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1. Introduction 

The mission of this chapter is to show the possibility of boosting the performance of the 
vision system of autonomous perception-based robots, by implementing a behavior based 
software architecture with multiple independent sense-think-act loops. This research comes 
forth from a wider view of future robots having layered modular architectures, with higher 
layers controlling lower layers, in which all parts of the robots tasks (perception, behavior, 
motion) are behavior specific, and preferably all input-output mappings are learned. The 
work done in this chapter only focuses on improving the perception of robots. By 
implementing a behavior-based perception system of a goalie in a team of 4-legged soccer 
robots, we have increased its performance on localization and goal-clearing with more than 
50 %. On top, we have significantly increased the performance of the image processing by 
making it entirely object specific, with a different color-table and set of grid-lines for each 
different object searched for. All improvements combined allow the robot to localize in 
various conditions where this was previously not possible.  

2. Layered Modular Architectures 

Soccer playing robots as can be found in the RoboCup (www.robocup.org), are the 
playground to gain experience with embodied intelligence. The software architectures of 
those robots - that can autonomously survive in a niche of the real physical world; with 
limited rules necessary to survive, limited physical circumstances to account for, and simple 
goals to achieve (Pfeifer & Scheier, 1999) - can very well serve as an example for more 
complex industrial machines such as photocopiers, wafer steppers, component placement 
machines, CT and MRI scanners. The architecture of those machines is usually built around 
a single “Sense-Think-Act” loop to allow the machine to perform its task in a physical 
world. It is quite common that several scientific / technical disciplines, each with its own 
expertise, cooperate in the design. As a consequence, the most obvious basic architecture is 
the one as presented in Figure 1, in which for instance an image processing group solves the 
sense task, the control theory group solves the act task, and an AI group solves the think 
task. Software engineers and mechanical engineers take the responsibility over the overall 
software and mechanical hardware design and maintainability, respectively. 
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Figure 1.  Architecture based on scientific / technical disciplines 

Usually after an initial limited architecture phase, the interfaces are quickly established and 
all groups retract to their own lab to locally optimize their part of the problem, thereby often 
making assumptions what is c.q. should be done by the other group. In the end, the data is 
“thrown over the wall” to the other groups, who have to cope with it. As those embedded 
machines increase in complexity over the years, as well as the demands from the world they 
operate in, the software and hardware complexity grows, and all groups start to make their 
sub-system versatile, robust and optimal, and hence increasingly complex for the others to 
use.  

Figure 2.  Layered architecture of Sense-Think-Act modules 

From 1991 onward it was suggested (Brooks, 1991); (Arkin, 1998); (Parker, 1996) that a 
different architectural concept should be followed in the sense that a layered modular 
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architecture should be set-up in which higher layers control the lower layers, either by 
invocation actions from the lower layers or by promoting or suppressing behaviors from 
that lower layers. All modules run principally in parallel and on their turn invoke, promote 
or suppress actions of modules lower in the abstraction hierarchy. 
Figure 2 shows the design for a soccer robot, detailed for its role of striker. Figures 3 and 4 
show the same hierarchy of figure 2, but now in more detail. Moreover, Figure 3 shows 
more detail on the behavior (act) part of the hierarchy, whereas Figure 4 shows more detail 
on the perception (sense) part of the hierarchy. 

Figure 3.  Soccer playing robot in the role of striker; behavior viewpoint 

A striker can either dribble or shoot the ball to goal. The striker module decides on the best 
position (P1...P7) near the goal to dribble the ball to, from where it can successfully execute 
(X) a shoot to goal. Both for dribbling and shooting it needs to go to the best position behind 
the ball. For dribbling to goal it needs to push the ball without loosing it (avoiding others); 
for shooting to goal it needs to execute a kick.  
To perform these three behaviors it needs to perceive the pose (position and orientation) of 
ball and goal with respect to itself, i.e. given by vectors (R, Ø) and to set and measure the 
forward and angular speed of the robot (Vf,Vø). For kicking one needs to specify the kicking 
force (F). The pose of ball, goal and itself are measured using the vision system and the 
odometry (RPM of the wheels for mobile robots or steps for walking robots). Figure 4 shows 
that all perception modules, e.g. as to mind ones own pose, can be split into a part to 
discover the pose when the pose is un-known and a module to track the pose when it is 
well-known.  
To program behaviors of an autonomous system that needs to function under all 
circumstances in any environment, is often similar to maintaining a house of cards. 
Moreover, as one can not foresee as designer all possible states that the system encounter in 
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its life, learning the behaviors, e.g. based on reinforcement (Sutton & Barto, 1998); 
(Takahashi & Asada, 2004) is a valuable solution to overcome and learn from unknown 
situations. However, when the dimension of input-output / state-action space becomes too 
high (>8) learning becomes cumbersome (Jonker et al, 2004); (Dietterich, 2000). Hence, even 
/ especially when reinforcement learning methods are used, one should aim for layered, 
modular “sense-think-act” architectures in which we can learn the basic behaviors and 
perhaps even the perceptions. 

Figure 4.  Soccer playing robot in the role of striker; perception viewpoint 

3. Behavior Based Perception 

In the previous chapter we argued that a layered modular architecture of sense-think-act 
modules is necessary to obtain robust software and we should prepare for systems that are 
able to learn their own behavior. In this chapter we will go one step further and argue that the 
perception modules should even be made specific for the behavior modules they serve. This 
notion of behavior specific perception modules was developed during a research project at 
Delft University of Technology (Mantz, 2004) and published before (Mantz et al, 2005).  
The perception problem differs widely over different behaviors. At first this has to do with 
the location of robots. A robot guarding his own goal will mainly see the lines surrounding 
his penalty area, a couple of flags, and the opponent goal (far away). A striker will mainly 
see its opponent’s goal (from not too far). At second, the perception problem is also greatly 
influenced by the kind of action the robot performs. When a robot is walking around, with 
its head at horizons’ level, turning from left to right, it will likely perceive many objects and 
the quality of localization will be high. When the robot e.g. is handling a ball with its head 
(containing the camera), it will likely perceive neither goals nor flags for a longer period of 
time, and the quality of perception based localization will be very poor. One general vision 
system, serving all these behaviors, will be very complex and difficult to understand. It is 
difficult to oversee how changes, made to the system in order to improve performance in a 
certain behavior, will influence performance in other behaviors. Also in a general vision 
system, all algorithms will always be running. Even when not necessary in a specific 
behavior they will still use resources and limit the available resources for algorithms that do 
matter.
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Because the perception problem can differ so widely over different behaviors, we have 
developed a software architecture for a team of soccer robots, with a behavior-based 
hierarchy of modules (Lenser et al, 2002) in which each module is treated and implemented 
as a separate sense-think-act loop. We will show that this architecture performs similar or 
better than an architecture based on monolithic discipline based modules, even when we 
omit learning.  
With this new architecture we expect the following improvements: 
1. That each (sense-think-act) module is simpler and hence can be better understood and       

used to design other behaviors (copy-past-modify) by other developers.  
2. That effectively less and less complicated, code is running in the new situation then it 

was in the old situation. The crux in this is that in the old situation the code that was 
running not always contributed to the behavior, but was merely there for “general-
purposeness”.

3. That our goalkeeper performs better and more robust because it can use information on 
its location and behavior (action).  

Location and behavior information (point 3) can be used either in improving the self 
localisation algorithms, which we call behavior specific self localisation or it can directly be 
used in optimizing the image processing algorithms, which we call behavior-specific image 
processing. Below we will discuss both options.  

3.1 Behavior specific self localisation 

With behavior specific self localisation, we make the self localisation algorithms specific for 
different behaviors. The first reason why behavior-specific self localisation can increase 
performance, is because it can use information on the kind of action the robot is performing. 
E.g. when particle filters are used for self localization, one always has to make a trade-off 
between robustness and speed. If the particles are updated slowly on new sensor inputs, the 
system is more robust against false sensor inputs. If the particles are updated fast, the 
system can be accurate despite unmodeled movements, such as uncertainty in odometry 
evaluation, collisions, or a pickup (kidnap) by the referee. With behavior-specific self 
localistation we can go for speed or robusness when required. When a robot is positioning 
(e.g. a goalie standing in the goal, or a field player walking around), the sensor input is 
qualitatively high and accurate localization is our aim; hence we use a fast update of the 
particles. When a robot is handling a ball, the sensor input has a low quality and the 
updating of the robot’s pose is less urgent; hence we use a slow update of the particles. 
Secondly, behavior-specific self localisation can increase performance by using the location 
information for a certain behavior. If a postion is already well known, the self locator could 
(partly) discard percepts indicating a totally different position. The self locator could also 
directly be told on which percepts it should put more or less emphasis on. E.g. For the 
goalie, the self localisation could always make less use of perceptions of its own goal. For a 
striker, the self localisation could put extra emphasis on detections of the opponent’s goal.  
In most situations, the best way to implement behavior-specific self localisation is to build 
one general self locator that takes paramters that can be set from the behaviors. These 
parameters could indicate the overall update rate of all particles, the rate of rejecting outlier 
measurments, and a weight for each possible detected object (blue goal, yellow goal, lines, 
blue flag… etc). If the situation or requirement in a certain behavior is really different from 
that in other behaviors, one could decide to implement an entire new self locator algorithm.  
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3.2 Behavior specific image processing 

With behavior specific image processing, we optimize the image processing algorithms for 
different behaviors. What the robot can see, highly depends on the robot's location, which is 
strongly correlated with its behavior.  There are several ways in which location information 
can lead to better localisation. 
At first, unexpected objects can be discarded. The great advantage of discarding unexpected 
objects, is that they can not lead to false positives. We have experienced that many of the 
localisation problems are not due lack of good measuremenst, but because it thinks it sees 
objects where they are not ( see Figure 5).  

Figure 5. False positive. The robot not only detects the yellow goal, but also mistakes some 
blue in the playing field for a blue goal 

Note that discarding unexpected objects could also be done in the self locator. The 
advantage of discarding them in an earlier stage, i.e. in the image processing stage is that the 
locator algorithms don’t need to be executed, which saves CPU cycles.  
Secondly, behavior specific image processing can be used to allow for different detection 
schemes for the same object, using e.g. distance information. A goalie for example, will see 
the opponent flag at far distance (fig 6a), while an attacker might come much closer to the 
same flag (fig 6b). Using different algorithms for the two situations could improve the 
performance of the detection. 

Figure 6. Images of a blue/pink flag; a) at 5 meter distance; b) at 30 cm distance 

Finally, we could use image processing algorithms that are even more role c.q. behavior 
specific. E.g. a goalie could be localising mainly on the detection of the lines surrounding the 
penalty area. A defender could be localising mainly on the detection of the circle in the 
middle of the playing field.  
The way we have implemented behavior-specific image processing, is by making the image 
processing completely modular. The detection of a goal, flag, lines or ball are all in separate 
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modules and can be called independently. When an algorithm is called it takes a parameter, 
indicating e.g. the color of the object (blue/yellow), and the size (far/near). Every cycle, 
when the central image processing module is called, it will call a set of image processing 
algorithms, dependent on the behavior. In chapter 6 we will show the other advantages we 
found by making image processing completely modular.  

3.3 Drawbacks of behavior based vision

There are limits and drawbacks to applying multiple sense-think-act loops to the vision 
system of robots.  
The first thing to consider is that the use of location information in the image processing and 
self localization for discarding unexpected objects, gives rise to the chance of entering a local 
loop: when the robot would discard information based on a wrong assumption of its own 
position, it could happen the robot would not be able to retrieve its correct position. For 
avoiding local loops, periodic checking mechanisms on the own position are required (on a 
lower pace). Also one could restrict the runtime of behaviors in which much information is 
discarded and invoke some relocation behavior to be executed periodically.        
The second drawback is, that due to less reusability, and more implementations of 
optimized code, the overall size of the system will grow. This influences the time it will take 
to port code to a new robot, or to build new robot-software from scratch.  
The third drawback is that for every improvement of the system (for every sense-think-act 
loop), some knowledge is needed of the principles of image processing, mechanical 
engineering, control theory, AI and software engineering. Because of this, behavior-
designers will probably reluctant to use the behavior-specific vision system. Note, however, 
that even if behavior designer are not using behavior-dependent vision, the vision system 
can still be implemented. In worst case a behavior designer can choose to select the general 
version of the vision system for all behaviors, and the performance will be the same as 
before.

4. Algorithms in old software 

Figure 7. Simplified software architecture for a soccer-playing Aibo robot in the Dutch Aibo 
Team
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In this paragraph, an overview will be given of the software architecture of soccer robots 
(Sony Aibo ERS-7) in the Dutch Aibo Team (Oomes et al, 2004), which was adapted in 2004 
from the code of the German Team of 2003 (Rofer et al, 2003). This software was used as a 
starting point for implementing the behavior-based vision system as is described in the next 
paragraph. The DT2004 software was also used for testing the performance of new systems. 
In Fig 7. A simplified overview of the DT2004 software architecture is depicted. The 
architecture can be seen as one big sense-think-act loop. Sensor measurements are processed 
by, Image Processing, Self Localisation, Behavior Control and Motion Control sequentially, 
in order to plan the motions of the actuators. Note that this simplified architecture only 
depicts the modules most essential to our research. Other modules, e.g. for detecting 
obstacles or other players, and modules for controlling LEDs and generating sounds, are 
omitted from the picture.      

4.1 Image Processing 

The image processing is the software that generates percepts (such as goals, flags, lines and 
the ball) from the sensor input (camera images).  In the DT2004 software, the image 
processing uses a grid-based state machine (Bruce et al, 2000), with segmentation primarily 
done on color and secondarily by shapes of objects. 
Using a color table  
A camera image consists of 208*160 pixels. Each of these pixels has a three-dimensional 
value p(Y,U,V). Y represents the intensity; U and V contain color-information; each having 
an integer value between 0 and 254. In order to simplify the image processing problem, all 
these 254*254*254 possible pixel-values are mapped onto only 10 possible colors: white, 
black, yellow, blue, sky-blue, red, orange, green, grey and pink, the possible colors of objects 
in the playing field. This mapping makes use of a color-table, a big 3-dimensional matrix 
which stores which pixel-value corresponds to which color. This color-table is calibrated 
manually before a game of soccer. 
Grid-based image processing 
The image processing is grid-based. For every image, first the horizon is calculated from the 
known angles of the head of the robot. Then a number of scan-lines is calculated 
perpendicular to that horizon. Each scan-line then is then scanned for sequences of colored-
pixels. When a certain sequence of pixels indicates a specific object, the pixel is added to a 
cluster for that possible object. Every cluster will be evaluated to finally determine whether 
or not an object was detected. This determination step uses shape information, such as the 
width and length of the detected cluster, and the position relative to the robot.  
Grid-based image processing is useful not only because it processes only a limited number 
of pixels, saving CPU cycles, but also that each image is scanned relative to the horizon. 
Therefore processing is independent of the position of the robots’ head (which varies widely 
for an Aibo Robot).   

4.2 Self Localisation 

The self localisation is the software that obtains the robot‘s pose (x,y, ø) from output of the 
image processing, i.e. the found percepts. The approach used in the Dutch Aibo Team is 
particle filtering, or Monte Carlo Localization, a probability-based method (Thrun, 2002); 
(Thrun et al, 2001); (Röfer & Jungel, 2003). The self locator keeps tracks of a number of 
particles, e.g. 50 or 100.  
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Each particle basically consists of a possible pose of the robot, and of a probability. Each 
processing cycle consists of two steps, updating the particles and re-sampling them. The 
updating step starts by moving all particles in the direction that the robot has moved 
(odometry), adding a random offset. Next, each particle updates its probability using 
information on percepts (flags, goals, lines) generated by the image processing. Also in this 
step the pose of the particles can be slightly updated, e.g. using the calculated distance to the 
nearest lines. In the second step, all particles are re-sampled. Particles with high 
probabilities are multiplied; particles with low probabilities are removed.  
A representation of all 50 particles is depicted in figure 8.  

Figure 8. The self localization at initialization; 100 samples are randomly divided over the 
field. Each sample has a position x, y, and heading in absolute playing-field coordinates. The 
robot‘s pose (yellow robot) is evaluated by averaging over the largest cluster of samples. 

4.3 Behavior Control 

Figure 9. General simplified layout of the first layers of the behavior Architecture of the 
DT2004-soccer agent. The rectangular shapes indicate options; the circular shape indicates a 
basic behavior. When the robot is in penalized state and standing, all the dark-blue options 
are active 
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Behavior control can be seen as the upper command of the robot. As input, behavior control 
takes high level information about the world, such as the own pose, the position of the ball 
and of other players. Dependent on its state, behavior control will then give commands to 
motion control, such as walk with speed x, look to direction y, ... Behavior control in the 
DT2004 software is implemented as one gigantic state machine, written in XABSL (Lötzsch 
et al, 2004), an XML based behavior description language. The state machine distinguishes 
between options, states and basic behaviors. Each option is a separate XABSL file. Within 
one option, the behavior control can be in different states. E.g. in Figure 9, the robot is in the 
penalized state of the play soccer option, and therefore calls the penalized option. Basic 
behaviors are those behaviors that directly control the low level motion. The stand behavior 
in Figure 9 is an example of a basic behavior. 

4.4 Motion control 

Motion control is the part that calculates the joint-values of the robots joints. Three types of 
motion can be identified in the DT2004 software: 

• Special actions  
A special action is a predefined set of joint-values that is executed sequentially, controlling 
both leg and head joints. All kicking motions, get-up actions and other special movements 
are special actions.   

• Walking engine 
All walking motions make use of an inverse kinematics walking engine. The engine takes a 
large set of parameters (approx. 20) that result in walking motions. These parameters can be 
changed by the designer. The walking engine mainly controls the leg joints.   

• Head motion 
The head joints are controlled by head control, independently from the leg joints. The head 
motions are mainly (combinations of) predefined loops of head joint values. The active head 
motion can be controlled by behavior control.  

5. Behavior-Based perception for a goalie 

This paragraph describes our actual implementation of the behavior-based vision system for 
a goalie in the Dutch Aibo Team. It describes the different sense-think-act loops identified, 
and the changes made in the image processing and self localisation for each loop. All 
changes were implemented starting with the DT2004 algorithms, described in the previous 
paragraph. 

5.1 Identified behaviors for a goalie.  

For the goalkeeper role of the robot we have identified three different mayor behaviors, 
which each will be implemented as a separate sense-think-act loops. When the goalie is not 
in its goal (Figure 11a), it will return to its goal using the return-to-goal behavior. When there 
is no ball in the penalty area (Figure 11b) , the robot will position itself between the ball and 
the goal, or in the center of the goal when there is no ball in sight. For this the goalie will call 
the position behavior. When there is a ball in the penalty area (Figure 11c), the robot will call 
the clear-ball behavior to remove the ball from the penalty area. Figure 10 shows the software 
architecture for the goalie, in which different vision and localisation algorithms are called 
for the different behaviors. The 3 behaviors are controlled by a meta-behavior (Goalie in 
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Figure 10) that may invoke them. We will call this meta-behavior the goalie’s governing 
behavior.

Figure 10. Cut-out of the hierarchy of behaviors of a soccer robot, with emphasis on the 
goalkeeper role. Each behavior (e.g. position) is an independently written sense-think-act loop 

a)  b)  c) 
Figure 11. Basic goalie behaviors: a) Goalie-return-to goal, b) Goalie-position, c) Goalie-clear 
ball. For each behavior a different vision system is used and a different particle filter setting 

5.2 Specific perception used for each behavior.  

For each of the 3 behaviors, identified in Figures 10 and 11, we have adapted both the image 
processing and self localization algorithms in order to improve localization performance. 

• Goalie-return-to-goal. When the goalie is not in his goal area, he has to return to it. The 
goalie walks around scanning the horizon. When he has determined his own position on the 
field, the goalie tries to walk straight back to goal - avoiding obstacles - keeping an eye on 
his own goal. The perception algorithms greatly resemble the ones of the general image 
processor, with some minor adjustments.  
Image-processing searches for the own goal, line-points, border-points and the two corner 
flags near the own goal. The opponent’ goal and flags are ignored.  
For localisation, an adjusted version of the old DT2004 particle filter is used, in which a 
detected own goal is used twice when updating the particles. 

• Goalie- position. The goalie is in the centre of its goal when no ball is near. It sees the 
field-lines of the goal area often and at least one of the two nearest corner flags regularly. 
Localisation is mainly based of the detection of the goal-lines; the flags are used only to 
correct if the estimated orientation is off more than 450 off. This is necessary because the 
robot has no way (yet) to distinguish between the four lines surrounding the goal.   
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Image processing is used to detect the lines of the goal-area and for detecting the flags. The 
distance and angle to goal-lines are detected by applying a Hough transform on detected 
line-points.  
For the detection of the own flags a normal flag detection algorithm is used, with the 
adjustment that too small flags are rejected, since the flags are expected relatively near.  
For self localization, a special particle filter was used that localized only on the detected 
lines and flags. A background process verifies the “in goal” assumption on the average 
number of detected lines and flags. 

• Goalie-clear-ball. If the ball enters the goal area, the goalie will clear the ball.  
The image processing in this behavior is identical to that in the goalie-position behavior. The 
goalie searches for the angles and distances to the goal-lines, and detects the flags nearest to 
the own goal.  
However, the self localization for the clear_ball behavior is different from that of the position
behavior. When the goalie starts clearing the ball, the quality of the perception input will be 
very low. We have used this information, both for processing detected lines, and for 
processing detected flag.  
For flags we have used a lower update rate: it will take longer before the detection of flags at 
a different orientation will result in the robot changing its pose. Lines detected at far off 
angles or distances, resulting in a far different robot-pose, are ignored. The reason for this 
mainly is that while clearing the ball, the goalie could come outside its’ penalty area. In this 
case we don’t want the robot to mistake a border line or the middle-line for a line belonging 
to the goal area.   
When the goalie clears a ball, there is no checking mechanism to check the “in goal” 
assumption, as was in the position behavior. When the goalie has finished clearing the ball 
and has returned to the position behavior, this assumption will be checked again.  

6. Object-Specific Image Processing 

In other to enable behavior-dependent image processing, we have split up the vision system 
into a separate function per object to detect. We have distinguished between types of objects, 
(goals, flags), color of objects (blue/yellow goal), and take a parameter indicating the size of 
the objects (far/near flag). In stead of using one general grid and one color table for 
detecting all objects (Figure 12 left), we define a specific grid and specific color-table for each 
object (Figure 12 right).  
For example, for detecting a yellow/pink flag (Figure 13b), the image is scanned only above 
the horizon, limiting the used processing power and reducing the chance on an error. For 
detecting the lines or the ball, we only can scan the image below the horizon (Figure 13a).  
For each object we use a specific color-table (CT). In general, CTs have to be calibrated 
(Bruce at al, 2000). Here we only calibrated the CT for the 2 or 3 colors necessary for 
segmentation. This procedure greatly reduces the problem of overlapping colors. Especially 
in less well lighted conditions, some colors that are supposed to be different appear with 
identical Y,U,V values in the camera image. An example of this can be seen in Figures 14a-f. 
When using object-specific color tables, we don’t mind that parts of the “green” playing 
field have identical values as parts of the “blue” goal. When searching for lines, we define 
the whole of the playing field as green (Figure 14e). When searching for blue goals, we 
define the whole goal as blue (Figure 14c). A great extra advantage of having object-specific 
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color-tables is that it takes much less time to calibrate them. Making a color table as in 
Figure 14b, which has to work for all algorithms, can take a very long time.  

Figure 12.  General versus object-specific image processing. Left one can see the general 
image processing. A single grid and color-table is used for detecting all candidates for all 
objects. In the modular image processing (right), the entire process of image processing is 
object specific 

       a)               b)      c) 
Figure 13. Object-specific image processing: a) for line detection we scan the image below 
the horizon, using a green-white color table; b) for yellow flag detection we scan above the 
horizon using a yellow-white-pink color table; c) 2 lines and 1 flag detected in the image 

Figure 14. a) camera image; b) segmented with a general color-table; c) segmented with a 
blue/green color-table; d) segmented with a blue/white/pink color-table for the detection 
of a blue flag; e) segmented with a green/white color-table; f) segmented with a 
yellow/green color-table for the detection of the yellow goal
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7. Performance Measurements 

7.1 General setup of the measurements 

In order to prove our hypothesis that a goalie with a behavior-based vision system is more 
robust, we have performed measurements on the behavior of our new goalie.  
The localisation performance is commonly evaluated in terms of accuracy and/or 
reactiveness of localisation in test environments dealing with noisy (Gaussian) sensor-
measurements (Röfer & Jungel, 2003). We, however, are interested mainly in terms of the 
system’s reliability when dealing with more serious problems such as large amounts of false 
sensor data input, or limited amounts of correct sensor input. 
The ultimate test is how much goals does the new goalie prevent under game conditions in 
comparison with the old goalie? Due to the hassle and chaotic play around the goal when 
there is an attack, the goalie easily loses track of where he is. So our ultimate test is now 
twofold:
1. How fast can the new goalie find back his position in the middle of the goal on a 

crowded field in comparison with the old goalie 
2. How many goals can the new goalie prevent on a crowded field within a certain time 

slot in comparison with the old goalie 
All algorithms for the new goalie are made object specific, as described in chapter 4. Since 
we also want to know the results of using behavior-based perception, results of all real-
world scenarios are compared not only to results obtained with the DT2004 system, but also 
with a general vision system that does implement all object-specific algorithms.  
The improvements due to object-specific algorithms are also tested offline on sets of images.  

7.2 Influence of Object-Specific Image Processing 

We have compared the original DT2004 image processing with a general version of our 
NEW image processing; meaning that the latter does not (yet) use behavior specific image 
processing nor self-localization. In contrast with the DT2004 code, the NEW approach does 
use object specific grids and color tables. Our tests consisted of, searching for the 2 goals, the 
4 flags, and all possible line- and border-points. The images sequences were captured with 
the robot’s camera, under a large variety of lighting conditions (Figure 15).  A few images 
from all but one of these lighting condition sequences were used to calibrate the Color-
Tables (CTs). For the original DT2004 code, a single general CT was calibrated for all colors 
that are meaningful in the scene, i.e.: blue, yellow, white, green, orange and pink. This 
calibration took three hours. For the NEW image processing code we calibrated five 3-color 
CTs (for the white-on-green lines, blue-goal, blue-flag, yellow-goal, and yellow-flag 
respectively). This took only one hour for all tables, so 30% of the original time. 

Figure 15. Images taken by the robots camera under different lighting conditions: a) Tube-
light; b) Natural-light; c) Tube-light + 4 floodlights + natural light. 
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For all image sequences that we had acquired, we have counted the number of objects that 
were detected correctly (N true) and detected falsely (N false). We have calculated also the 
correctly accepted rate (CAR) being the number of objects that were correctly detected 
divided by the number of objects that were in principle visible. Table 1 shows the results on 
detecting flags and lines. The old DT2004 image processor uses a general grid and a single 
color table, the NEW modular image processor uses object-specific grids and color-tables 
per object. The calculation of the correctly accepted rate is based on 120 flags/goals that 
were in principle visible in the first 5 image sequences and 360 flags/goals in principle 
visible in the set where no calibration settings were made for. The image sequences for line 
detection each contained on average 31-33 line-points per frame.  

Goals and flags DT2004   NEW   DT2004 NEW 

 N true
CAR
(%)

N false N true 
CAR
(%)

N false
Lines
 (%) 

Lines
(%)

1 flood light 23 19 0 65 54 0 18 94 

Tube light 54 45 9 83 83 1 58 103 

4 flood lights 86 72 0 99 99 0 42 97 

Tube +flood lights 41 34 1 110 92 0 24 91 

Tube,flood+natural 39 33 0 82 68 0 42 91 

Natural light 47 39 0 68 57 0   

Non calibration set 131 44 28 218 73 16   

Table 1. The influence of object-specific algorithms for goal, flag and line detection 

Table 1 shows that due to using object specific grids and color tables, the performance of the 
image processing largely increased. The correctly accepted rate (CAR) goes up from about 
45 % to about 75%, while the number of false positives is reduced. Moreover, it takes less 
time to calibrate the color-tables. The correctly accepted rate of the line detection even goes 
up to over 90%, also when a very limited amount of light is available (1 Flood light). 

7.4 Influence of behavior based perception 

In the previous tests we have shown the improvement due to the use of object specific grids 
and color tables. Below we show the performance improvement due to behavior based 
switching of the image processing and the self localization algorithm (the particle filter). We 
used the following real-world scenarios. 

• Localize in the penalty area. The robot is put into the penalty area and has to return to a 
predefined spot as many times as possible within 2 minutes. 

• Return to goal. The robot is manually put onto a predefined spot outside the penalty 
area and has to return to the return-spot as often as possible within 3 minutes. 

• Clear ball. The robot starts in the return spot; the ball is manually put in the penalty 
area every time the robot is in the return spot. It has to clear the ball as often as possible 
in 2 minutes. 

• Clear ball with obstacles on the field. We have repeated the clear ball tests but then with 
many strange objects and robots placed in the playing field, to simulate a more natural 
playing environment.
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Figure 16. Results for localisation in the penalty area. The number of times the robot can re-
localise in the penalty area within 2 minutes. The old DT2004 vision system cannot localise 
when there is little light (TL). The performance of the object specific image processing 
(without specific self localisation) is shown by the “flags and lines” bars. In contrast with the 
DT2004 code, the striker uses object specific image processing. The goalie uses object specific 
image processing, behavior based image processing and behavior based self localisation 

In order to be able to distinguish between the performance increase due to object-specific 
grids and color-tables, and the performance increase due to behavior-dependent image 
processing and self localisation, we used 3 different configurations. 

• DT2004: The old image processing code with the old general particle filter. 

• Striker: The new object-specific image processing used in combination with the old 
general particle filter of which the settings are not altered during the test. 

• Goalie: The new object-specific image processing used in combination with object-
specific algorithms for detecting the field lines, and with a particle filter of which the 
settings are altered during the test, depending on the behavior that is executed (as 
described in chapter 5). 

The results can be found in Figures 16-19. 

Figure 17. Results of the return to goal test. The robot has to return to its own goal as many 
times as possible within 3 minutes. The striker vision systems works significantly better 
than the DT2004 vision system. There is not a very significant difference in overall 
performance between the striker (no behavior-dependence) and the goalie (behavior 
dependence). This shows that the checking mechanism of the “in goal” assumption works 
correctly 
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Figure 18. (left). Results of the clear ball test. The robot has to clear the ball from the goal 
area as often as he can in 2 minutes. Both the striker and the goalie vision systems are more 
robust in a larger variety of lighting conditions than the DT2004 vision system (that uses a 
single color table). The goalie’s self-locator, using detected lines and the yellow flags, works 
up to 50 % better than the striker self-locator, which locates on all line-points, all flags and 
goals 

Figure 18 (right). Results of the clear ball with obstacles on the field test. The goalie vision 
system, which uses location information to disregard blue flags/goals and only detects large 
yellow flags, is very robust when many unexpected obstacles are visible in or around the 
playing field.

8. Results 

• The impact of behavior-based perception can be seen from the localization test in the 
penalty area (Figure 16) and from the clear-ball tests (Figure 18). The vision system of 
the goalie, with behavior based vision and self localisation, performs > 50 % better on 
the same task as a striker robot with a vision system without behavior-based perception.  

• With object-specific grids and color-tables, the performance of the image processing 
(reliability) under variable lighting conditions has increased with 75-100% on sets of off-
line images, while the color calibrating time was reduced to 30%. 

• Behavior-based perception and object-specific image processing combined allows for 
localization in badly lighted conditions, e.g. with TL tube light only (Figure 16-18). 

• The impact of discarding unexpected objects on the reliability of the system can most 
clearly be seen from the clear ball behavior test with obstacles on the field (Figure 18, 
right). With TL + Floods, the striker apparently sees unexpected objects and is unable to 
localize, whereas the goalie can localize in all situations.  

• Using all object specific image processing algorithms at the same time requires the same 
CPU load as the old general DT2004 image processor. Searching for a limited number of 
objects in a specific behavior can therefore reduce the CPU load considerably. 

• Due to the new architecture, the code is more clean and understandable; hence better 
maintainable and extendable. The main drawback is that one has to educate complete 
system engineers instead of sole image processing, software, AI, and mechanical 
experts.
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