
0

Schedulability Analysis of Mode
Changes with Arbitrary Deadlines

Paulo Martins1,2, I. G. Hidalgo2, M. A. Carvalho2, A. de Angelis2, V.
Timóteo2, R. Moraes2, E. Ursini2 and Udo Fritzke Jr3

1Chaminade University
2Universidade Estadual de Campinas (UNICAMP)

3PUC Minas
1USA

2,3Brazil

1. Introduction

Modern real-time systems are required to operate in complex applications and dynamically

adapt to a wide range of changes in the environment. One strategy that allows the

implementation of these systems in complex scenarios is the partitioning of their applications

into modes of operation. Flexibility of operation is achieved by having the system execute in

several modes of operation and undergo transitions between modes in response to external

or internal events. A mode of operation can be seen as a specific configuration of the

computational resources that is optimal for the operational phase that the system executes.

As conditions in the environment change, resource allocations may become inadequate.

Therefore, the system must reconfigure itself through a mode change, reallocating its resources

in an efficient manner. A classic example of modes lies in the area of aviation where most

aircraft undergo at least three basic modes of operation: take-off, level-flight, and landing

modes. Having the system designed with a single mode of operation does not explore the

fact that some operations, and thus resource usage, are mutually exclusive. The allocation of

all these resources, as if they could be needed at the same time, leads to inefficiency. More

importantly, the resulting system is not scalable. The so called "all-modes-in-one" system is

usually feasible for simple systems with limited functionality.

Flexible modal real-time systems must guarantee by means of schedulability analysis that

all tasks complete before their deadlines. Current literature in schedulability analysis for

mode changes requires that all task deadlines are less than or equal to the tasks periods

(Pedro & Burns, 1998; Real & Crespo, 2004). Allowing task deadlines to be less than task

periods is useful for many real-time applications (Tindell et al., 1994). However, in some

real-time applications an instance of a task is allowed to arrive before its previous invocation

has finished. In such case the task can be delayed until its previous invocation terminates.

This chapter extends the current schedulability analysis associated with mode changes in

static priority pre-emptive based scheduling. In particular, it derives analysis that includes

3

www.intechopen.com

2 Real Time System

tasks executing across a mode change with deadlines larger than their period (arbitrary

deadlines).

The rest of this chapter is organized as follows: section 2 elaborates on the concept of

modes. We include a number of current views of modes and provide a working definition. In

section 3 we introduce the computational model and assumptions. In section 4 we address

previous work on modes in real-time systems. The schedulability analysis of mode changes

with arbitrary deadlines is then derived in section 5. Section 6 shows an example of the

applicability analysis. Finally, in section 7 we present our concluding remarks.

2. Definition of modes

The discussion on the concept of modes of operation appears more comprehensively in the

literature of human-computer interaction and human-automation interaction (aviation and

cockpit design). Modes have been commonly associated with the idea of functions, states,

behavior, and schedule, depending on the research field. In real-time systems, since most

work involving modes focus on the schedulability analysis of mode changes, this discussion

has been limited.

The most widespread notion of modes is related to functionality. One example is the work in

safety-critical systems by Papadopoulos (1996): a mode is defined by the "set of active functions

that the system is prepared to deliver while operating in that mode". As modes represent functions,

they may be arranged hierarchically. This is due to the fact that functionality can be refined

down to lower level functions, leading to a hierarchical graph of the functional space. Another

example is given by Norman (1981): "Every control system that can perform a variety of functions

has modes: the more functions, the more modes."

In human-computer interaction and interfacing, modes are seen as special states. Howe (1997)

remarks that "a mode is a general state, usually used with an adjective describing the state". They

are states that are extended over time and with some specific activity being carried out.

Interface modes are defined by Tesler (1981) as "a state of the user interface that lasts for a

period of time. It is not associated with any particular (display) object and has no role other than

to place an interpretation of operator input ". According to Poller & Garter (1984), modes are the

application’s interpretation of the user’s input. Therefore, a mode change occurs whenever

there is a change of the interpretation of the same inputs.

In human-automation interaction (e.g. aviation psychology and cockpit interface design),

modes are described as behavior of a certain component of the system, such as the interface.

In particular, Degani et al. (1999) describe a mode as the manner of behavior of a given system.

A system may have multiple mutually exclusive ways of behaving. Each behavior is defined

by the system’s input, output, and states. A mode change consists of an evolution from one

pattern of behavior to another as a function of time. Transitions between modes are triggered

by events in the environment: the way such systems behave reflects the transformation of the

environment (Degani & Kirlik, 1995).

In the literature of real-time systems modes have been regarded as a collection of tasks, or

schedule (e.g. Real (2000); Tindell, Burns & Wellings (1992)). For Fohler (1994) a schedule is a

set of processes or messages (literally a collection of objects), characterized by its inherent timing

48 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Schedulability Analysis of Mode Changes with Arbitrary Deadlines 3

parameters. These objects may have access to a shared resource according to a pre-defined

policy. A mode change is a change in the task set, by means of replacement, addition or

removal of tasks.

In computer science in general, modes have been described by the executable code or program

(downloaded or memory resident) that is active under execution. Therefore, any change in the

executable code reflects a change in the operational mode. A mode has also been regarded as

the configuration of the system during a particular phase of operation, meaning how different

system resources may be physically or logically arranged. For example, as noted by Degani

et al. (1999): "we define a mode as a machine configuration that corresponds to a unique behavior".

A system may dynamically change its configuration in order to achieve a better performance.

A classic example is load balancing in distributed systems, where reconfiguration is achieved

through process migration.

From the definitions above, we can summarize the idea of a mode of operation as the

system’s behavior while executing a given schedule. The notion of behavior is used to

address modes when dealing with the higher levels of abstraction of a real-time system, such

as the application or the interface design. Function and performance are two fundamental

components of the behavior of a real-time system. A real-time system delivers a function

with a certain performance attribute attached to it. A change either in the functionality or in

the performance of the system characterizes a change in behavior. A change in behavior is

noticed by changing the performance level while keeping the functional set, or likewise by

changing the functional set while keeping the systems’ performance. Taking these remarks

into consideration a mode can be comprehensively defined as follows (Martins & Burns,

2008):

"A mode of a real-time system is defined by the behavior of the system, described by a set of allowable

functions and their performance attributes, and hence by a single schedule, containing a set of processes

and their timing parameters".

Clearly, the definition of a mode depends upon the field of application and the level of

abstraction considered. At the lower levels of abstraction of a real-time system, the notion

of a single schedule is suitable to define a mode, since we are interested in applying

schedulability analysis to guarantee the predictability of the real-time system. Nevertheless,

the idea of schedule very often is a too low-level concept, and therefore devoid of meaning

when addressing the end user application concerns. Therefore, as we are searching for a

comprehensive definition of modes for real-time systems, we also associate our definition of

modes with the idea of behavior. The behavior of the system is bounded to a restricted set of

operations that it is allowed to perform when it executes in a specific mode. It constrains

the actions that the system is not ready to deliver while in that mode. It also constrains

the behavior that the system may exhibit. Unlike states, a mode does not limit its variable

values directly. It may be regarded as the system’s behavior resulting from its execution

through a progression of states. Nevertheless, it is not always possible to map a group of

states to a particular mode. Whereas in simple systems the modes and states can be more

easily associated, in a complex real-time distributed system it may be difficult (and perhaps

not necessary) to related both. Therefore it ensues, from the above definition of modes, that

a change from a source mode A to a target mode B occurs in response to the need to change

49Schedulability Analysis of Mode Changes with Arbitrary Deadlines

www.intechopen.com

4 Real Time System

the system’s functionality or adjust its performance. We adopt the following definition for a

mode change of a uniprocessor system (Martins & Burns, 2008):

"A mode change of a real-time system is defined as a change in the behavior exhibited by the system,

accompanied by a change in the scheduling activity of the system."

Many real-time systems in fact run a fixed task set. Processes executed in mutually exclusive

modes are treated as if they could run at the same time, and grouped into a single schedule.

Consequently, resources have to be allocated as if they could be requested at the same

time, although this is an impossible scenario. This approach may be appropriate for simple

real-time systems. However, for large and complex real-time systems this may result in

significant reduction in efficiency of the system and sub-utilization of system resources. From

a software engineering perspective, this approach denies the principles of modularization and

separation of concerns, since it allows unrelated modes (and unrelated schedules) of a system

to be treated and designed as if they were instead a single mode and schedule, although they

may be logically independent, mutually exclusive or both.

3. Computational model and assumptions

We shall consider a set of periodic or sporadic tasks τ = {τ1, τ2, ...τi, ..τp} per mode. Each task

τi is characterized by the tuple Si = {Ti, Di, Ci, Pi}, where: 1) Ti and Di are respectively the

period of task τi (or, if a sporadic task, the minimum inter-arrival time between successive

tasks of the stream i) and the deadline; 2) Ci is the worst-case execution time (WCET) of the

task τi. This value is deemed to contain the overheads due to context switching. Moreover,

the values of Ci, Di and Ti are such that Ci < Di ≤ Ti . In subsection 5.2 we remove the

restriction that Di ≤ Ti ; 3) Pi represents the priority of task τi , assigned according to the

Deadline Monotonic Scheduling algorithm.

Throughout this chapter, we use the notation Ci(O),Ci(A) and Ci(N) when referring to the

worst-case computational time of an old-mode completed task, an aborted task, and a

new-mode task, respectively. τi denotes a task for which we are finding the worst-case

response time (WCRT) and τj denotes a higher-priority task. We use the term steady-state

analysis to refer to the body of schedulability analysis of single-mode systems, where the task

set is fixed and there are no mode changes. We also use the notation:

• ∀ τj(O) hp τi : set of old-mode tasks τj with priority higher than task τi;

• ∀ τj(A) hp τi : set of aborted tasks τj with priority higher than task τi;

• ∀ τj(N) hp τi : set of new-mode tasks τj with priority higher than task τi.

The mode-change model is based on the following assumptions:

• Tasks are executed in a uniprocessor system;

• Tasks are not permitted to voluntarily suspend themselves during an invocation (so, for

example, tasks are not allowed to execute internal Ada-like delay statements);

• There are fixed task sets before and after the mode change;

• The worst-case response time of a generic task τi (WCRT), denoted Ri, is the longest

time ever taken by that τi from the time it arrives until the time it completes its required

computation;

50 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Schedulability Analysis of Mode Changes with Arbitrary Deadlines 5

MODE-CHANGE REQUEST (MCR)

OLD MODE MODE CHANGE NEW MODE

CHANGED

COMPLETED

ABORTED

UNCHANGED

WHOLLY NEW

Y

Y

Z

T

time

x

Fig. 1. Mode-Change Model (Pedro, 1999; Real & Crespo, 2004)

• Tasks are scheduled with time offsets during the mode change only. This time phasing

between tasks may or may not hold after the mode change.

A mode-change request (MCR) is the event that triggers a transition from an old mode of

operation to a new one. The window x is the phasing between the MCR and the activation of

task τi. A MCR may not be preempted by another MCR. The mode-change model comprises

of five types of tasks (Fig. 1):

• Old-mode completed tasks, τi(O) : These tasks are released in the old mode, i.e. before the

arrival of the MCR. They need to advance their execution into the transition window in

order to finish execution. Old-mode completed tasks cannot be simply aborted as they

would leave the system in an inconsistent state. Once they complete during the transition,

there are no further releases. They are used to model the behavior of the system in the old

mode that is no longer needed in the new mode.

• Old-mode aborted tasks, τi(A): These tasks are also released prior to the MCR. They need to

be immediately discarded after the MCR in order to release allocated resources back to the

system. The behavior they implement is no longer needed in the new mode of operation.

• New-mode changed tasks, τi(C) : These tasks are released during the transition, with an

offset Y from the MCR. This class models the behavior that is changed in the new

mode. Changed new-mode tasks have a modified timing parameter compared to their

corresponding old-mode version, such as changed worst-case execution time (C), period

(T), or priority (P).

• New-mode unchanged tasks, τi(U) : These tasks are released during the transition window,

with an offset Z, from the end of the period of their corresponding old-mode version. They

model the behavior of the application that is not changed across the mode change and in

the new mode. Their timing parameters are the same as the preceding old-mode version.

51Schedulability Analysis of Mode Changes with Arbitrary Deadlines

www.intechopen.com

6 Real Time System

• Wholly new task, τi(W) : These tasks are released during the transition window with an

offset Y. They are used to model the behavior that is totally new, i.e. has no equivalent in

the old-mode of operation.

With respect to the way tasks are executed across a mode change, they are classified as:

1)Tasks with mode-change periodicity: these tasks are executed across the mode change and

maintain their activation pace, and 2) Tasks without mode-change periodicity: these tasks do

not preserve their activation pace across a mode change.

The mode-change latency is usually an important performance criterion when dealing with

mode changes. We often seek to minimize the latency since during the mode change the

system may deliver only partial functionality at the expenses of more critical services. The

mode change latency is defined as:

"A window starting with the arrival of the mode-change request (MCR) and ending when the set of

new-mode tasks have completed their first execution and the set of old-mode tasks have completed their

last execution".

In the following section we review background work on schedulability analysis of mode

changes using the fixed-priority preemptive scheduling approach.

4. Background

A number of mode-change protocols have been proposed and classified into synchronous or

asynchronous protocols. Synchronous mode-change protocols complete the old-mode tasks

before any new task start execution. Synchronous protocols do not require schedulability

analysis. On the other hand, asynchronous protocols allow new-mode tasks to begin

execution while old-mode tasks are still running. Asynchronous protocols may reduce the

mode-change latency, but may have reduced schedulability, since the processing load is larger.

These protocols do require schedulability analysis, since old-mode tasks will interfere with the

execution of new-mode tasks and vice-versa.

Two types of mode-change protocols can be defined regarding the way unchanged tasks are

executed: 1) Protocols with periodicity are protocols where unchanged tasks preserve their

activation pace or periodicity. Under these protocols, tasks are executed independently of the

mode change in progress; 2) On the other hand, the activation of unchanged tasks may be

delayed by protocols without periodicity. Their rate of activation is affected by the transition.

The loss of periodicity may be necessary to guarantee the feasibility of the mode change or to

preserve data consistency.

The idle time protocol (Tindell & Alonso, 1996) delays the execution of any MCR until an idle

time, where there is no CPU load (activity). It is a simple, synchronous protocol. A mode

change task detects the idle time and performs the mode change, by suspending all old mode

tasks and activating the new mode ones. The disadvantage is the delay in waiting for the

idle time, especially when there may be new-mode tasks with short deadlines waiting to be

executed.

The maximum period offset protocol (Bailey, 1993) delays all tasks for the time corresponding

to the period of the least frequent task in both modes. Being a synchronous protocol, it has

52 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Schedulability Analysis of Mode Changes with Arbitrary Deadlines 7

the advantage of simplicity, and the fact that is does not require schedulability analysis. The

disadvantage of this protocol is its poor promptness, with an even larger mode-change delay

than the idle time protocol.

The minimum single offset protocol (without periodicity) (Real, 2000) applies an offset Y to all

new mode tasks. The offset is the sum of the worst-case execution time of all old-mode tasks

that have been released (but not completed) before the arrival of the MCR. This protocol

also suffers from poor promptness, but incurs in less mode-change latency compared to the

maximum period offset protocol, since all the old-mode tasks execute only once.

The minimum single offset protocol (with periodicity) (Real, 2000) similarly applies an offset Y
to all new mode tasks. The offset is large enough to accommodate the old mode tasks and all
unchanged tasks that need to preserve their periodicity. The disadvantage of this protocol is
poor promptness, which is worse than the previous protocol. The protocol is also synchronous
and dispenses schedulability analysis.

In the asynchronous mode-change protocol with periodicity presented by Tindell, Burns & Wellings
(1992), old-mode tasks are allowed to complete their last activation upon the arrival of a
MCR, but are no longer released during the mode change. The mode-change model does not
include aborted tasks. Wholly new tasks are released after a sufficient offset Y after the MCR.
New-mode changed tasks are released right after the end of the period of the corresponding
old-mode task. Because only wholly new tasks can be introduced with an offset, the ability to
make any transition schedulable is reduced.

Pedro & Burns (1998) introduced an asynchronous protocol without periodicity, which
included aborted tasks in the mode-change model. Considering that in this protocol all
new-mode tasks can have offsets, it is relatively easy to find a schedulable transition. The
schedulability analysis is relatively simplified compared to that of Tindell, Burns & Wellings
(1992), since the number of time windows to analyze is lower than in the previous protocol.

Real (2000) proposes an asynchronous protocol with periodicity that merges the advantages
of the last two protocols. The mode-change model is similar to that of Pedro & Burns (1998).
Nevertheless, an offset Z is introduced for unchanged tasks, relative to the end of the period of
the corresponding old-mode task. An offset Z = 0 means that the unchanged task is introduced
immediately after the end of the period of its corresponding old-mode version. The inclusion
of this offset allows the desired periodicity for unchanged tasks. However, when the task set
is unschedulable, it is possible to lose periodicity in order to gain schedulability by increasing
the value of Z.

5. Schedulability analysis of mode changes

In the following subsection we review previous work on mode changes with deadlines less
than or equal to periods, before we relax this constraint.

5.1 Mode changes with deadlines less than or equal to periods

We must find the WCRT for both old-mode tasks and new-mode tasks defined in the
mode-change model. We first consider analysis for the old-mode task set. The analysis gives
exact (both necessary and sufficient) bounds on the worst-case response time of each task.

53Schedulability Analysis of Mode Changes with Arbitrary Deadlines

www.intechopen.com

8 Real Time System

5.1.1 Analysis of old-mode tasks

Old-mode tasks suffer the interference from higher-priority aborted tasks before the mode
change, and from higher-priority completed tasks before and after the mode change (Fig. 1).
During the mode change, old-mode tasks are also preempted by higher-priority new-mode
tasks. Clearly, there is no interference from aborted tasks during the transition. We now show
the interference terms for each type of task.

5.1.1.1 Interference from higher-priority old-mode completed tasks

Old-mode, higher-priority completed tasks τj will interfere with task τi mostly over the

interval x. This interference extends to the mode-change window as the higher-priority tasks

still run in order to complete their execution. The total interference is formulated as the ceiling

function of x/Tj as follows:

Ihp(O) = ∑
∀ τj(O) hp τi

⌈

x

Tj

⌉

Cj (1)

5.1.1.2 Interference from higher-priority aborted tasks

Aborted tasks will interfere over a lower-priority task τi during the interval x. Within the

interval x there is an integral number of periods Tj of the higher-priority aborted task τj, and

therefore a set of instances that complete their execution. It is only the last release that runs

across the MCR and has to be aborted. The interference from completed releases of task τj

before the MCR is given by:

∑
∀ τj(A) hp τi

⌊

x

Tj

⌋

Cj (2)

We also need to consider the amount of aborted execution time of a higher-priority task in the

old mode: This occurs during the remaining time wrem, which is a fraction of the period of the

aborted task preceding the MCR, and is given by:

wrem = x −

⌊

x

Tj

⌋

Tj (3)

The remaining time wrem can be large enough to: 1) allow only a partial execution of the

task τj (equation (4)), since wrem < Cj, or 2) accommodate an additional execution of the

higher-priority aborted task (equation (5)), since wrem ≥ Cj):

0 < x −

⌊

x

Tj

⌋

Tj < Cj (4)

Cj ≤ x −

⌊

x

Tj

⌋

Tj ≤ Tj (5)

In the first case (eq. 4), wrem < Cj and the interference is the minimum value between Cj and

wrem, since there is only a partial execution of the aborted task (i.e. Ihp(A)rem = min(wrem, Cj).

54 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Schedulability Analysis of Mode Changes with Arbitrary Deadlines 9

In the second case (eq. 5), wrem ≥ Cj and there is another full execution of the task within

wrem: it is not really necessary to abort the task. The remaining time is greater than Cj but less

than the period. Again the interference is the minimum value between Cj and wrem. Once the

task completes there is no further releases in the remaining time. Therefore, the amount of

interference is Cj. In any case, the partial interference is always the minimum of the intervals

wrem and Cj. Therefore, the amount of partial (or aborted) interference is given by:

Ihp(A)rem = min

(

x −

⌊

x

Tj

⌋

Tj, Cj

)

(6)

Combining both terms (6) and (2), the total interference from higher-priority aborted tasks

is:

Ihp(A) = ∑
∀ τj(A) hp τi

(⌊

x

Tj

⌋

Cj + min

(

x −

⌊

x

Tj

⌋

Tj, Cj

))

(7)

5.1.1.3 Interference from higher-priority new-mode tasks

Higher-priority new-mode tasks do not preserve their mode-change periodicity. The analysis

must account for the fact that these tasks are released with an offset Yj from the MCR. Their

interference interval is therefore reduced to wi − x − Yj and expressed as:

Ihp(N) = ∑
∀ τj(N) hp τi

⌈

wi − x − Yj

Tj

⌉

0

Cj (8)

5.1.1.4 Interference from higher-priority unchanged new-mode tasks

As discussed in section 3, unchanged new-mode tasks preserve the mode-change periodicity.

This term is derived by Real & Crespo (2004), and given by:

Ihp(N)−per = ∑
∀ τj(U) hp τi

⌈

wi(x) − ⌈ x
Tj
�Tj − Zj

Tj

⌉

0

Cj (9)

Combining all the interference terms, we obtain the total interference suffered from the

old-mode task τi across the mode change:

Imc = ∑
∀ τj(O) hp τi

⌈

x

Tj

⌉

Cj + ∑
∀ τj(A) hp τi

(⌊

x

Tj

⌋

Cj + min

(

x −

⌊

x

Tj

⌋

Tj, Cj

))

+

∑
∀ τj(N) hp τi

⌈

wi − x − Yj

Tj

⌉

0

Cj + ∑
∀ τj(U) hp τi

⌈

wi(x) − ⌈ x
Tj
�Tj − Zj

Tj

⌉

0

Cj (10)

55Schedulability Analysis of Mode Changes with Arbitrary Deadlines

www.intechopen.com

10 Real Time System

By adding the Worst-Case Execution Time (WCET) Ci of the old-mode task being analyzed,

we obtain the WCRT of task τi as follows:

wi(x) = Ci + ∑
∀ τj(O) hp τi

⌈

x

Tj

⌉

Cj + ∑
∀ τj(A) hp τi

⌊

x

Tj

⌋

Cj + min

(

x −

⌊

x

Tj

⌋

Tj, Cj

)

+

∑
∀ τj(N) hp τi

⌈

wi − x − Yj

Tj

⌉

0

Cj + ∑
∀ τj(U) hp τi

⌈

wi(x) − ⌈ x
Tj
�Tj − Zj

Tj

⌉

0

Cj (11)

The solution to equation (11) is obtained by forming a recurrence equation on wi, to find the

smallest positive integer that satisfies it. Since many values of x give the same WCRT, the

significant values of x are the ones that lead to new values for the ceiling and floor functions.

The set of significant values x is the set of all positive values in the domain of wi(x) such that:

x ε (0, ε, Tj + ε, 2Tj + ε, 3Tj + ε, ..Rss
i) ∀ τj(O) hp τi and

x ε (0, Cj, Tj + Cj, 2Tj + Cj, ..Rss
i) ∀ τj(A) hp τi (12)

where ε is the time quantum, which we assume to be 1 and Rss
i is the steady-state WCRT of

task τi.

5.1.2 Analysis of new-mode tasks

In the worst-case scenario, all old-mode tasks are released momentarily before the mode

change, thus sharing a critical instant with the window wi. The interference from

higher-priority new-mode tasks upon a new-mode task τi must account for the offset of the

interfering task, during which there is no interference. The interference from unchanged

new-mode tasks must account for the offset Zj, from the end of the period of the preceding

old-mode version. The worst-case response time of a new-mode task across a mode change is

given by: (Pedro & Burns, 1998; Real & Crespo, 2004)

wi = Ci(N) + ∑
∀ τj(O) hp τi

Cj + ∑
∀ τj(N) hp τi

⌈

wi − Yj

Tj

⌉

0

Cj +

∑
∀ τj(U) hp τi

(

Cj +

⌈

wi − Tj − Zj

Tj

⌉

0

Cj

)

(13)

This equation must also be solved using recurrence relation as before. Considering that task

τi is released with an offset Yi after the mode change, then to obtain the value of Ri window

wi must be decreased by Yi:

Ri = wi − Yi (14)

If the expression wi − Ci(n) ≤ Yi holds, the amount of interference over new-mode task τi

is smaller than the value of its mode-change offset Yi. Therefore, the new-mode task τi is

released in the steady state after all old-mode tasks have completed.

We now turn to the analysis of tasks across a mode change with arbitrary deadlines.

56 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Schedulability Analysis of Mode Changes with Arbitrary Deadlines 11

5.2 Mode-changes with arbitrary deadlines

Lehoczky describes qualitative analysis which can determine the worst-case response time of

a given task with such arbitrary deadlines (Lehoczky, 1990). Tindell et al. (1994) derived

analysis from that of M. & Pandya (1986) and using the approach of Lehoczky, for static

priority pre-emptive systems that permit tasks to have arbitrary deadlines, release jitter, and

behave as sporadically periodic tasks. His analysis illustrates how using a window approach

to finding worst-case response times for these tasks is an appropriate way of obtaining an

analysis tailored to the behavior of real-time tasks. In single mode, steady-state systems, the

busy period wi,q for a task τi with arbitrary deadlines is calculated as follows (Tindell et al.,

1994):

wi,q = (q + 1)Ci + Ihp (15)

Where the term Ihp is the interference from higher-priority tasks, and q is the number of

instances of task τi during the busy period. Equation 15 is the basis to extend current analysis

of mode changes to allow arbitrary deadlines. Therefore, for the analysis of mode changes

with arbitrary deadlines, we need to: 1) review the notion of busy period in the light of mode

changes, specifically the definition of the beginning and end of the busy period; 2) find the

number of instances q of a task τi to be analyzed, and 3) determine the amount of interference

from higher-priority computation (Ihp), as follows:

• Busy periods: A level-i busy period is defined as the maximum time for which a processor

executes tasks of priority greater than or equal to the priority of task τi. Lehoczky shows how the

worst-case response time of a task τi can be found by examining a number of busy periods,

each starting at an arrival of task τi (hence some multiple of Ti before the current invocation

of task τi). The busy period ends when a lower-priority task is able to begin execution.

To find the worst-case response time, all invocations of task τi in this busy period must be

examined. In Fig. 2 task τi completes when the given busy period finishes, but arrives at

some point in time after the start of the busy period. By knowing the width of the busy

period and when the busy period starts (relative to arrival of task τi) then we can find the

corresponding response time. The width of the busy period is equal to the higher-priority

computation that is released in it. The WCRT of task τi is the longest of the response times

corresponding to each of the examined busy periods. In the next section we discuss the

beginning and end of the busy period regarding a mode change.

• Number of instances to analyze: If a task has a WCRT greater than its period, then the

possibility exists for a task to re-arrive before the previous invocation has completed. In

this case we assume that the new arrival is deemed to have a lower priority, and is therefore

delayed from executing until after the previous invocation terminates. Fig. 3 illustrates

the response time of a task τi, with its deadline larger than its period, executing across

a mode change as an old-mode completed task. The MCR arrives during the execution

of an arbitrary invocation of task τi. To facilitate the analysis we assume, without loss of

generality, that the MCR arrives while the third invocation of task τi is under execution. In

a busy period without a mode change, the 4th and 5th invocations are released and execute

regularly. However, with the arrival of a MCR, the 4th and the 5th invocations do not

need to be released anymore, according to the mode-change model. The cancellation of

both the 4th and the 5th releases will shorten the length of the busy period, causing the

lower-priority task (task low) to begin execution earlier. Therefore, we need to apply the

57Schedulability Analysis of Mode Changes with Arbitrary Deadlines

www.intechopen.com

12 Real Time System

T

time

Level i busy period

TASK HIGH

Ti

Ti

Ti

Ti

1st 2nd 3rd 4th 5th

TASK i

Ci

Ti

TASK LOW

invocations

of task i

Fig. 2. A level i busy period (Lehoczky, 1990), (Tindell et al., 1994)

schedulability analysis only for the first three invocations. However, it is only the third

invocation that needs to be analyzed using mode-change analysis. The first and second

invocations can be analyzed using the steady-state equations derived by Tindell et al.

(1994).

• Higher-priority interference: Fig. 2 also illustrates a higher-priority unchanged task (Thigh).

Clearly, other types of tasks such as wholly new and changed new-mode tasks may

interfere with the execution of task τi. While an invocation of Thigh may be delayed by a

previous invocation, the number of instances of Thigh interfering with task τi is not affected

by the introduction of arbitrary deadlines. Therefore, the calculation of higher-priority

computation under the assumption of arbitrary deadlines remains the same as the one

from previous work (Real & Crespo, 2004).

We now look at the analysis of old-mode tasks.

5.2.1 Analysis of old-mode tasks

We begin by extending the notion of busy period for old-mode tasks: A level "i" busy period for

an old-mode task across a mode change is defined as the maximum time for which a processor executes

tasks of priority greater than or equal to the priority of task. A busy period begins at a time x before

the arrival of a mode-change request (MCR). The busy period ends during the transition, with the

completion of the last invocation q of task τi before the steady-state new mode, when a lower-priority

task is able to begin execution.

58 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Schedulability Analysis of Mode Changes with Arbitrary Deadlines 13

MODE-CHANGE REQUEST (MCR)

OLD MODE NEW MODE

T

time

Level i busy period

TASK HIGH

Ti

Ti

Ti

Ti

1st 2nd 3rd 4th 5th

TASK i

x

Ti

TASK LOW

MODE

CHANGE

invocations

of task i

not released

WHOLLY-NEW TASK
Y

Fig. 3. Mode-Change with Arbitrary Deadlines

From the definition of latency of mode changes (section 3), it follows that the end of the

busy period falls inside the mode-change window. This is because task τlow is an old-mode

completed and the mode change is not over until all the old-mode tasks have completed.

Consider the three instances of task τi before the MCR in Fig. 3. Instances 1 and 2 are called

the steady-mode instances, since they are released and completed before the MCR. We are

interested in finding the WCRT for the third instance, the old-mode completed instance, which

runs across the MCR and executes through the mode change. When the old-mode completed

invocation begins, the steady-mode invocations have already completed. Therefore, their

schedulability is guaranteed by steady-state analysis (Audsley et al., 1993).

By defining the beginning and the end of the busy period as above we can reuse the work

from Pedro & Burns (1998) and Real (2000) by including in their analysis the multiple WCETs

introduced by the steady-mode releases (i.e. previous invocations of task τi) during window

x. In our example, the third invocation is delayed by the first and second invocations.

There are no further releases of the old-mode completed task after the MCR, according to

the mode-change protocol. As we increase the value of x in the analysis, more steady-state

invocations of task τi appear before the MCR, potentially delaying the old-mode completed

task τi. The impact of a mode change on the analysis of old-mode tasks is that there are less

releases of task τi to be analyzed than in steady-state analysis. The number of instances q of

task τi that need to be analyzed before the mode change is given by:

qi =

⌈

x

Ti

⌉

(16)

59Schedulability Analysis of Mode Changes with Arbitrary Deadlines

www.intechopen.com

14 Real Time System

and it is only the last invocation that requires mode-change analysis. The interference suffered

by the mode-changing task includes the types of tasks from the mode-change model, i.e.

old-mode aborted, old-mode completed, new-mode changed, unchanged and wholly-new

tasks as previously analyzed. Taking these remarks into consideration, the analysis of a

mode-change for an old-mode task with arbitrary deadlines is given by:

wi(x) = (q+ 1)Ci + ∑
∀ τj(O) hp τi

⌈

x

Tj

⌉

Cj + ∑
∀ τj(A) hp τi

(⌊

x

Tj

⌋

Cj +min

(

x −

⌊

x

Tj

⌋

Tj, Cj

))

+

∑
∀ τj(N) hp τi

⌈

wi(x) − x − Yj

Tj

⌉

0

Cj + ∑
∀ τj(U) hp τi

⌈

wi(x) − ⌈ x
Tj
�Tj − Zj

Tj

⌉

0

Cj (17)

In single-mode, steady-state systems, windows for increasing values of q need to be

determined. The sequence is finite, however, because the search can stop if a level i busy

period is found which finishes before task τi starts (i.e. the processor is released to process

lower-priority tasks) - since the processor is executing lower priority tasks there can be no

impact on task τi from previous invocations of task τi in busy periods starting earlier. The

above iteration over increasing values of q can stop if:

wi(q) < (q + 1)Ti (18)

The response time corresponding to the window starting qTi before the current invocation of

task τi is therefore given by:

(wi(q) − qTi) (19)

Now, as mentioned above, the worst-case response time can occur at any one of these response

times, and thus the WCRT is given by:

ri = max(wi(q)− qTi) q = 1, 2, 3..

⌈

x

Ti

⌉

(20)

In the analysis with arbitrary deadlines and single mode systems, windows for increasing

values of q need to be determined; variable x is not present in the analysis. In the WCRT

analysis of mode changes with deadlines less than or equal to periods we need to apply all

significant values of x, and the analysis is not a function of q. Clearly, the analysis of tasks

with arbitrary deadlines across a mode change is a function of both x and q, and q is limited

by x (for old-mode tasks).

5.2.2 Analysis of new-mode tasks

A level i busy period for a new-mode task is defined as: The maximum time for which a processor

executes tasks of priority greater than or equal to the priority of task τi. A busy period begins with the

arrival of a mode-change request MCR. It ends when a task with lower priority than τi is able to begin

execution during the mode-change window.

60 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Schedulability Analysis of Mode Changes with Arbitrary Deadlines 15

As seen in section 5.2, the pattern of interference from higher computation over τi is

not affected by the introduction of arbitrary deadlines. As with the analysis for old-mode

tasks, the new-mode task is delayed by its previous invocations. Therefore, equation (13) is

reformulated as follows:

wi = (q + 1)Ci(N) + ∑
∀ τj(O) hp τi

Cj + ∑
∀ τj(N) hp τi

⌈

wi − Yj

Tj

⌉

0

Cj+

∑
∀ τj(U) hp τi

(

Cj +

⌈

wi − Tj − Zj

Tj

⌉

0

Cj

)

(21)

Unlike the analysis of old-mode tasks, which limits the number of busy periods to be

examined by ⌈ x
Ti
�, in the analysis of new-mode tasks the number of instances q to be inspected

has no direct correlation with the beginning or end of the mode change. The above iteration

over increasing values of q can stop if:

wi(q) < (q + 1)Ti (22)

The first qT of level i busy period falls before the current invocation of task τi is released.

The response time corresponding to the given level i busy period starting time qt before the

current invocation of task τi is therefore given by: wi,q − qt. The response time can occur at

any one of these response times, and thus the worst-case response time is given by:

Ri = wi,q − qt − Yi (23)

Where q = {0, 1, 2...}. This equation specifies an infinite number of busy periods. Only a

finite number need to be examined because the search can stop if a level i busy period is

found which finishes before the invocation of task τi following the current one. The longest

busy period that needs to be examined is bounded by the LCM of task periods.

6. Example

In this section we present an example of the mode change analysis based upon the Generic

Avionics Platform (GAP) task set described by Locke et al. (1991). We consider the example

of two modes of aircraft operation: Level flight and Defense Mode, described in tables 1 and 2

respectively (Pedro, 1999), and we analyze the schedulability of the transition from level-flight

to defense mode. The level-flight mode contains four tasks which are not originally defined

in the GAP set: auto−pilot, mission−advisor, fuelling−management and display−graphic−2.

The task set used in the defense mode is the original task set defined (Locke et al., 1991),

except that the Timer−Interrupt task has been removed.

Tasks printed in boldface in table 1 denote completed old-mode tasks that are replaced by

the corresponding boldfaced wholly-new tasks in table 2 (e.g. Weapon−Release replaces

Auto−Pilot). Tasks in the defense mode are carried out as new-mode changed tasks. Display

−Hook−Update is an aborted task. In order to increase the schedulability of the task set,

all new-mode tasks lose their periodicity during the transition. Table 3 illustrates the

61Schedulability Analysis of Mode Changes with Arbitrary Deadlines

www.intechopen.com

16 Real Time System

τ Behavior τ Behavior

τ1(O) Auto−pilot τ19(O) Tracking−Target−Upd

τ3(O Radar−Tracking−Filter τ21(O) Display−Graphic−2 *

τ5(O) RWR−Contact−Mgmt τ23(O) Nav−Steering−Cmds

τ7(O) Data−Bus−Poll−Device τ25(O) Display−Stores−Updates

τ9(O) Mission−advisor * τ27(O) Display−Keyset

τ11(O) Fuelling−Mgmt * τ29(O) Display−Stat−Update

τ13(O) Nav−Update τ31(O) BET−E−Status−Update

τ15(O) Display−Graphic−1 τ33(O) Nav−Status

τ17(A) Display−Hook−Update — —

Table 1. Task Set Description in Aircraft Level-Flight Mode

schedulability analysis for the mode change from the level-flight mode to the defense mode.

Each column represents the period T, deadline D, WCET C, priority P, the worst-case arrival

time for an old-mode task x, the steady-state response time for a task in the old mode Rss
i(O)

, the

WCRT of a task during the mode change Ri(mc) and the steady-state WCRT of a new-mode

task Rss
i(N)

. Tasks with a lower value of P have a higher priority. All times are specified in

milliseconds with a multiplication factor of 10.

The latency of the mode change is given by new-mode task τ34(c), which completes its first

execution at time 21400 (i.e. Ri(n) + Yi = 2140 ms) after the MCR. The worst-case response

times of all tasks are less than the deadlines, and hence the task set is schedulable across the

mode change.

τ Behavior τ Behavior

τ2(W) Weapon−Release * τ20(C) Tracking−Target−Upd

τ4(C) Radar−Tracking−Filter τ22(W) Weapon−Protocol *

τ6(C) RWR−Contact−Mgmt τ24(C) Nav−Steering−Cmds

τ8(C) Data−Bus−Poll−Device τ26(C) Display−Stores−Updates

τ10(W) Weapon−Aiming * τ28(C) Display−Keyset

τ12(W) Radar−Target−Update τ30(C) Display−Stat−Update

τ14(C) Nav−Update τ32(C) BET−E−Status−Update

τ16(C) Display−Graphic τ34(C) Nav−Status

τ18(C) Display−Hook−Update — —

Table 2. Task Set Description in Aircraft Defense Mode

If task WCRT’s are much less than their periods (i.e. Ri << Ti) then the analysis will converge

immediately for values of q = 0. There are no extra invocations (q = 1,2,3..) in the busy

period. Task τ13(O) is an exception: it has a period T13 = 1100 and deadline D13 = 1550 (D > T).

Its WCRT is 1227 and it occurs when the task arrives at time x = 801 before the MCR. In the

worst-case, τ13(O) is delayed by one single invocation (i.e. q = 1) before the MCR, but it is still

able to meet its deadline.

62 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Schedulability Analysis of Mode Changes with Arbitrary Deadlines 17

τ T D C P Y x Rss
i(O)

Ri(mc) Rss
i(N)

TEST

τ1(O) 1000 50 10 1 — 0 10 10 — sched.

τ2(W) 2000 50 30 1 0 0 — 40 30 sched.

τ3(O) 2000 1200 200 12 — 601 742 862 — sched.

τ4(C 250 60 20 2 2000 0 — 50 50 sched.

τ5(O) 2000 1400 5 13 — 601 747 897 — sched.

τ6(C 250 120 50 3 2000 0 — 100 100 sched.

τ7(O) 400 400 10 4 — 1 100 130 — sched.

τ8(C) 400 400 10 4 400 0 — 110 110 sched.

τ9(O) 600 450 20 5 — 1 120 150 — sched.

τ10(W) 500 450 30 5 0 0 — 180 140 sched.

τ11(O) 800 500 50 6 — 1 170 230 — sched.

τ12(W) 500 500 50 6 0 0 — 280 190 sched.

τ13(O) 1100 1550 80 15 — 801 977 1227 — sched.

τ14(C) 590 590 80 7 1650 0 — 340 340 sched.

τ15(O) 1700 1600 40 16 — 1001 1107 1227 — sched.

τ16(C) 800 600 90 8 1700 0 — 440 440 sched.

τ17(A) 1700 1650 100 17 — 1001 1237 1367 — —

τ18(C) 800 700 20 9 1700 0 — 460 460 sched.

τ19(O) 2000 800 30 10 — 251 342 452 — sched.

τ20(C) 1000 800 50 10 2000 0 — 740 740 sched.

τ21(O) 3000 900 90 11 — 401 442 552 — sched.

τ22(W) 2000 900 10 11 0 0 — 482 750 sched.

τ23(O) 250 60 20 2 — 1 30 60 — sched.

τ24(C) 2000 1200 30 12 250 0 — 542 970 sched.

τ25(O) 250 120 60 3 — 1 90 120 — sched.

τ26(C) 2000 1400 10 13 250 0 — 567 980 sched.

τ27(O) 3000 1500 10 14 — 801 897 1017 — sched.

τ28(C) 2000 1500 10 14 3000 0 — 990 990 sched.

τ29(O) 4000 590 30 7 — 1 200 310 — sched.

τ30(C) 2000 1550 30 15 4000 0 — 1380 1380 sched.

τ31(O) 20000 600 15 8 — 1 215 325 — sched.

τ32(C) 10000 1600 10 16 20000 0 — 1390 1390 sched.

τ33(O) 20000 700 17 9 — 1 232 342 — sched.

τ34(C) 10000 1650 10 17 20000 0 — 1400 1400 sched.

Table 3. Feasibility Analysis of GAP Task Set Across a Mode Change

63Schedulability Analysis of Mode Changes with Arbitrary Deadlines

www.intechopen.com

18 Real Time System

7. Summary and discussion

Before we discuss the schedulability analysis of tasks across a mode change, we must define

what a mode of operation is in real-time systems and what a mode change from a source to

a target mode represents. In the first part of this chapter we have surveyed the literature and

presented a number of views on the notion of modes, before formulating our definition for

real-time systems.

The second focus of this work was on guaranteeing hard real-time tasks with arbitrary

deadlines that execute through a mode change. Original work on schedulability analysis for

real-time tasks across mode changes assumes that all task have deadlines less than or equal to

their periods. This work relaxed this constraint, by allowing tasks to have arbitrary deadlines.

It also showed the generality of the analysis presented by Tindell et al. (1994) on arbitrary

deadlines: when proper busy periods are considered, schedulability analysis for fixed-priority

preemptive systems is amenable to extensions such as the one presented in this chapter. From

another perspective, the schedulability results of mode changes by Pedro & Burns (1998)

and Real & Crespo (2004) can be extended to allow for arbitrary deadlines without major

modifications to their original analysis.

In order to introduce arbitrary deadlines in the schedulability analysis of mode changes of

Pedro & Burns (1998) and Real & Crespo (2004) we had to consider: 1) The definition of busy

periods in the light of mode changes; 2) The amount of higher-priority computation; 3) The

number of instances q of the task being analyzed τi, and 4) The delays from earlier invocations

of task τi. Therefore, we introduced the following modifications to the original analysis:

1. Readjusted the beginning of the busy period with regard to the arrival of the MCR and

adopted the basic definition as given by Lehoczky (1990);

2. Maintained the calculation of the interference from higher-priority tasks: the introduction

of arbitrary deadlines does not change the amount of interference from higher-priority

tasks. Clearly, higher-priority tasks can be delayed by their previous invocations, but this

does not change the calculation of the higher-priority computational load;

3. Changed the number of instances q to be inspected: For old-mode tasks, the arrival of the

MCR changes the number of busy periods to be inspected. In the schedulability analysis

of mode changes, the condition w < (q + 1)Ti can be reached much earlier than in the

corresponding analysis of steady-state (single-mode) systems. It occurs long before the

LCM of tasks and it depends on the value of x. In addition, the mode-change analysis

refers only to the last invocation of task τi before the MCR: the preceding invocations do

not cross the mode-change and merely delay task τi. For new-mode tasks we analyze a

number of invocations q until the condition w < (q + 1)Ti is satisfied;

4. Maintained the delay of previous invocations of the task being analyzed in the analysis

of both old-mode tasks and new-mode ones: Because we considered that the previous

instance of task τi has higher priority than the new release, it will not preempt but instead

delay the execution of the instance being analyzed.

This work will allow us to investigate more complex systems and applications that require

mode changes using arbitrary deadlines. A good example is the schedulability analysis of

the Controller Area Network (CAN) (Davis et al., 2007), which is based on arbitrary deadlines,

64 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Schedulability Analysis of Mode Changes with Arbitrary Deadlines 19

but assumes a fixed message set with one single mode of operation. Before we tackle the

schedulability analysis of messages across a mode change in a CAN bus, we need to be

familiar with the schedulability analysis of mode changes with arbitrary deadlines, such as

the one derived in this chapter.

8. References

Audsley, N., Burns, A., Richardson, M., Tindell, K. & Wellings, A. J. (1993). Applying new
scheduling theory to static priority pre-emptive scheduling, Software Engineering
Journal 8: 284–292.

Bailey, C. M. (1993). Hard real time operating system kernel: Investigation of mode
change, task 14 deliverable on estsec contract 9198/90/nl/sf, Technical report, British
Aerospace Systems Ltd.

Davis, R. I., Burns, A., Bril, R., & Lukkien, J. (2007). Controller area network (can)
schedulability analysis: Refuted, revisited and revised, Real-Time Systems 35: 239–272.

Degani, A. & Kirlik, A. (1995). Modes in human-automation interaction:initial observations
about a modelling approach, Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 1–15.

Degani, A., Shafto, M. & Kirlik, A. (1999). Modes in human-machine systems:
Review, classification, and application, International Journal of Aviation Psychology
9(2): 125–138.

Fohler, G. J. (1994). Flexibility in Statically Scheduled Hard Real-Time Systems, PhD thesis,
Technische Universitat Wien, Institut fur Technische Informatik.

Howe, D. (1997). Free On-line Dictionary of Computing. http://wombat.doc.ic.ac.uk /foldoc
/index.html.

Lehoczky, J. (1990). Fixed priority scheduling of periodic task set with arbitrary deadlines,
Proceedings of the 11th Real Time Systems Symposium, pp. 201–209.

Locke, C. D., Vogel, D. & Mesler, T. (1991). Building a Predictable Avionics Platform in Ada: A
Case Study, Proceedings of the 12th Real-Time Systems Symposium (Dec.), pp. 181–189.

M., J. & Pandya, P. (1986). Finding response times in a real-time system, BCS Computer Journal
29(05): 390–395.

Martins, P. & Burns, A. (2008). On the meaning of modes in uniprocessor real-time systems,
Proceedings of the 2008 ACM symposium on Applied computing, SAC ’08, ACM, New
York, NY, USA, pp. 324–325.
URL: http://doi.acm.org/10.1145/1363686.1363770

Norman, D. A. (1981). Categorization of action slips, Psychological Review 1(88): 1–15.
Papadopoulos, Y. (1996). Real-Time Safety Administration by Using Safety Cases, Technical

Report Oct, The University of York, Computer Science,2nd Year Thesis Proposal.
Pedro, P. (1999). Schedulability of Mode Changes in Flexible Real-Time Distributed Systems, PhD

thesis, The University of York.
Pedro, P. & Burns, A. (1998). Schedulability analysis for mode changes in flexible real-time

systems, Real-Time Systems, 1998. Proceedings. 10th Euromicro Workshop on, pp. 172
–179.

Poller, M. F. & Garter, S. K. (1984). The Effects of Modes on Text Editing by Experienced Editor
Users, Human Factors, Vol. 26(4), pp. 449–462.

Real, J. (2000). Protocolos de Cambio de Modo para Sistemas de Tiempo Real, PhD thesis,
Universidad Politecnica de Valencia.

65Schedulability Analysis of Mode Changes with Arbitrary Deadlines

www.intechopen.com

20 Real Time System

Real, J. & Crespo, A. (2004). Mode change protocols for real-time systems: A survey and a
new proposal, Real-Time Systems 26: 161–197. 10.1023/B:TIME.0000016129.97430.c6.
URL: http://dx.doi.org/10.1023/B:TIME.0000016129.97430.c6

Tesler, L. (1981). The SmallTalk Environment, Byte Magazine, Vol. 6(8), pp. 90–147.
Tindell, K. & Alonso, A. (1996). A Very Simple Protocol for Mode Changes in Priority

Preemptive Systems, Technical report, Universidad Politécnica de Madrid.
Tindell, K., Burns, A. & Wellings, A. (1994). An Extendible Approach for Analysing Fixed

Priority Hard Real-Time Tasks, Journal of Real-Time Systems 6(2): 133–151.
Tindell, K. W., Burns, A. & Wellings, A. (1992). Mode changes in priority pre-emptively

scheduled systems, Technical Report RTSS92-TBW, Department of Computer Science.
Tindell, K. W., Burns, A. & Wellings, A. J. (1992). Mode changes in priority pre-emptively

scheduled systems, Proceedings of the Real Time Systems Symposium, pp. 100–109.

66 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application
Edited by Dr. Seyed Morteza Babamir

ISBN 978-953-51-0510-7
Hard cover, 334 pages
Publisher InTech
Published online 11, April, 2012
Published in print edition April, 2012

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

This book is a rich text for introducing diverse aspects of real-time systems including architecture, specification
and verification, scheduling and real world applications. It is useful for advanced graduate students and
researchers in a wide range of disciplines impacted by embedded computing and software. Since the book
covers the most recent advances in real-time systems and communications networks, it serves as a vehicle for
technology transition within the real-time systems community of systems architects, designers, technologists,
and system analysts. Real-time applications are used in daily operations, such as engine and break
mechanisms in cars, traffic light and air-traffic control and heart beat and blood pressure monitoring. This book
includes 15 chapters arranged in 4 sections, Architecture (chapters 1-4), Specification and Verification
(chapters 5-6), Scheduling (chapters 7-9) and Real word applications (chapters 10-15).

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Paulo Martins, I. G. Hidalgo, M. A. Carvalho, A. de Angelis, V.Timoteo, R. Moraes, E. Ursini and Udo Fritzke Jr
(2012). Schedulability Analysis of Mode Changes with Arbitrary Deadlines, Real-Time Systems, Architecture,
Scheduling, and Application, Dr. Seyed Morteza Babamir (Ed.), ISBN: 978-953-51-0510-7, InTech, Available
from: http://www.intechopen.com/books/real-time-systems-architecture-scheduling-and-
application/schedulability-analysis-of-mode-changes-with-arbitrary-deadlines

© 2012 The Author(s). Licensee IntechOpen. This is an open access article
distributed under the terms of the Creative Commons Attribution 3.0
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0

