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1. Introduction 

In the last two decades new identification and control tools, like Neural Networks (NN), 
have been used for biotechnological plants (Boskovic & Narendra, 1995). Among several 
possible network architectures the ones most widely used are the Feedforward NN 
(FFNN) and the Recurrent NN (RNN), (Haykin, 1999). The main NN property namely the 
ability to approximate complex non-linear relationships without prior knowledge of the 
model structure makes them a very attractive alternative to the classical modeling and 
control techniques. This property has been proved for both types of NNs by the universal 
approximation theorem (Haykin, 1999). The preference given to NN identification with 
respect to the classical methods of process identification is clearly demonstrated in the 
solution of the “bias-variance dilemma” (Haykin, 1999). The FFNN and the RNN have 
been applied for Distributed Parameter Systems (DPS) identification and control too. In 
(Deng & Li, 2003; Deng et al. 2005; Gonzalez et al, 1998), an intelligent modeling approach 
is proposed for Distributed Parameter Systems (DPS). In  ( Gonzalez et al, 1998), it is 
presented a new methodology for the identification of DPS, based on NN architectures, 
motivated by standard numerical discretization techniques used for the solution of Partial 
Differential Equations (PDE). In (Padhi et al, 2001), an attempt is made to use the 
philosophy of the NN adaptive-critic design to the optimal control of distributed 
parameter systems. In (Padhi & Balakrishnan, 2003) the concept of proper orthogonal 
decomposition is used for the model reduction of DPS to form a reduced order lumped 
parameter problem. In (Pietil & Koivo, 1996), measurement data of an industrial process 
are generated by solving the PDE numerically using the finite differences method. Both 
centralized and decentralized NN models are introduced and constructed based on this 
data. The multilayer feedforward NN realizing a NARMA model for systems 
identification has the inconvenience that it is sequential in nature and require input and 
feedback tap-delays for its realization. In (Baruch et al, 2002; Baruch et al, 2004; Baruch et 
al, 2005a; Baruch et al, 2005b; Baruch et al, 2007a; Baruch et al, 2007b; Baruch et al, 2008; 
Baruch & Mariaca-Gaspar, 2009; Baruch & Mariaca-Gaspar, 2010), a new completelly 
parallel canonical Recurrent Trainable NN (RTNN) architecture, and a dynamic BP 
learning algorithm has been applied for systems identification and control of nonlinear 
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plants with equal input/output dimensions, obtaining good results. The RTNN do not 
need the use of tap delays and has a minimum number of weights due to its Jordan 
canonical structure. In the present paper, this RTNN model will be used for identification, 
and direct control, of a digestion anaerobic DPS of wastewater treatment, (Aguilar-
Garnica, 2006), modeled by PDE/ODE (Ordinary Differential Equations), and simplified 
using the Orthogonal Collocation Method (OCM) in four collocation points of the fixed 
bed and one more- for the recirculation tank. We needs to use this simplified ODE 
mathematical model as an input/output data generator for RTNN BP learning instead of 
the real plant. Furthermore the mathematical model description of the plant help us to 
understand the work and the meaning of all process variables of this complex 
biotechnological plant. Here the plant identification by means of RTNN BP learning will 
be changed by the RTNN Levenberg Marquardt (L-M) second order learning, (Baruch et 
al, 2009). This distributed nonlinear parameter plant, described by ODE, has excessive 
high-dimensional measurements which means that the plant output dimension is greater 
than the plant control input one (rectangular system), requiring to use learning by data 
fusion technique and special reference choice. Furthermore the used control laws are 
extended with an integral term, (Baruch et al.2005b; Baruch et al, 2007b), so to form an 
integral plus state control action, capable to speed up the reaction of the control system 
and to augment its resistance to noise. 

2. Mathematical description of the anaerobic digestion bioprocess plant 

The development of the anaerobic digestion process PDE model is based on the two-step 

(acidogenesis-methanization) mass-balance and bacterial kinetics involving the Monod 

equations of the specific growth rates (eq. 1-4). The model incorporates electrochemical 

equilibria in order to include the alkalinity which has to play a central role in the related 

monitoring and control strategy of a wastewater treatment plant. The dynamics of the 

species in the recirculation tank is described by ODE (eq. 7). The parameters of this model 

are obtained by parameter identification and validation (see Bernard et al., 2001). The 

biochemical nature of the processes of waste degradation is described in (Schoefs et al., 

2003, and Bernard et al., 2001) and in cited bibliography. The physical meaning of all 

variables and constants (also its values), are summarized in Table 1. The complete 

analytical model of wastewater treatment anaerobic bioprocess (see Fig. 1), taken from 

(Schoefs et al. 2003 and Aguilar-Garnica et al., 2006), could be described by the following 

system of PDE: 
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Fig. 1. Block-diagram of anaerobic digestion bioreactor 

 

Variable Units Name Value 

z z[0,1] Space variable  

t D Time variable  

Ez m2/d Axial dispersion coefficient 1 

D 1/d Dilution rate 0.55 

H m Fixed bed length 3.5 

X1 g/L Concentration of acidogenic bacteria  

X2 g/L Concentration of methanogenic bacteria  

S1 g/L Chemical Oxygen Demand  

S2 mmol/L Volatile Fatty Acids  

  Bacteria fraction in the liquid phase 0.5 

k1 g/g Yield coefficients 42.14 

k2 mmol/g Yield coefficients 250 

k3 mmol/g Yield coefficients 134 

1 1/d Acidogenesis growth rate  

2 1/d Methanogenesis growth rate  

1max 1/d Maximum acidogenesis growth rate 1.2 

2s 1/d Maximum methanogenesis growth rate 0.74 

K1s’ g/g Kinetic parameter 50.5 

K2s’ mmol/g Kinetic parameter 16.6 

KI2’ mmol/g Kinetic parameter 256 

QT m3/d Recycle flow rate 0.24 

VT m3 Volume of the recirculation tank 0.2 

S1T g/L Concentration of Chemical Oxygen Demand in the recirculation tank  

S2T mmol/L Concentration of Volatile Fatty Acids in the recirculation tank  

Qin m3/d Inlet flow rate 0.31 

VB m3 Volume of the fixed bed 1 

Veff m3 Effective volume tank 0.95 

S1,in g/L Inlet substr. Concentration  

S2,in mmol/L Inlet substr. Concentration  

Table 1.  Summary of the variables in the plant model 
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For practical purpose, the full PDE bioprocess model is reduced to an ordinary differential 

equations system using the OCM  (Bialecki & Fairweather, 2001). The precision of the 

orthogonal collocation method of approximation of the PDE model depended on the 

number of measurement (collocation) points, but the approximation is always exact in that 

points. If the number of points is very high and the point positions are chosen 

inappropriately, the ODE model could loose identifiability. 

Here, the ODE plant model is used as a plant data generator, illustrating the centralized 

neural identification and control of the DPS, so, the point number not need to be too high. 

Our reduced order model have only four points, (0.2H, 0.4 H, 0.6H, 0.8H), but it generated 

18 measured variables as: X1 (acidogenic bacteria), X2 (methanogenic bacteria), S1 (chemical 

oxygen demand) and S2 (volatile fatty acids), and the following variables in the recirculation 

tank: S1T (chemical oxygen demand) and S2T (volatile fatty acids). So the plant input/output 

dimensions are M=2, L=18. The reference set points generated for all that variables keep the 

form but differ in amplification due to its position. The plant ODE system model, obtained 

by OCM is described by the following system of ODE: 

    1, 2,
1, 1, 2, 2 ,, ,i i

i i i i

dX dX
D X D X

dt dt
        (8) 

 
2 2

1,
, 1, , 1, 1 1, 1,2

1 1

,
N N

i z
i j j i j j i i

j j

dS E
B S D A S k X

dt H
 

 
     (9) 

 
2 2

2,
, 1, , 2 , 2 1, 2, 3 2, 2,2

1 1

,
N N

i z
i j j i j j i i i i

j j

dS E
B S D A S k X k X

dt H
  

 
      (10) 

    1 2
1, 2 1 2, 2 2, ,T T T T

N T N T
T T

dS Q dS Q
S S S S

dt V dt V
      (11) 

     1
1 1

,1 , , 2 , ,
1

1
, ,

1 1 1 1

N

k k in kT k N k in kT i k i
i

R K K R
S S t S S S t S K S

R R R R


 

          (12) 

www.intechopen.com



Centralized Distributed Parameter Bioprocess  
Identification and I-Term Control Using Recurrent Neural Network Model 

 

179 

 2,1 2,
1

2, 2 2, 2

, ,N N i
i

N N N N

A A
K K

A A

 
   

   (13) 

  1 2
,, 1 ,l

m l mA l z           (14) 

   1 3 1
, , ,, , 1 2 , ,l l

m l m l m m l mB l l z z                (15) 

 2, 2, , 1, 2.i N m l N      (16) 

The reduced plant model (8)-(16), could be used as unknown plant model which generate 
input/output process data for centralized adaptive neural identification and control system 
design, based on the concepts, given in (Baruch et al., 2008; Baruch & Mariaca-Gaspar, 2009).  

3. Description of the RTNN topology and learning 

The more general BP rule for single neuron learning is the delta rule of Widrow and Hoff, 
given in Haykin, 1999. If we define the cost function of learning as: 

 2( ) (1 /2) ( ), ( ) ( ) ( )k e k e k t k y k      

where ( )k  is the cost function, e(k) is the neuron output error, y(k) is the neuron output 

signal, t(k) is the neuron output target signal, w(k) is the neuron weight, x(k) is the neuron 
input, we could write the following delta rule of neuron learning as: 

 ( 1) ( ) ( ), ( ) ( ) ( )w k w k w k w k e k x k        

We could generalise this delta rule and applied it for learning of multilayer feedforward, 
recurrent or mixed neural networks if we design and draw its topology in block form. Then 
using the diagrammatic method (see Wan & Beaufays, 1996) we could design the adjoint 
NN topology. The NN topology is used to execute the forward pass of the BP learning so to 
compute predictions of the input signals of NN weight blocks. The adjoint NN topology is 
used to execute the backward pass of the BP learning so to compute predictions of the error 
signals of the outputs of that NN weight blocks. So having both predictions we could 
execute the delta learning rule layer by layer and weight by weight. In the following part we 
will apply this simple methodology for the two layered RTNN topology and learning given 
in vector matrix form where the delta rule is generalized as vector product of the local error 
and local input RTNN vectors. 

3.1 RTNN topology and recursive BP learning 

The block-diagrams of the RTNN topology and its adjoint, obtained by means of the 
diagrammatic method of (Wan & Beaufays, 1996), are given on Fig. 2, and Fig. 3. Following 
Fig. 2, and Fig. 3, we could derive the dynamic BP algorithm of its learning based on the 
RTNN topology and its adjoined using the generalized delta rule, given above. The RTNN 
topology is described in vector-matrix form as: 

 1 2 1 2( 1) ( ) ( ), ,T TX k AX k BU k B B B U U U      (17) 
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 1 0 1 2 1( ) ( ), , , ( ) [ ( )], ( ) [ ( )]TV k CZ k C C C Z Z Z Z k G X k Y k F V k      (18) 

 ( ), 1i iA block diag A A    (19) 

The BP learning is described in the following general form: 

 ( 1) ( ) ( ) ( 1)W k W k W k W k         (20) 

Using the adjoint RTNN we could derive the BP learning for the RTNN weights applying 
the generalized delta rule as vectorial products of input and error predictions, as: 

 1 3 3( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( )T T TC k E k Z k B k E k U k A k E k X k       (21) 

 3( ( )) ( ) ( )Vec A k E k X k    (22) 

Where the error predictions are obtained from the adjoint RTNN as follows: 

 , , 2
1( ) ( ) ( ), ( ) [ ( )] ( ), [ ( )] [1 ( )]E k T k Y k E k F Y k E k F Y k Y k      (23) 

 

Fig. 2. Block diagram of the RTNN model 

 

Fig. 3. Block diagram of the adjoint RTNN model 

 
, , 2

2 1 3 2( ) ( ) ( ), ( ) [ ( )] ( ), [ ( )] [1 ( )]TE k C k E k E k G Z k E k G Z k Z k     (24) 

Here: X, Y, U are state, augmented output, and input vectors with dimensions N, (L+1), 
(M+1), respectively, where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden 
layer; the constant scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1) pre-
synaptic activity of the output layer; T is the (Lx1) plant output vector, considered as a 
RTNN reference; A is (NxN) block-diagonal weight matrix; B and C are [Nx(M+1)] and 
[Lx(N+1)]- augmented weight matrices; B0 and C0 are (Nx1) and (Lx1) threshold weights of 

the hidden and output layers; F[], G[] are vector-valued tanh()-activation functions with 

corresponding dimensions; F’[], G’[] are the derivatives of these tanh() functions, 
computed by (23), (24); W is a general weight, denoting each weight matrix (C, A, B) in the 
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RTNN model, to be updated; W (C, A, B), is the weight correction of W; ,  are 

learning rate parameters; C is a weight correction of the  learned matrix C; B is a weight 

correction of the learned matrix B; A is a weight correction of the learned matrix A; the 

diagonal of the matrix A is denoted by Vec() and equation (22) represents its learning as an 
element-by-element vector products; E, E1, E2, E3, are error vectors with appropriate 
dimensions, predicted by the adjoint RTNN model, given on Fig.3. The stability of the 
RTNN model is assured by the activation functions (-1, 1) bounds and by the local stability 
weight bound condition, given by (19). Below it is given a theorem of RTNN stability which 
represented an extended version of Nava’s theorem, (Baruch et al., 2008; Baruch & Mariaca-
Gaspar, 2009; Baruch & Mariaca-Gaspar, 2010). 

Theorem of stability of the BP RTNN. Let the RTNN with Jordan Canonical Structure is 
given by equations (17)-(19) (see Fig.2) and the nonlinear plant model, is as follows: 

 ( 1) [ ( ), ( )], ( ) [ ( )]p p p pX k G X k U k Y k F X k    (25) 

where: {Yp (), Xp (), U()} are output, state and input variables with dimensions L, Np, M, 

respectively; F(), G() are vector valued nonlinear functions with respective dimensions. 

Under the assumption of RTNN identifiability made, the application of the BP learning 

algorithm for A(), B(), C(), in general matricial form, described by equation (20)-(24), and 

the learning rates η (k),  (k) (here they are considered as time-dependent and normalized 

with respect to the error) are derived using the following Lyapunov function: 

 1 2( ) ( ) ( ),L k L k L k   (26) 

Where: 1L (k)   and  2L (k)  are given by: 
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L k e k  
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Here:                  * * *, , ,A B CW k A k A W k B k B W k C k C       are vectors of the 

weight estimation error; * * *(A ,B ,C ) , ˆ ˆˆ(A(k),B(k),C(k))  denote the ideal neural weight and 

the estimate of the neural weight at the k-th step, respectively, for each case. Then the 
identification error is bounded, i.e.: 

          1 21 1 1 0,
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where the condition for 1L (k+1)<0  is that: 

max
max max
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1 1

2 2
; 

             

www.intechopen.com



 
Recurrent Neural Networks and Soft Computing 

 

182 

and for 2L (k+1)<0  we have: 

       2 2

2 max max1 1 1 .L k e k e k d k         

Note that maxη  changes adaptively during the RTNN learning and:  

 3

max
1

max ;i
i

   

where all: the unmodelled dynamics, the approximation errors and the perturbations, are 
represented by the d-term. The rate of convergence lemma used, is given below. The 
complete proof of that Theorem of stability is given in (Baruch et al., 2008). 

Rate of convergence lemma (Baruch & Mariaca-Gaspar, 2009). Let kL  is defined. Then, 

applying the limit's definition, the identification error bound condition is obtained as: 

   2 2

1

1
lim 1 .

k

k
t

E t E t d
k 

       

Proof.  Starting from the final result of the theorem of RTNN stability: 

         2 2
1L k k E k k E k d        

and iterating from k=0, we get:  

       2 2

1 1

1 0 1 ,
k k

t t

L k L E t E t dk
 

         

         2 2

1

1 1 0 0 .
k

t

E t E t dk L k L dk L

            

From here, we could see that d must be bounded by weight matrices and learning 

parameters, in order to obtain:    L k   .  

As a consequence:            , ,A k B k C k         

3.2 Recursive Levenberg-Marquardt RTNN learning 

The general recursive L-M algorithm of learning, (Baruch & Mariaca-Gaspar, 2009; Baruch & 

Mariaca-Gaspar, 2010)  is given by the following equations: 

          W 1 =Wk k P k Y W k E W k          , (27) 

      ,Y W k g W k U k       , (28) 

www.intechopen.com



Centralized Distributed Parameter Bioprocess  
Identification and I-Term Control Using Recurrent Neural Network Model 

 

183 

         2
2 ,pE W k Y k g W k U k        , (29) 

      
 

,

W W k

g W k U k
DY W k

W 

        ; (30) 

Where: W is a general weight matrix (A, B, C) under modification; P is a symmetric matrix 

updated by (37); DY[] is an Nw-dimensional gradient vector; Y is the RTNN output vector 
which depends of  the updated weights and the input; E is an error vector; Yp is the plant 
output vector, which is in fact the target vector. Using the same RTNN adjoint block 

diagram (see Fig.3), it was possible to obtain the values of the gradients DY[] for each 
updated weight, propagating the value D(k) = I through it. Applying equation (30) and 
using the RTNN adjoint (see Fig. 3) we could compute each weight matrix (A, B, C) in order 
to be updated. The corresponding gradient components are found as follows:  

      1,ij i jDY C k D k Z k    , (31) 

    '
1,i j iD k F Y k    , (32) 

      2, ,ij i jDY A k D k X k     (33) 

      2, ,ij i jDY B k D k U k     (34) 

      '
2, 1, .i i j i iD k G Z k C D k     (35) 

Therefore the Jacobean matrix could be formed as: 

           , , .ij ij ijDY W k DY C k DY A k DY B k        (36) 

The P(k) matrix was computed recursively by the equation: 

                 1 11 1 1 ;TP k k P k P k W k S W k W k P k                    (37) 

where the S(), and Ω() matrices were given as follows: 

            1 ,TS W k k k W k P k W k                (38) 

  
   

1 4 6

3 6

( )
( ) ;

0 1 0

1 0
; 10 10 ;

0

0.97 1; 10 0 10 .

T
T Y W k

W k

k

k P




  

            
      

   

 

 (39) 
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The matrix Ω() had a dimension (Nwx2), whereas the second row had only one unity 
element (the others were zero). The position of that element was computed by: 

  mod 1;i k Nw k Nw    (40) 

After this, the given up topology and learning are applied for an anaerobic wastewater 
distributed parameter centralized system identification and control. 

4. Description of the direct centralized recurrent neural control with I-term 

The block-diagram of the closed loop control system is given on Fig.4.   

 

Fig. 4. Block diagram of the direct adaptive I-term control containing RTNN identifier and 
RTNN controller 

It contained a recurrent neural identifier RTNN 1, and a RTNN-2 controller with entries – 
the reference signal R, the I-term signal V, and the state vector X estimated by the RTNN-1. 
The input of the plant is perturbed by a constant load perturbation Offset which took into 
account also the imperfect identification of the plant model. The RTNN-1, 2 topologies are 
given by (17)-(19), and the nonlinear plant model is given by equations (8)-(16). Let us to 
linearize the equations of the plant and the RTNN-2 controller and to introduce the equation 
of the I-term as: 

 0( 1) ( ) ( )cV k V k T E k    (41) 

where the dimension of the I-term vector V(k) is equal of the dimension of the error vector, 
equal of the dimension L of the plant output Yp(k). Now we could write the following z-
transfer functions with respect to V, X, R, corresponding to Fig.4: 

 1( ) ( )p p p pW z C zI A B   (42) 

 1( ) ( )i i iP z zI A B   (43) 

www.intechopen.com



Centralized Distributed Parameter Bioprocess  
Identification and I-Term Control Using Recurrent Neural Network Model 

 

185 

 
1

1( ) ( )c c cvQ z C zI A B   (44) 

 
1

2( ) ( )c c cxQ z C zI A B   (45) 

 
1

3( ) ( )c c crQ z C zI A B   (46) 

 
1

0( ) ( )I z T zI I    (47) 

The RTNN topology is controllable and observable, and the BP/L-M algorithms of learning 

are convergent, (see Baruch & Mariaca-Gaspar, 2009; Baruch & Mariaca-Gaspar, 2010). Then 

the identification and control errors tend to zero (Ei(k) = Yp(k) – Y(k) → 0 and Ec(k) = R(k) - 

Yp(k) → 0; k → ∞). This means that each transfer function given by equations (42)-(46) is 

stable with minimum phase. The z-transfer functions (42)-(47) are connected by the next 

equation, derived following the block-diagram of the Fig. 4:  

 

1
2 1

1
2 1 3

{ ( )[ ( ) ( )] ( ) ( )} ( )

( )[ ( ) ( )] [ ( ) ( ) ( )] ( ) ( ) ( )

p i p

p i p

I W z I Q z P z Q z I z Y z

W z I Q z P z Q z I z Q z R z W z Of z




  
     (48) 

Substituting (47) in (48), finally we obtained: 

 

1
2 1 0

1
2 1 0 3

{( 1) ( )[ ( ) ( )] ( ) } ( )

( )[ ( ) ( )] [ ( ) ( 1) ( )] ( ) ( )( 1) ( )

p i p

p i p

z I W z I Q z P z Q z T Y z

W z I Q z P z Q z T z Q z R z W z z Of z




   
       (49) 

The equation (49) showed that the closed-loop system is stable (Yp(k) → R(k); k → ∞) and 

that the I-term eliminated the constant perturbation Of(z) because the last term tended to 

zero when z tended to 1. 

The centralized DPS could be considered as a system with excessive measurements (L>M), 

where the Direct Adaptive Neural Control (DANC) performed a data fusion so to elaborate 

the control action. So we need to compute the plant input error for the learning of the 

RTNN-2 controller. An approximated way to obtain the input error from the output error is 

pre-multiplying it by the (CB)+  using the estimated C,B-matrices as follows:  

 
1( ) ( ) ( ),( ) [( ) ( )] ( )T T

u cE k CB E k CB CB CB CB     (50) 

5. Description of the indirect (sliding mode) centralized recurrent neural 
control with I-term 

The block-diagram of the control system is given on Fig.5. It contained a recurrent neural 

identifier RTNN 1, and a Sliding Mode (SM) controller with entries – the reference signal R, 

the output error Ec, and the states X and parameters A, B, C, estimated by the neural 

identifier RTNN-1. The total control is a sum of the SM control and the I-term control, 

computed using (41). 
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Fig. 5. Block diagram of the indirect adaptive SM control with I-term containing RTNN 
identifier and SM controller 

The linearization of the activation functions of the local learned identification RTNN-1 
model, which approximated the plant, leads to the following linear local plant model: 

 ( 1) ( ) ( ), ( ) ( )X k AX k BU k Y k CX k     (51) 

where L > M (rectangular system), is supposed. Let us define the following sliding surface 
with respect to the output tracking error: 

 
i=1

( 1) ( 1) ( - 1) ;  | | 1;
P

i iS k E k E k i        (52) 

where: S() is the sliding surface error function; E() is the systems local output tracking 

error; i are parameters of the local desired error function; P is the order of the error 
function. The additional inequality in (52) is a stability condition, required for the sliding 
surface error function. The local tracking error is defined as: 

 ( ) ( ) - ( );E k R k Y k  (53) 

where R(k) is a L-dimensional local reference vector and Y(k) is an local output vector with 
the same dimension. The objective of the sliding mode control systems design is to find a 
control action which maintains the systems error on the sliding surface assuring that the 
output tracking error reached zero in P steps, where P<N, which is fulfilled if: 

 ( 1) 0.S k    (54) 

As the local approximation plant model (51), is controllable, observable and stable, 
(Baruch et al., 2004; Baruch et al., 2008), the matrix A is block-diagonal, and L>M 
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(rectangular system is supposed), the matrix product (CB) is nonsingular with rank M, 
and the plant states X(k) are smooth  non- increasing functions. Now, from (51)-(54), it is 
easy to obtain the equivalent control capable to lead the system to the sliding surface 
which yields: 

  
1

( ) ( ) ( 1) ( 1) ,
P

eq i
i

U k CB CAX k R k E k i Of


            (55) 

        1

.
T T

CB CB CB CB
       (56) 

Here the added offset Of is a learnable M-dimensional constant vector which is learnt using 

a simple delta rule (see Haykin, 1999, for more details), where the error of the plant input is 

obtained backpropagating the output error through the adjoint RTNN model. An easy way 

for learning the offset is using the following delta rule where the input error is obtaned from 

the output error multiplying it by the same pseudoinverse matrix, as it is: 

        1 1 ( ) .Of k Of k Of k CB E k       (57) 

If we compare the I-term expression (41) with the Offset learning (57) we could see that they 

are equal which signifyed that the I-term generate a compensation offset capable to 

eliminate steady state errors caused by constant perturbations and discrepances in the 

reference tracking caused by non equal input/output variable dimensions (rectangular case 

systems). So introducing an I-term control it is not necessary to use an compensation offset 

in the SM control law (55). 

The SMC avoiding chattering is taken using a saturation function inside a bounded control 

level Uo, taking into account plant uncertainties. So the SMC has the form: 

   0

0
0

( ), if ( )

;( )
, if ( ) .

( )

eq eq

eq
eq

eq

U k U k U

U k U U k
U k U

U k

   
       (58) 

The proposed SMC cope with the characteristics of the wide class of plant model reduction 

neural control with reference model, and represents an indirect adaptive neural control, 

given by (Baruch et al., 2007a; Baruch et al., 2007b).   

6. Description of the centralized optimal control with I-term 

The block-diagram of the optimal control system is given on Fig.6. It contained a recurrent 

neural identifier RTNN 1, and an optimal controller with entries – the reference signal R, the 

output of the I-term block, and the states X and parameters A, B, C, estimated by the neural 

identifier RTNN-1. The optimal control algorithm with I-term could be obtained extending 

the linearized model (51) with the model of the I-term (41). The extended model is: 
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Fig. 6. Block diagram of the real-time optimal control with I-term containing RTNN 
identifier and optimal controller 

 ( 1) ( ) ( )e e e eX k A X k B U k    (59) 

Where: Xe = [X |V] T is a state vector with dimension (L + N) and: 

 
0

,
( )

e e

A B
A B

ICB CA I    (60) 

The optimal I-term control is given by: 

 1( ) [ ] [ ] ( )T T
e e e e e e eU k B P B R B P B X k    (61) 

Where the Pe is solution of the discrete Riccati equation: 

 1( 1) [ ( ) ( ) ( ( ) ) ( )]T T T
e e e e e e e e e e eP k A P k P k B B P k B R B P k A Q      (62) 

The given up optimal control is rather complicated and here it is used for purpose of 
comparison. 

7. Simulation results 

In this paragraph, graphical and numerical simulation results of system identification, 
direct, indirect (SM), and optimal control, with and without I-term, will be given. For lack of 
space we will give graphical results only for the X1 variable. Furthermore the graphical 
results for the other variables possessed similar behavior. The identification results are 
obtained from an RTNN identifier by a BP or L-M learning. For sake of comparison we give 
results of systems identification using both algorithms of learning. 
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7.1 Simulation results of the system identification 

The RTNN-1 performed real-time neural system identification (parameters and states 
estimation) of 18 output plant variables, which are: 4 variables for each collocation point 
z=0.2H, z=0.4H, z=0.6H, z=0.8H of the fixed bed as: X1 (acidogenic bacteria), X2 
(methanogenic bacteria), S1 (chemical oxygen demand) and S2 (volatile fatty acids), and the 
following variables in the recirculation tank: S1T (chemical oxygen demand) and S2T (volatile 
fatty acids). For lake of space we shall show some graphical results (see Fig. 7-9) only for the 
X1 variable. The topology of the RTNN-1 is (2, 20, 18), the activation functions are tanh(.) for 
both layers. The learning rate parameters for the L-M learning are as follows: the forgetting 

factor is =1, the regularization constant is ρ=0.001, and the initial value of the P matrix is an 
identity matrix with dimension 420x420. For the BP algorithm of learning the learning 

constants are chosen as =0, =0.4. The simulation results of RTNN-1 system identification 
are obtained on-line during 400 days with a step of 0.5 day in four measurement points 
using BP and L-M learning. The identification inputs used are combination of three 
sinusoids as: 

 1,

3
0.5 0.02sin 0.1sin 0.04 cos

100 100 100
inS t t t

                      (63) 

 2,

5 8
0.5 0.1sin 0.1sin 0.1cos

100 100 100
inS t t t

                      (64) 

 

 
 

Fig. 7. Graphical simulation results of the neural identification of the plant output X1 vs. 
RTNN output in four measurement points for the total time of L-M learning : a) z=0.2H,  b) 
z=0.4H, c) z=0.6H, d) z=0.8H 
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Fig. 8. Graphical simulation results of the neural identification of the plant output X1 vs. 
RTNN output in four measurement points for the beginning of L-M learning : a) z=0.2H,  b) 
z=0.4H, c) z=0.6H, d) z=0.8H 

 

 
 

Fig. 9. Three dimensional plot of the neural identification results of the plant output X1 in 
four measurement points of L-M learning : z=0.2H,  z=0.4H, z=0.6H, z=0.8H  
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Fig. 10. Graphical simulation results of the neural identification of the plant output X1 vs. 
RTNN output in four measurement points for the total time of BP learning : a) z=0.2H,  b) 
z=0.4H, c) z=0.6H, d) z=0.8H 

 

 
 

Fig. 11. Graphical simulation results of the neural identification of the plant output X1 vs. 
RTNN output in four measurement points for the beginning of BP learning: a) z=0.2H, b) 
z=0.4H, c) z=0.6H, d) z=0.8H 
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Fig. 12. Three dimensional plot of the neural identification results of the plant output X1 in 
four  measurement points of BP  learning : z=0.2H,  z=0.4H, z=0.6H, z=0.8H  

Table 2 and Table 3 compared the final Means Squared Error (MSE%) results of the L-M and 
BP neural identification of plant variables for the fixed bed and the recirculation tank. Note 
that the form of the plant process variables in the different measurement points is equal but 
the amplitude is different depending on the point position.  

 

Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 5.0843E-7 1.8141E-6 1.3510E-4 2.5476E-4 

z=0.4 3.1428E-7 1.3934E-6 8.3839E-5 1.8217E-4 

z=0.6 1.9617E-7 9.6976E-7 5.2303E-5 1.2200E-4 

z=0.8 1.2669E-7 6.6515E-7 3.3940E-5 8.1905E-5 

Recirculation tank   2.6318E-5 6.3791E-5 

Table 2. MSE of the centralized RTNN approximation of the bioprocess output variables in 
the collocation points, using the L-M RTNN learning 

 

Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 5.9981E-7 2.1006E-6 1.5901E-4 2.8282E-4 

z=0.4 3.7111E-7 1.6192E-6 9.8240E-5 2.0506E-4 

z=0.6 2.3145E-7 1.1308E-6 6.1119E-5 1.3908E-4 

z=0.8 1.4997E-7 7.7771E-7 3.9595E-5 9.4061E-5 

Recirculation tank   3.0694E-5 7.3404E-5 

Table 3. MSE of the centralized RTNN approximation of the bioprocess output variables in 
the collocation points, using the BP RTNN learning 

The graphical and numerical results of the centralized RTNN identification (see Fig. 7-12, 
and Tables 2, 3) showed a good RTNN convergence and precise plant output tracking (MSE 
is 2.5476E-4 for the L-M, and 2.8282E-4 for the BP RTNN learning in the worst case). 
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7.2 Simulation results of the centralized direct adaptive neural control with I-term 
using L-M learning 

The real-time DANC (see Fig. 4) contained a neural identifier RTNN-1 and a neural 

controller RTNN-2 with topology (40, 10, 2). Both RTNNs-1, 2 are learnt by the L-M 

algorithm with parameters: RTNN-1 (=1, ρ=0.0001, Po=10 I with dimension 420x420); 

RTNN-2 (=1, ρ=0.01, Po=0.8 I with dimension 430x430). The simulation results of DANC 

are obtained on-line during 1000 days with a step of 0.1 day. The control signals are 

shown on Fig. 13. The Fig. 14-16 compared the plant output X1 with the reference signal in 

different measurement points. The form of the set points (train of pulses with random 

amplitude) of the variable X1 in the different measurement points is equal but the 

amplitude is different depending on the point position. This means that the plant has 

different signal amplification in each measurement point which needs to be taken in 

consideration. 

 

Fig. 13. Plant input control signals generated by I-term DANC: a) Sin1, and b) Sin2 

 

Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 2.2920E-8 1.3366E-7 5.9740E-6 1.7568E-5 

z=0.4 1.4517E-8 8.0704E-8 3.4003E-6 9.3272E-6 

z=0.6 8.5061E-9 4.3891E-8 1.9213E-6 4.9682E-6 

z=0.8 4.4770E-9 2.1242E-8 1.2789E-6 3.1322E-6 

Recirculation tank   1.0067E-6 2.2073E-6 

Table 4. MSE of the centralized I-term DANC of the bioprocess output variables in the 

collocation points, using the L-M RTNN learning 

The given on Fig. 14-16 graphical results of I-term DANC showed smooth exponential 

behavior. It could be seen also that the L-M learning converge fast and the I-term remove 

the constant noise Of, and the plant uncertainties. The obtained numerical results (see 

Table 4) of final MSE of L-M learning possessed small values (1.7568E-5 in the worse 

case). 
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Fig. 14. Graphical simulation results of the I-term DANC of the plant output X1 vs. system 
reference in 4 measurement points for the total time of L-M learning: a)z=0.2H, b) z=0.4H, c) 
z=0.6H, d)z=0.8H 

 

 
 

Fig. 15. Graphical simulation results of the I-term DANC of the output X1 vs. system 
reference in four measurement points for the beginning of L-M learning: a) z=0.2H, b) 
z=0.4H, c) z=0.6H,d) z=0.8H 
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Fig. 16. Three dimensional plot of the I-term DANC of the plant output X1 in four 
measurement points of L-M learning : z=0.2H,  z=0.4H, z=0.6H, z=0.8H  

7.3 Simulation results of the centralized indirect (SM) adaptive neural control with I-
term using L-M learning 

In this case the indirect adaptive I-term control is a sum of the I-term control signal and the 

SM control, computed using the state and parameter information issued from the RTNN-1 

neural identifier. The control signals are shown on Fig. 17. The X1 control simulation results 

are given on Fig. 18-20. The simulation results of SMC are obtained on-line during 1000 days 

with a step of 0.1 day. The given on Fig. 18-20 graphical results of I-term SMC demonstrated 

smooth behavior. It could be seen also that the L-M learning converge fast and the I-term 

remove the constant noise Of, and the plant uncertainties.  

 

 
 

Fig. 17. Plant input control signals generated by the I-term centralized indirect SMC: a) Sin1, 
and b) Sin2 
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Fig. 18. Graphical simulation results of the I-term indirect SM control of the plant output X1 
vs. system reference in four measurement points for the total time of L-M learning: a) 
z=0.2H,  b) z=0.4H, c) z=0.6H, d) z=0.8H 

 

 
 

Fig. 19. Graphical simulation results of the I-term indirect SM control of the plant output X1 
vs. system reference in four measurement points for the beginning of L-M learning: a) 
z=0.2H, b) z=0.4H, c) z=0.6H, d) z=0.8H 
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Fig. 20. Three dimensional plot of the I-term indirect SM control results of the plant output 
X1 in four measurement points of L-M learning : z=0.2H,  z=0.4H, z=0.6H, z=0.8H  

The Fig. 21 illustrated the behavior of the SMC system without I-term perturbed by a 
constant noise Of, causing a big error of reference tracking. 

 

 
 

Fig. 21. Graphical simulation results of the indirect SM control without I-term of the plant 
output X1 vs. system reference in four measurement points for the total time of L-M 
learning: a) z=0.2H,  b) z=0.4H, c) z=0.6H, d) z=0.8H 
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The given on Fig. 18-20 graphical results of I-term SMC showed smooth exponential 

behavior, fast convergence and the removal of the constant noise terms. The Fig. 21 showed 

that the constant perturbation in the input of the plant caused a deviation of the plant 

output X1 with respect of the set point R1 and this occurred for all other plant output signals 

and measurement points. The final MSE for all point output variables are given in Table 5.  

 

Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 2.6969E-8 1.7122E-7 9.9526E-6 2.1347E-5 

z=0.4 1.3226E-8 1.2511E-7 5.2323E-6 1.2903E-5 

z=0.6 1.0873E-8 6.5339E-8 3.2234E-6 7.0511E-6 

z=0.8 5.9589E-9 4.4750E-8 1.6759E-6 4.4548E-6 

Recirculation tank   1.1842E-6 2.5147E-6 

Table 5. MSE of the I-term indirect (SM) centralized control of the bioprocess plant variables 

in all measurement points 

The final MSE given on Table 5 possessed small values (2.1345E-5 in the worse case). 

7.4 Simulation results of the centralized I-term optimal control using neural identifier 
and L-M RTNN learning 

The integral term extended the identified local linear plant model so it is part of the indirect 

optimal control algorithm. The generated by the optimal control plant input signals are 

given on Fig. 22. The Fig. 23-25 illustrated the X1 I-term optimal control results. The MSE 

numerical results for all final process variable and measurement points control results, given 

on Table 6 possessed small values (1.4949E-5 in the worse case). 

 

Fig. 22. Plant input control signals generated by the I-term centralized optimal control: a) 
Sin1, and b) Sin2 

 

Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 2.06772E-8 1.5262E-7 9.3626E-6 1.4949E-5 

z=0.4 1.3819E-8 7.5575E-8 5.6917E-6 1.0197E-5 

z=0.6 1.8115E-8 4.7505E-8 2.8872E-6 6.1763E-6 

z=0.8 1.5273E-8 5.9744E-8 1.6295E-6 4.2868E-6 

Recirculation tank   1.3042E-6 2.5136E-6 

Table 6. MSE of the I-term opt. control of the bioprocess plant variables in all meas. points 
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Fig. 23. Graphical simulation results of the I-term optimal control of the plant output X1 vs. 
system reference in four measurement points for the total time of L-M learning: a) z=0.2H,  
b) z=0.4H, c) z=0.6H, d) z=0.8H 

 

 
 

Fig. 24. Graphical simulation results of the I-term optimal control of the plant output X1 vs. 
system reference in four measurement points for the beginning of L-M learning: a) z=0.2H, 
b) z=0.4H, c) z=0.6H, d) z=0.8H 

www.intechopen.com



 
Recurrent Neural Networks and Soft Computing 

 

200 

 

Fig. 25. Three dimensional plot of the I-term optimal control results of the plant output 

X1 in four measurement points of L-M learning : z=0.2H,  z=0.4H,  z=0.6H, z=0.8H  

The given on Fig. 23-25 graphical results of I-term optimal control showed smooth 

exponential behavior, fast convergence and the removal of the constant noise terms.  

8. Conclusion 

The paper proposed a new neural identification and control methodology for distributed 

parameter bioprocess plant. The simplification of the DPS given by PDEs is realized using 

the orthogonal collocation method in four collocation points, converting the PDE plant 

description in ODE one. The system is identified using RTNN model and BP and L-M 

learning, where a high precision of convergence is achieved (the final MSE% for both BP and 

L-M learning algorithms is of order of E-4 in the worse case). The comparative results 

showed a slight priority in precision and convergence of the L-M over the BP which could 

be seen in Figures 8, 11, and Tables 2, 3 (the worse case MSE for the L-M RTNN learning is 

2.5476E-4 vs. BP RTNN learning which is 2.8282E-4). The obtained comparative simulation 

results of centralized adaptive direct, indirect SM and optimal control with I-term exhibited 

a good RTNN convergence and precise reference tracking. The MSE% of plant outputs 

tracking for the three considered methods of control is of order of E-5 in the worse case. The 

graphical simulation results showed that all control methods with I-term could compensate 

constant plant input noises and the I-term removal caused a system outputs deviation from 

the reference signals (see Fig. 21). The MSE study ordered the control methods used as: 

optimal, direct, and indirect, but the difference between them is little (see Tables 4.5.6 where 

worse case final MSE for DANC is 1.7568E-5; for SMC is 2.1347E-5; for the optimal control it 

is 1.4949E-5). 
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