may activate myelin-specific T-cells that have entered the CNS. 
Moreover, reactive microglia can produce proinflammatory cytokines and reactive oxygen 
species. Therefore activated microglia may actually enhance the demyelination process 
(Lassmann & van Horssen, 2011).      

In addition to activation of microglia, demyelination results in the activation of astrocytes. 

Depending on the signals that these astrocytes receive, their activation can be beneficial or 

detrimental for the remyelination process (Williams et al., 2007). Activated astrocytes secrete 

growth factors and ECM molecules, e.g. PDGF-AA, FGF-2 and fibonectin, which promote 

proliferation of OPC and their recruitment to the lesion area. Other factors secreted by 

astrocytes can promote differentiation of these OPC to mature OLG (see section 3.2.2). 

However, some of these astrocyte-derived factors can have opposing effects. The chemokine 

CXCL1, e.g., can stimulate OPC proliferation but also acts as a stop signal for OPC 

migration (Tsai et al., 2002; Filipovic & Zecevic, 2008). Since in MS, astrocytes surrounding 

chronic lesions can secrete CXCL1 they may therefore repress the recruitment of OPC to the 

lesion site (Omari et al., 2006). Moreover, the persistent presence of fibronectin and other 

ECM molecules, e.g. chondroitin sulfates and hyaluronic acid, can impair OLG 
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differentiation and may, together with astrocyte proliferation, result in the formation of a 

glial scar thus impairing the remyelination process (Kotter et al., 2011; Miron et al., 2011). 

This is particularly the case in chronic demyelination when repair mechanisms have failed. 

In this respect, it has been speculated that the formation of a glial scar is the consequence 

rather than the cause of remyelination failure (Franklin & Kotter, 2008). 

The major disease-independent factor that impedes remyelination is age. In general, 
regenerative mechanisms are less efficient in old animals compared to young animals and 
this has also been observed for remyelination. This age-related effect is predominantly due 
to impaired recruitment of the OPC to the lesion area and a delay in their subsequent 
differentiation to myelinating OLG (Sim et al., 2002). There may be several reasons for this 
effect. First, OPC themselves may be less efficient in migration and differentiation. Indeed, 
the response to growth factors differs in adult OPC compared neonatal OPC possibly 
delaying the recruitment of OPC into lesion areas (Lin et al., 2009; Cui et al., 2010). 
Furthermore, histone deacetylates are less active in OPC of adult animals. This can impair 
the repression of inhibitory transcription factors, which is required for OLG differentiation 
(Shen et al., 2008) and thus result in a delay of OLG differentiation. It should, however, be 
mentioned that adult OPC are highly efficient in myelination of nude axons when 
transplanted into the CNS of shiverer mice indicating that the intrinsic myelinating capacity 
of adult OPC is not reduced compared to neonatal OPC provided they are in an 
environment that is permissive for myelination (Windrem et al., 2004). It is therefore more 
likely that age-related changes in the CNS environment result in a delay of OLG 
differentiation. One likely cause for impaired OLG differentiation in demyelinating diseases 
is that adult microglia and macrophages are less efficiently recruited to the lesion area 
resulting in a delayed clearing of myelin debris (Neumann et al., 2009). Accordingly, the 
prolonged presence of myelin in the lesion prevents OLG differentiation and may even close 
the therapeutic window in which remyelination can proceed (Kotter et al., 2011). 

4.2 Initiation and promotion of remyelination 

Although present throughout the CNS, adult OPC do not differentiate spontaneously into 
myelinating OLG implying that they are in a quiescent stage. Accordingly, OPC have to be 
activated by extrinsic factors, which are most likely derived from activated microglia and 
astrocytes, as these cells are highly sensitive to injury-induced environmental changes. 
Similar to developmental myelination, several stages of OPC activation can be distinguished 
during remyelination, starting with OPC proliferation and migration to the lesion site 
followed by cell differentiation (Franklin & ffrench-Constant, 2008).  

Major progress in the elucidation of the requirements for remyelination has been done in 
MS and animal models of MS. In MS, the immune system attacks the OLG resulting in 
demyelination and neurodegeneration and virtually all components of the innate and 
adaptive immune system have been implicated in the demyelination and/or 
neurodegeneration in MS lesions (Gandhi et al., 2009; Kasper & Shoemaker, 2010). 
Interestingly and perhaps paradoxically, there is increasing evidence that inflammation is 
also important for remyelination. First, remyelination is abundant in immunologically active 
MS lesions whereas it is rarely observed in chronic, immunologically less active lesions 
(Goldschmidt et al., 2009). Second, genome studies of remyelination have revealed that pro-
inflammatory cytokines are important for OLG regeneration. Indeed, the pro-inflammatory 
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cytokine tumor necrosis factor (TNF) is important for remyelination after cuprizone-induced 
demyelination (Arnett et al., 2001, 2003). Third, as mentioned above, activated microglia and 
macrophages are required to clear the myelin debris from the lesion area, which is a 
prerequisite for remyelination. Interestingly, clearing of myelin debris by microglia can be 
enhanced by infiltrating myelin-specific T cells (Nielsen et al., 2009). Fourth, T cells and 
microglia can promote OLG proliferation and differentiation by producing neurotrophic 
factors such as brain derived neurotrophic factor (BDNF; Hohlfeld et al. 2006; Neumann et 
al., 2009). Indeed, T cells are required for efficient remyelination (Bieber et al., 2003). 

Although inflammation can promote remyelination and the immune response might 
therefore be beneficial for neuroregeneration in MS, MS is predominantly an 
inflammatory disease (Lassmann & van Horssen, 2011). Maintaining an acute 
inflammatory milieu in order to improve remyelination may therefore be harmful to the 
patient. Nevertheless, immunomodulation may be a promising immediate approach to 
promote remyelination.  Indeed, glatiramer acetate and FTY720 (fingolimod), two 
compounds that are approved for MS therapy, may promote remyelination. Glatiramer 
acetate, a polypeptide resembling MBP, alters the T cell response in MS from a pro-
inflammatory Th1 to an anti-inflammatory Th2 phenotype. Interestingly, these glatiramer 
acetate-specific Th2 cells produce IGF-1 and BDNF and promote oligodendrogenesis and 
myelin repair in chemically induced demyelination (Skihar et al., 2009). The sphingosine-
1-phosphate analogue FTY720 is used predominantly to inhibit the egress of T cells from 
secondary lymphoid organs. In addition, FTY720 can promote OLG differentiation (Miron 
et al., 2010) and as FTY720 can enter the CNS parenchyma it may thus directly promote 
remyelination. 

Another direct approach to promote remyelination might be the injection of adult stem cells. 

Indeed, intracerebal or intraventricular injection of stem cells results in effective myelination 

in various models of demyelination. However, due to the multiple focal lesions in MS a 

systemic application is probably required. It is therefore promising that intravenous 

administration of adult neural and bone-marrow derived stem cells can enhance 

remyelination and ameliorate symptoms in experimental autoimmune encephalomyelitis 

(EAE), the animal model of MS (Pluchino et al., 2003; J. Yang et al., 2009). However, there is 

some evidence that this effect is predominantly due to the immunomodulatory function of 

stem cells (Pluchino et al., 2005) and it is still a matter of debate whether stem cells can 

indeed translocate into the CNS parenchyma and directly myelinate demyelinated axons 

(Franklin and ffrench-Constant, 2008; Franklin & Kotter, 2008). 

Since OPC are present in chronic MS lesions but fail to differentiate the most relevant 
approach to improve remyelination will be to change the environment within the lesion 
from inhibitory to permissive for myelination. This would largely increase the therapeutic 
window in which remyelination can occur and thus would be expected to protect axons 
from further degeneration. Also in this field some promising results have been obtained. 
Of particular interest is the observation that the inhibitory effect of myelin components on 
OLG differentiation due to inactivation of Fyn can be antagonized by pharmacological 
inhibition of the RhoA signaling pathway (Baer et al., 2009). Moreover, suppression of the 
OLG differentiation inhibitor LINGO-1 by a specific antagonist stimulates OLG 
differentiation and promotes remyelination and axonal integrity in EAE (Mi et al., 2007, 
2009).  
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5. Conclusion 

OLG differentiation and myelination are extremely complex and highly regulated processes 
and disturbance of myelination is associated with various CNS diseases. Understanding of 
OLG differentiation is essential to establish neuroprotective therapies that are based on 
remyelination. Of particular relevance to develop such therapies is a profound knowledge of 
the intrinsic and extrinsic factors that coordinate myelination. The role of astrocytes and 
microglia are of special interest in view of their ambiguous role in neurodegenerative 
diseases. Here the challenge will be to minimize their role in neurodegeneration and 
maximize their role in neuroprotection and regeneration. A promising approach may 
therefore be to modulate astrocytes in such a way that the release of pro-myelinating factors 
is increased whereas the release of molecules detrimental for myelination is reduced. 
Concerning microglia it will be important to promote their capacity to efficiently clear the 
myelin debris  in the lesions while at the same time minimizing their harmful effects since 
the presence of myelin debris is arguable the most important inhibitory factor for 
remyelination.  

Much progress has been made to improve remyelination in model systems. Nevertheless 
currently no therapy directly aimed at improving remyelination exists and it is therefore 
now the question how this knowledge can be translated into therapeutic approaches. The 
most effective approach to achieve remyelination therapy will certainly depend on the 
diseases to treat.  The first diseases, in which it is realistic to directly improve remyelination 
with cell-based therapies, will most likely be leukodystrophies, such as PMD. For chronic 
MS it is less likely that cell transplantation is a realistic treatment option. Here the 
promotion of the endogenous remyelination capacity is more promising, which will largely 
depend on the generation of a permissive environment for OLG differentiation. The 
progress that has been made in the last decade makes one cautiously optimistic that 
therapies based on remyelination are becoming a feasible scenario for the treatment of MS-
patients. 
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