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1. Introduction  

Protein–protein interactions (PPI) make up fundamentals of biological processes inside a 

cell. PPI has most important roles in cells such as post-translational regulation of protein 

activity, which is occurred by transient protein-protein interactions and participating in 

enzymatic complexes ensures substrate channelling which drastically increases fluxes 

through metabolic pathway (Lin et al., 2006). Metabolic pathways, for instance, consist of 

several proteins, called enzymes, organize a series of chemical reactions with the intent of 

altering a variety of chemical substance into the other forms, namely products. Proteins 

interactions happen in signalling pathways where a set of proteins, by an ordered sequence 

of reactions, try to convert a type of chemical signal to other form, enabling a cell to obtain 

environmental information quickly. Proteins interactions can be found in any sort of 

biological processes within cells. Indeed, existence of these interactions makes a cell 

function, to grow and more importantly survive (Bader & Hogue, a2003).  

The objective in PPI network analysis is the discovering dense highly-connected subgraphs 

that represent functional modules and protein complexes. For understanding the cell 

function, it is essential first to find all functional modules in protein interaction networks 

(Bader & Hogue, b2003). Protein complexes are a group of proteins which have more 

interactions with each other at the same time and place (Chua et al. , 2008). On the other 

hand, the functional module consists of proteins that participate in a particular cellular 

process while interacting with each other at different time and place (Mirny & Spirin, 2003) . 

In order to simplify the terms, we used protein complex and functional modules as same. 

Since each protein could be involved in several protein complexes, the partitioning of PPI 

network to some disjoint groups of subgraphs could not explain the true nature of protein 

complexes occuring in PPI network. Hence, the finding of vertices group with overlapped 

boundary can be more useful in analyzing PPI network.  
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In recently years, advances in the high-throughput PPI detection have produced a high 

volume of PPI datasets freely available to researchers. Therefore many methods and 

approaches have emerged to analyze experimental PPI data in various organisms. The 

experimental approaches for discovering protein complexes are more time consuming and 

expensive. Instead, computational methods which use PPI data are faster and cheaper (Ito et 

al., 2001).  

The most common method of modelling PPI network is using graph theory, which in such a 

graph G=(V,E) where the nodes correspond to proteins and the edges correspond to 

interactions. Since the number of proteins and interactions between them in some organism 

such as yeast or human is remarkably high, the graph modelling PPI is called a complex 

graph. Partitioning of a complex graph to some disjoint subgraphs is called the graph 

clustering.  

Clustering is the process of grouping data into sets (clusters) which shows more similarity 

between the objects in the same clusters than they are in different clusters (Schaeffer, 2007). 

Clustering analysis seeks a set of clusters based on similarity between pairs of elements. 

Graph clustering is the practice of distribution the vertices of the graph into the clusters 

taking into consideration the edge connectivity in the graph in such a way that many edges 

exist within each cluster and relatively few between the clusters. The result of this clustering 

can define the PPI network’s structure and imply functions of proteins in the cluster which 

were previously uncharacterized (Lin et al., 2006).  

Each complex graph modelling a system such as biological systems or social networks has 

specific properties and characteristics. The properties of graph could be fall into broad 

categories as the local properties and global properties (Przulj, 2005). The scale-free for 

distribution of degree and small world properties could be more affective on the result of 

graph clustering. A scale-free network has a vertex connectivity distribution that follows a 

power law, with relatively few highly connected vertices and many vertices having a low 

degree. Most biological networks such as PPI networks have the scale-free property (Pizzuti 

& Rombo, 2007). In this paper, we convert the normal scale-free PPI network to a non-scale 

free network by using line graph transformation. In the graph theory, line graph is 

produced by substituting edges and nodes in the graph. Each interaction is condensed into a 

node that includes the two interacting proteins. These nodes are then linked by shared 

protein content.  

Important of results of the clustering in PPI network is illustration of structure of the PPI 

network which can be used to predict the functionality of uncharacterized protein based on 

other known proteins functions in the same cluster's elements. These clusters correspond to 

meaningful biological units such as protein complexes and functional modules.  

Many clustering approaches (Gao, 2009; Bader & Hogue, b2003; Adamcsek, 2006; Wu et al., 

2008 ;Vlasblom, 2009) could not place elements in multiple clusters, which can be unrealistic 

for biological systems, where proteins may participate in multiple cellular processes and 

pathways. Since each protein could participate in more than one protein complexes, in the 

clustering PPI graph, each protein probably have membership to more than one cluster. So 

in this paper, we present a clustering method that allows to having overlapping founded 

clusters. Disjoint clusters and overlapping clusters are illustrated in figure 1. 
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Fig. 1. Illustration of the concept of modules. (a) Disjoint modules; (b) Overlapping modules. 

K-means (c-means) clustering (Hartigan, 1975) is applied on unlabeled data by partitioning 

them on predefined number of groups (k) based on the specifying the centers of groups. 

After each iteration in the k-means algorithm, the distances between each center of group 

and other data points are calculated and the center points are updated. Learning Vector 

Quantization uses k-means idea by defining some codebook vectors each of which 

represents a cluster for n-dimensional input data. The fuzzy clustering based on fuzzy set 

theory (Zadeh, 1965) is used to deal with indistinct boundaries between clusters. The most 

widely used fuzzy clustering method is the fuzzy c-means (FCM) algorithm (Bezdek, 1973) 

which is generalized from hard c-means algorithm. In this paper, extended FLVQ (Bezdek, 

1995) as an intelligent computational method has been used for clustering PPIs. The results 

of this algorithm can be verified by biological and non-biological criteria and we showed 

that FLVQ technique is more effective and accurate for finding protein complexes in PPI 

network. 

2. Primary definitions 

The problem of clustering of PPIs starts with a mathematical representation of PPI 

networks. A conventional way for representing PPI network is using graph theory 

concepts. PPI network could be illustrated by a graph G=(V,E) with a set of vertices V and 

a set of edges E in which each vertex is corresponded by a protein in PPI network and 

each edge connects to two vertices whose corresponding proteins have physical 

interaction with each other. 

Clusters in the graph could be interpreted as dense subgraphs the number of edges within 

each subgraph is the maximum number and the number of edges between clusters is the 

minimum one. Therefore, the PPI clustering is an optimization problem and like other 

optimization problems, there is a need to an objective function to get optimum point.  

PPI networks have scale-free property and finding the dense subgraphs is most difficult task 

in these networks. So using line graph we eliminate the scale-free property. In each node in 

the line graph is an edge in original network and every two nodes with common proteins 

are connected to each other. Figure 2 shows a scale free network and the generated line 

graph based on original graph. 
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(a) 

(b) 

Fig. 2. a. Orginal scale-free graph b. converted graph by line graph. 

2.1 Learning Vector Quantization 

Learning Vector Quantization (LVQ) is placed in the competitive learning category and it is 

closely related to Self-Organizing Map (SOM) (Kohonen, 1990). SOM is a well-developed 

neural network technique for data clustering and visualization. It can be used for projecting 

a large data set of a high dimension into a low dimension (usually one or two dimensions) 

while retaining the initial pattern of data samples. Indeed, SOM has two main principles: 
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vector quantization and vector projection. Vector quantization makes up a delegate set of 

vectors called output vectors (codebook vectors) from the input vectors. Let’s denote the set 

of output vectors (codebook vectors) as Y={y1,y2,..,yc} with the same dimension as input 

vectors. In general, vector quantization reduces the number of vectors, and this can be 

considered as a clustering process. The maximum number of clusters in a network is defined 

by user specified value, c. After learning process, it may be possible for some codebook 

vectors to correspond to empty clusters. 

 

Fig. 3. The red points (y1,y2,y3) corresponded to output vectors indicating a dense subgraph 

in the sample network. 

The LVQ algorithm represents a set of input vectors n
ix X∈ ⊂ ℜ by a set of c prototypes 

1 2{ , ,.., } n
cY y y y= ⊂ ℜ .. The LVQ is associated with a competitive network which consists of 

an input layer and an output layer. Each node in the input layer is connected directly to the 

cells, or units, in the output layer. A weight vector, also referred to as prototype, is assigned 

to each cell in the output layer (Ravuri & Karayiannis, 1995). The codebook vector having 

minimum distance with input vector xi is called winner vector, k, and is defined as: 

 arg min l i
l

k y x= −  (1) 

Update equation of LVQ algorithm is:  

 1 ,( ) ( ) ( )j j t ij k i jy t y t h x y tα+ = + −  (2) 

Here αt is the scalar-valued learning rate, 0<αt<1, and decreases monotonically with time t. 

The neighborhood function hij,k denotes the interaction between codebook vector i and j and 

winner vector k. The simple definition of hij,k is:  

 
1

0
,ij k

if j k
h

if j k

=
= 

≠   (3) 
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In the LVQ algorithm, neighborhood radius is one and only the winner vector could be 
updated. 

2.2 Fuzzy Learning Vector Quantization 

While most typical clustering algorithms assigns each data point to exactly one cluster, 

fuzzy clustering allows for the extent of membership, to which a data point belongs to 

different clusters. The FLVQ may be seen as a learning fuzzy c-means using a fuzzification 

index m. Karayiannis et al (Ravuri & Karayiannis, 1995) presented a broad family of FLVQ 

algorithms, which were initially introduced on the basis of perceptive arguments. This 

derivation was based on the minimization of the average generalized distance between the 

input vectors and the prototype vectors. The fuzzy partitioning algorithm, FCM is run into 

by minimization problem that is solved by reformation of FCM algorithm to FLVQ 

algorithm (Bezdek, 1995). 

The updated equation for the FLVQ involves the membership functions which are used to 

determine the strength adjacency between each prototype and input vectors.  

 
, ,( ) tm

ij t ij tuα =
 (4) 
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 ij i jD x y= −   (6) 

Where 0tm m m mt= = − Δ and 0( ) /fm m m MaxItrΔ = −  and Dij is the distance and m0 is some 

constant value greater than the final value (mf) of the fuzzification parameter m. MaxItr is 

the constant parameter for limitation of iterations. 

3. The FLVQ algorithm 

The calculation of distances between network vertices and prototype vectors in the FLVQ is 

critically challenging. In the following algorithm, we used a new definition of vertices based 

on n-dimensional vectors and; we representing new scalar distance between input vectors 

and codebooks (output) vectors. Each vertex in PPI graph is modeled by a vector called 

input vector. Given G=(V,E) represents a PPI network including |V| vertices and |E| 

edges. An input vector is defined as : 
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Where n=|V|, eij is element (i,j) in adjacency matrix corresponding the graph G and ε is a 
real small value between (0,1).  

This definition makes possible to use scalar distance measure such as the dot product is 

possible. There are some distance criteria in vector space to measure similarity (distance) 

between two vectors. Correlation is a simple way for measuring distance between two 

vectors in the same dimension. If xi and xj are two vectors with the dimension of n, the 

equation (8) is the inner product of two vectors:  

 
1

.
n

ij i j ik jk
k

S X X x x
=

= =  (8) 

 1
ij ijD S −=  (9) 

Where Dij is the distance and Sij is the inner product between Xi and Xj. 

The FLVQ algorithm performs clustering of the input graph by training process. Training 

process consists of some iterations. The number of iteration depends on convergence criteria 

and can be limited by a user specified constant. Each iteration consists some epochs. The 

number of epochs is equal by c (number of prototype vectors and the maximum number of 

clusters). In each epoch, an input vector xi is selected randomly. A selected input vector is 

not being selected in a same epoch again. The selected input vector xi is compared with all 

the prototype vectors with a similarity measure (ex. dot product) and the prototype vector yj 

with most similarity with xi known as winner vector.  

The implementation of the FLVQ algorithm is described as follows: 

• Step 1. Initialization 
Initialize the c codebook’s vectors y={y1,y2,..,yc} by randomly assigning each element of codebook 
vectors by a real number between (ε,1-ε). Set iteration counter t=1. Give 0≤ε<1. tmax is the 
iteration limit.  

• Step 2. Learning 
Repeat until stopping criterion is satisfied: 

• Step 2.1 While there is a unselected input vector 

• Randomly pick an input xi 

• Compute winner vector based on distance measure of xi and every codebook vectors yj : j=1..k 

• update winner vector yj based on input vector xi and learning ratio α 
• Step 2.2 update learning ratio α 

4. Data set 

The PPI network is derived from the yeast subset in the Database of Interacting Proteins 

(DIP) (Xenarios et al., 2002). The dataset of yeast is composed of 4963 proteins and 17570 

interactions. Most of these interactions have been derived by yeast two-hybrid screen. For 

evaluation of finding clusters, we use protein complex data from the MIPS database (Mewes 

et al., 2004). In the currated complex dataset, there are 404 protein complexes. The protein 

complex having most proteins is "cytoplasmic ribosomal large subunit" with 88 proteins and 

there are 169 protein complexes with just two proteins. 
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5. Experimental result 

The FLVQ algorithm is applied on the PPI network of the Saccharomyces Cerevisiae (yeast) 

dataset downloaded from the DIP (Guldener, 2005). After using FLVQ on DIP protein-

protein interaction, over than 300 clusters obtained frequency of each based on the number 

of vertices in is shown in figure (4). As the figure (4) shows most obtained clusters 

approximately include 9 and 12 vertices. In addition, the number of clusters with size of 

over 20 are also considerable. This means that the FLVQ algorithm could find larger dense 

subgraphs in the PPI network. When the cluster size became larger, few graph clustering 

methods could find these clusters with proper efficiency. 

 
 

 
 

Fig. 4. Number of obtained clusters by FLVQ algorithm based on the cluster size. 

The results of the FLVQ algorithm are evaluated by the clustering score used by (Bader & 

Hogue, a2003; Newman, M. & Girvan. M., 2004). The clustering score for each cluster is 

defined by the product of size and density of the cluster. The density of cluster is the ratio 

between number of edges in cluster |E| and maximum number of possible edges in it 

|Emax|. The following equation (10) shows clustering score definition. 

 σ(Γ)=δ(Γ).|V| (10) 

Where Γ is a cluster in the clustering result and δ(Γ) is the density of given subgraph Γ and 

is declared by equation (11) and |V| shows the number of vertices in Γ subgraph.  

 δ(Γ)=2|Ε|/(|V|(|V|−1)) (11) 

Where E is the set of edges that connects the existing vertices in V in given subgraph of Γ. 
The clustering score for each clusters is shown in figure (5). The cluster score for bigger 
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clusters is more elevated than smaller clusters proving that FLVQ is rather successful to find 

subgraphs with more higher number of vertices and with most density. Highest clustering 

score shows that the obtained clusters are more compact and larger. 

 
 

 
 

Fig. 5. Amount of clustering score for each obtained cluster in FLVQ algorithm. 

The clustering results can be validated by ground truth with Precision and Recall. Assume a 

module (cluster) X is mapped to a functional module Fi. Recall, also termed the true positive 

rate or sensitivity, is the proportion of proteins common in both X and Fi to the size of Fi. 

Precision, which is also termed the positive predictive value, is the proportion of proteins 

common in both X and Fi to the size of X.  

 
| |

| |
iX F

precision
X

∩
=  (12) 

 
| |

| |
i

i

X F
recall

F

∩
=  (13) 

The accuracy of clusters is assessed by f-measure. The f-measure is defined as the harmonic 
mean of recall and precision: 

 
2( . )precision recall

f measure
precision recall

− =
+

 (14) 

Figure (6) shows the average of f-measure based of protein complex size for the FLVQ 

algorithm. In figure (6), the f-measure of each obtained cluster is measured based on 

experimental protein complexes MIPS. The value of f-measure could be between 0 and 1. 
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The highest f-measure value indicates the most conformity between experimental protein 

complex and obtained complex by the algorithm. 

 
 

 
 

Fig. 6. f-measure between finding subgraphs and experimental protein complexes based on 
its size. 

6. Conclusion 

In this paper, we presented a FLVQ algorithm as a robust tolerable method to find dense 
subgraphs in PPI networks as protein complexes. The algorithm identifies more than 200 
dense subgraphs having more overlap among experimentally known protein complexes. By 
clarifying the structure of protein interactions network, uncharacterized proteins could be 

predicted by the functions of other known proteins which belong to same clusters. By using 
line graph transformation, we eliminated the scale-free degree distribution in PPI network 
which caused larger number of dense highly connected subgraph revealed. There is 

overlapping between found subgraphs that express the results are more conforming with 
the reality nature of protein complexes.  
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