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1. Introduction

We introduce in this chapter a new area in PID controllers, which is called multiresolution
PID (MRPID). Basically, a MRPID controller uses wavelet theory for the decomposition of the
tracking error signal. We present a general error function in terms of partial errors which gives
us the various frequencies appearing in the general errors. Once we obtain the spectrum of
the error signal, we divide the error at frequencies that are weighted by gains proposed by the
designer. We can say that the MRPID is a generalization of conventional PID controller in the
sense that the error decomposition is not only limited to three terms.

The PID is the main controller used in the control process. However, the linear PID algorithm
might be difficult to be used with processes with complex dynamics such as those with large
dead time and highly nonlinear characteristics. The PID controller operation is based on
acting proportionally, integrally and derivative way over the error signal e(t), defined it as the
difference between the reference signal yre f and the process output signal y(t), for generating

the control signal u(t) that manipulates the output of the process as desired, as shown in the
Fig. 2, where the constants kP kI and kD are the controller gains. There are several analytical
and experimental techniques to tune these gains (Aström & Hägglund, 2007). One alternative
is auto-tuning online the gains as in (Cruz et al., 2010; O. Islas Gómez, 2011a; Sedighizadeh
& Rezazadeh, 2008a) where they use a wavelet neural networks to identify the plant and
compute these gain values, this approach has been applied in this chapter.

The chapter is organized as follows: a general overview of the wavelets and multiresolution
decomposition is given in Section 2. In Section 3 we preset some experimental results of the
close-loop system with the MRPID controller. The PID controller based on wavelet neural
network and experimental is given in Section 4, while the experimental results are given
in Section 5. Finally, the conclusions of the contribution about wavelet PID and wavenet
controllers are presented in Section 6.

2. PID controller based on wavelet theory and multiresolution analysis

2.1 Wavelet theory and multiresolution analysis

Here, we briefly summarize some results from the wavelet theory that are relevant to this
work, for it we use the notation presented in the Table 1. For more comprehensive discussion
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of wavelets and their applications in control, signal processing, see e.g., (Daubechies, 1992;
Hans, 2005; Mallat, 1989a;b; Parvez, 2003; Parvez & Gao, 2005; Vetterli & Kovačević, 1995).

ψ(t) Mother wavelet function

ψa,b Daughter wavelet function

W f (a, b) Continuous wavelet transform

W f [a, b] Discrete wavelet transform

< f , g > Inner product between f and g
⊕

Direct sum of subspaces

V ⊥ W V is orthogonal to W

L2(R) Vector space of all measurable, square
integrable functions

R Vector space of the real numbers

Z Set of all integers

Table 1. Notation

A wavelet is defined as an oscillatory wave ψ of very short duration and satisfy the
admissibility condition (Daubechies, 1992), given by

Ψ(0) =
∫ ∞

−∞
ψ(t)dt = 0, (1)

where Ψ is the Fourier transform of wavelet function ψ, the latter also called wavelet mother
function, the mathematical representation of some mother wavelet are shown in Table 2 and
their graphs are plotted in Fig. 1. Wavelet function ψ is called the "mother wavelet" because
different wavelets generated from the expansion or contraction, and translation, they are
called "daughter wavelets", which have the mathematical representation given by:

ψa,b(t) =
1√
a

ψ

(

t − b

a

)

, a �= 0; a, b ∈ R, (2)

where a is the dilation variable that allows for the expansions and contractions of the ψ and b
is the translation variable and allows translate in time.

Fig. 1. Graphics of the mother wavelets showed in Table 2.
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Haar ψ(t) =

⎧

⎨

⎩

1, if t ∈ [0, 1
2 ]

−1, if t ∈ ( 1
2 , 1]

0, otherwise

Mexican hat ψ(t) = 2√
3

π− 1
4 (1 − t2)e(−

1
2 t2)

Morlet ψ(t) = e−
t2

2 cos(5t)

Shannon ψ(t) =
sin( π

2 t)
π
2 t cos( 3π

2 )t

Daubechies P(y) = ∑
N−1
k=0 CN−1+k

k yk;

CN−1+k
k are binomial coefficients,

N is the order of the wavelet

Meyer ψ(ω) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

e
iω
2√
2π

sin(π
2 v ( 3

2π |ω| − 1)),

if 2π
3 ≤ |ω| ≤ 4π

3

e
iω
2√
2π

cos(π
2 v ( 3

4π |ω| − 1)),

if 4π
3 ≤ |ω| ≤ 8π

3
0, otherwise

v = a4(35 − 84a + 70a2 − 20a3),
a ∈ [0, 1]

Table 2. Some examples of common mother wavelets

There are two types of wavelet transform: continuous wavelet transform (CWT) and
discrete wavelet transform (DWT), whose mathematical definition are given by (3) and (4),
respectively (Daubechies, 1992):

W f (a, b) = 〈 f , ψa,b〉 =
1√
a

∫ ∞

−∞
f (t)ψ

(

t − b

a

)

dt, (3)

W f [a, b] =
1

√

am
0

∫ ∞

−∞
f (t) ψ

(

t

am
0

− kb0

)

dt, (4)

for CWT, the expansion parameters a and translation b vary continuously on R, with the
restriction a > 0. For DWT, the parameters a and b are only discrete values: a = am

0 , b = kb0am
0 ,

where a0 > 1, b0 and are fixed values. In both cases f ∈ L2(R), i.e., a function that belongs to
the space of all square integrable functions.

In DWT, one of the most important feature is the multiresolution analysis (Mallat, 1989a;b).

Multiresolution analysis with a function f ∈ L2(R), can be decomposed in the form of
successive approximations, using wavelet basis functions. The multiresolution analysis
consists of a sequence successive approximations of enclosed spaces, nested spaces {VN :
N ∈ Z} with the following properties (Daubechies, 1992):

1. Nesting: VN ⊂ VN+1, ∀ N ∈ Z.

2. Closure: clos (
⋃

N∈Z VN) = L2(R).

3. Shrinking:
⋂

N∈Z VN = {0}.

4. Multiresolution: f [n] ∈ VN ⇐⇒ f [2n] ∈ VN+1 ∀ N ∈ Z.

5. Shifting: f [n] ∈ VN ⇐⇒ f [n − 2−Nk] ∈ VN ∀ N ∈ Z.
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6. There exists a scaling function φ ∈ V0 such that the integer shifts of φ form an orthonormal
basis for V0, i.e.,

V0 = span{φN,k[n], N, k ∈ Z},

where
φN,k[n] = 2−

N
2 φ[2−Nn − k], (5)

forming an orthogonal basis of V0. Then for each VN exists additional space WN that meets
the following conditions (Daubechies, 1992)

VN+1 = VN ⊕ WN , (6)

VN⊥WN = 0, ∀ N ∈ Z, (7)

and is
ψN,k[n] = 2−

N
2 ψ[2−Nn − k], ∀ N, k ∈ Z, (8)

forming an orthogonal basis for WN , i.e. at ψ[n] can generate the space WN .

From the above we can say that the purpose of analysis multiresolution is to determine a
function f [n] by successive approximations, as

f [n] =
∞

∑
k=−∞

cN,kφN,k[n] +
N

∑
m=1

∞

∑
k=−∞

dm,kψm,k[n], (9)

with

cm,k =
∞

∑
k=−∞

f [n]φm,k[n],

dm,k =
∞

∑
k=−∞

f [n]ψm,k[n].

(10)

Where N is the level at which decomposes f [n] and φ[n], ψ[n] are conjugate functions for φ[n]
and ψ[n], respectively. Multiresolution analysis, in addition to being intuitive and useful in
practice, form the basis of a mathematical framework for wavelets. One can decompose a
function a soft version and a residual, as we can see from (9), where the wavelet transform
decomposes a signal f [n] in one approach or trend coefficients c and detail coefficients d
which, together with φ[n] and ψ[n], are the smoothed version and the residue, respectively.

The important thing here is that the decomposition of the f [n] for large enough value of N can
be approximated arbitrarily close to VN . This is that ∃ some ǫ > 0 such that

‖ f [n]−
∞

∑
k=−∞

cN,kφN,k[n]‖ < ǫ. (11)

The approach by the truncation of the wavelet decomposition can be approximated as:

f [n] ≈
∞

∑
k=−∞

cN,kφN,k[n]. (12)
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This expression indicates that some fine components (high frequency) belonging to the
wavelet space WN for the f [n] are removed and the components belonging to the coarse scale
space VN are preserved to approximate the original function at a scale N. Then (12) tells us

that any function f [n] ∈ L2(R) can be approximated by a finite linear combination.

2.2 Wavelet PID controller design

A classic control scheme consists of three basic blocks as shown in Fig. 2: the plant can be
affected by external perturbation P, the sensor measures, the variable of interest y, and finally
the controller makes the plant behaves in a predetermined manner, yre f . One of the most
employed controller in the modern industry is a classical control Proportional, Integral and
Derivative, PID because its easy of implementation, requiring only basics testing for tuning
gains kP kI and kD (Aström & Hägglund, 2007).

Fig. 2. Scheme of a SISO system with a PID controller.

In general, a PID controller takes as input the error signal e and acts on it to generate an output
control signal u, as

u = kPe + kI

∫ t

0
edt + kD

de

dt
, (13)

where kP, kI y kD are the PID gains to be tuned, and e is the error signal which is defined as

e = yre f − y, (14)

The form of a discrete PID is (Visioli, 2006):

u(k) = u(k − 1) + kP [e(k)− e(k − 1)] + kIe(k) + kD [e(k)− 2e(k − 1) + e(k − 2)] , (15)

whose transfer function is given by

u(z)

e(z)
= kP + kI

T

2

z + 1

(z − 1)
+ kD

1

T

(z − 1)

z
, (16)

and its operation is the same way that the continuous PID.

Taking the parameters kP, kI and kD of the PID, as adjustment variables, then (15) can be
described as

u(k) = u(k − 1) +
2

∑
i=0

kie(k − i), (17)

or equivalently
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Δu(k) =
2

∑
i=0

kie(k − i), (18)

where k0 = kP + kI + kD, k1 = −kP − 2kD y k2 = kD. From (18), we see that the control law
of a classic PID is a linear decomposition of the error, only that this decomposition is fixed,
that is, always has three terms, this makes the difference between the classic PID and the
MRPID, where here the number of decompositions can be infinite and even more than each
one is different scales of time-frequency, this means that the MRPID controller decomposes
the signal error e for high, low and intermediate frequencies, making use of multiresolution
analysis for the decomposition. Where the components of the error signal are computed using
(9) through a scheme of sub-band coding, as shown in Fig. 3.

Fig. 3. Sub-band coding scheme for decomposition of the error signal e for N=3.

Thus each of these components are scaled with their respective gains and added together to
generate the control signal u, as follows:

u = KHeH + KM1
eM1

+ · · ·+ kiei + · · ·+ KMN−1
eMN−1

+ KLeL, (19)

u(k) = K Em(k), (20)

where

K = [KH KM1
· · · Ki · · · KMN−1

KL], (21)

Em(k) = [eH(k) eM1
(k) · · · ei(k) · · · eMN−1

(k) eL(k)]
T , (22)

where N is the level of the MRPID controller.

While a classical PID control has three parameters to be tuned kP, kI and kD, the MRPID
control has two or more parameters and the number of parameters depends on the level of
decomposition is applied to the signal error e. The schematic diagram of a plant using a
MRPID control is shown in Fig. 4.

As shown in Table 2, there are a number of different wavelets, the wavelet selection affects
the operation of the controller. Therefore, there are characteristics that should be taken into
account, such as:

• The type of system representation (continuous or discrete).
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Fig. 4. Close loop block diagram of a SISO system with the MRPID controller.

• The properties of the wavelet to be used.

• The dynamics of the system.

For more details on the selection of the wavelet, see (Parvez, 2003). All physical systems
are subject to any external signals or noise during the test. Therefore, when we design a
control system must consider whether the system will provide greater sensitivity to noise or
disturbance. In practice, disturbances and references are sometimes low frequency signals and
noise is a high frequency signal, with a MRPID controller we can manipulated these signals,
this means we tuning the gains directly. For example, adjusting the gain of the low scale to
zero, i.e. KL = 0, it produces a control signal that reduces the effects of noise on the output of
the plant y, and therefore a smooth control signal which help in minimal effort to improve the
life of the actuators and the whole plant performance.

3. MRPID applications

3.1 Control position of a DC motor

Here, we present an application of the MRPID controlller for a DC motor for it, we are using
the Daubechies wavelet of order 2 for multiresolution signal decomposition of the error e
and a level decomposition N = 3. The Daubechies filter coefficients of order 2 used in the
multiresolution decomposition of the control are given in Table 3 and the structure of the
filters h and g in the plane z are given by (23) and(24), respectively.

h(z) = 0.4839 + 0.8365z−1 + 0.2241z−2 − 0.1294z−3, (23)

g(z) = −0.1294 + 0.2241z−1 + 0.8365z−2 + 0.4839z−3. (24)

The MRPID control applied to the position control of a DC motor with the following transfer

h 0.4830 0.8365 0.2241 -0.1294

g -0.1294 0.2241 0.8365 0.4830

Table 3. Coefficients of the Daubechies filters of order two.
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function (Tang, 2001):

G(s) =
b

s(Js + c)
(25)

where b is the torque constant, c is the friction coefficient and J is the total inertia of the motor
and load, whose values are given in Table 4. This system is considered to implement a classical
PID controller and MRPID controller for level N = 3, the values of the gains are shown in
Table 5, which are obtained by trial and error. To analyze the behavior of the system in

Parameter Value Units

b 22 N · m/volts

c 4 kg · m2/seg · rad

J 1 kg · m2/rad

Table 4. Parameters of DC motor

Gains values of the PID
KP KD KI

7 1.5 0

Gains values of the MRPID
kH KM1

KM2
KL

0.15 4 10 0

Table 5. Gains values of the PID and MRPID

the presence of noise we are injected white noise signal with maximum amplitude of ±0.16
radians, as shown in Fig. 5 in the measurement of output for both the classic controllers PID
and MRPID. The results are shown in Figures 6 and 7.

Fig. 5. White noise signal

From the Fig. 6a we observe that the output signal of the system with both controller is
similar in behavior, with some variations generated by the noise in measuring the output
signal. Fig. 6b, is observed as the classic PID control signal varies about ±15 volts with abrupt
changes, which may generate stress and wear gradually engine life. While the control signal
of a MRPID control is a smooth signal compared to the classic PID control signal.

This is because although the error signals are similar as shown in Fig. 7a, showing that both
contain the noise, the MRPID control signal as shown in Fig. 7b and discriminates the noise
contained in the error signal, by scaling the component eL with KL = 0 which is the component

10 PID Controller Design Approaches – Theory, Tuning and Application to Frontier Areas
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(a) Joint position (b) Control signal

Fig. 6. Results of the position and control signal on the system with PID and MRPID
controller even in the presence of noise

signal contains much noise, so we can not do the same with eM2
component, that is required

at the start to give the necessary power to the system to overcome the inertia of the system.

(a) Joint position error (b) Decomposition of the joint error

Fig. 7. Results and decomposition of the error signal on the system with PID and MRPID
even in the presence noise

As we can see in previous simulations wavelet PID controller has the feature of being immune
to the presence of noise.

The following results are obtained from the experimental implementation of the MRPID
controller in a joint position system control, shown in Fig. 8a, the voltage transfer function
of v for a position x can be modeled as:

G(s) =
X(s)

V(s)
=

b

s(Js + c)
. (26)

where b, J, c is the torque constant, the total inertia of motor and load, and the viscous friction
coefficient, respectively. The control goal is to rotate the motor from point A to point B, as
shown in Fig. 8b. It is important to note that the parameters of the plant are not required for
the proposed tuning controllers.
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(a) Plant: DC motor

B

A

(b) Joint tracking trajectory

Fig. 8. SISO System to be controled and joint tracking

The test was performed using an experimental platform and a PC with a data acquisition card
from National Instrument PCI-6024E and a servomotor. The control law is programming in
Simulink environment, using an encoding sub-band scheme with Daubechies coefficients of
order 2 and a level decomposition N = 3, where the gains of the classic PID are tuned heuristic
and the MRPID tuned based on experience.

Gains values of the PID KP KD KI

10 1.6 6

Gains values of the MRPID kH Km1 Km2 KL

1.6 18 1.6 0

Table 6. Gains values of the PID and MRPID.

The graphs obtained are given in Figs. 9 and 10, which show the particular feature of the
MRPID controller, i.e. generating a smooth control signal preventing stress and wear the
engine. Besides having a better performance in the output of the plant when it is controlled
with a classical PID, such as by requiring the control signal response would generate high
frequency contain damage to the actuator, and some cases could not let this happen such is
the case of this plant, the engine would vibrate only without generating any movement.

3.2 Control for global regulatory on a robot manipulator

3.2.1 Platform

For experimental purposes we use the system which is shown in Fig. 11, it is a planar robot
with two degrees of freedom, which has two servo motors to move the links, the position is
measured with resistive type sensors.

The position control law for the planar robot is given by (20) with

u =

[

u1
u2

]

(27)

The classic PID control gains and MRPID control are given in Table 7 and Table 8, respectively.
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(a) Joint position signal (b) Control signal law

Fig. 9. Result of the joint position and control signal on the system with PID and MRPID
controllers

(a) Joint position error signal (b) Decomposition of the joint error

Fig. 10. Results and decomposition of the error signal on the system with PID and MRPID
controllers

Fig. 11. Two-link planar robot arm
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Gains values of the PID kP kD kI

u1 3.5 2.3 0.5

u2 9.0 2.3 0.5

Table 7. Gains values of the PID.

Gains values of the MRPID kH kM1
kM2

kL

u1 4.7 4.8 0.8 0

u2 12.0 12.0 0.8 0

Table 8. Gains values of the MRPID.

The results of the experimental part are shown in Fig. 12a, for the behavior of each link
position with both controllers, where we can see a similarity in behavior of the system both
with a classical PID controller and with MRPID controller. The most notable improvement is
observed in the control signal generated by the MRPID controller, as shown in Fig. 12b, since
it is a very smooth signal with respect to the signal generated by the classic PID controller.

The error signal to both controllers the classical PID as the wavelet MRPID are shown in Fig.
13a, the components of the error signal that are generated with the wavelet decomposition are
shown in Fig. 13b.

(a) Joint position signal (b) Control signal law

Fig. 12. Result of the joint position and control signal on the system with PID and MRPID
controllers

In the experimental platform, we have introduced noise in the process of sensing the output
signal, this is because the position sensors are resistive type and also the effects of friction
of mechanical parts contributed. The noise is not very evident in the error signal which is
shown in Fig. 13a, but this itself is observed in the control signal generated by the classical
PID control, as it is amplified by its derivative part (kD ∗ ė), while the control signal generated
by the MRPID controller the noise is filtered by the same control and therefore the signal
generated is smooth, as shown in Fig. 12b.

It is worth mentioning that at present a way to tune this type of controller is through an
experimental or heuristically, one alternative is employing wavelet neural networks as in
(Cruz et al., 2010; O. Islas Gómez, 2010; 2011a;b). So, it is important to show the components,
not only to observe how they behave, but also because we are used to tune the control of a
MRPID heuristically. The components of the error signal are shown in Fig. 13b. First, we put
the value of kl = 0, since this gain is to scale the highest frequency component, and which
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(a) Joint position error signal (b) Decomposition of the joint error

Fig. 13. Experimental results of the regulation on a robot manipulator

contains most of the noise signal frequencies. While the gains of the medium-scale signals
kM1

and kM2
, their values are calibrated so as to scale by their respective signals, the signal

generated serve to overcome the inertia of the system. The gain kH , must be calibrated so as
to be scaled to the low frequency signal handler allows the robot to reach the reference signal.

3.3 Control for regulatory tracking on a haptic interface

This section we present the description of the experimental platform and the control strategy
used for path tracking.

3.3.1 Platform

To evaluate control techniques in haptic interface PHANToM premium 1.0 (see Fig. 14), to
improve performance on tasks of exploration, training and telepresence, is exceeded aspects
considered open system architecture, such as:

• Application programming interface (GHOST SDK 3.1).

• Kinds of input and output handlers for system control and data acquisition.

• Code kinematic and dynamic model of PHANToM.

• Code in Visual C++ for protection PHANToM.

3.3.2 Hardware

For experimental validation equipment is used with the following specifications:

• Pentium computer 4 to 1.4 GHz and 1 GB of RAM, with two processors.

• Video Card GForce3.

• Equipment PHANToM 1.0 (Sensable Technologies)

3.3.3 Software

Software features, which were developed the experiments are

• Windows XP.

• Visual C++ 6.0.

• MatLab 7.1.

• API of GHOST 3.1.

15Wavelet PID and Wavenet PID: Theory and Applications

www.intechopen.com



14 Will-be-set-by-IN-TECH

Fig. 14. Haptic interface PHANToM Premium 1.0.

3.3.4 Tracking based regulation

In this section, the use of polynomial which adjust for optimum performance in the task of
regulation solves the problem of overcoming the inertia effect due to the state of rest and
motion, limit the maximum stresses inherent in the robotic system during the execution of the
task and allows the convergence in finite time, this idea is adopted as a regulation based on
follow-up.

Tracking-based regulation is of great importance and is performed by a function ξ(t), which
is designed in such a way that has a smooth performance from 0 to 1 in a arbitrary finite time
t = tb > 0 with tb as the time convergence arbitrarily chosen by the user and ξ(t) is such that

ξ̇(t0) = ξ̇(tb) ≡ 0. The proposed trajectory ξ(t) is given by:

ξ(t) = a3
(t − t0)

3

(tb − t0)3
− a4

(t − t0)
4

(tb − t0)4
+ a5

(t − t0)
5

(tb − t0)5
. (28)

If we derive (28) yields the velocity

ξ̇(t) = 3a3
(t − t0)

2

(tb − t0)3
− 4a4

(t − t0)
3

(tb − t0)4
+ 5a5

(t − t0)
4

(tb − t0)5
, (29)

and the second derivative of (28) is given by

ξ̈(t) = 6a3
(t − t0)

(tb − t0)3
− 12a4

(t − t0)
2

(tb − t0)4
+ 20a5

(t − t0)
3

(tb − t0)5
, (30)

taking as conditions ξ(t0) = 0, ξ(tb) = 1, ξ̇(t0) = 0, ξ̇(tb) = 0 and ξ̈( 1
2 tb) = 0.

The coefficients are defined by the following equations:

a3 − a4 + a6 = 1,

3a3 − 4a4 + 5a6 = 0,

6a3 − 12a4 + 20a6 = 0,

where a3 = 10, a4 = 15 y a6 = 6.
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Fig. 15. Block diagram which illustrates the flow of information between the two controllers
employed.

As can be seen in Fig. 15, the benefits of the MRPID wavelet control are: not required
measurement of the velocity and perfect tracking in finite time, while the PD control has a
steady-state error. In (B. A. Itzá Ortiz & Tolentino, 2011) they present sufficient condition for
closed-loop stability for stable linear plants.

3.3.5 MRPID controller

The control law for the haptic device is given by (20) for each servo motor, as

u =

⎡

⎣

u1
u2
u3

⎤

⎦ (31)

3.3.6 Experimental results

In this section, we will present the experiment results using the system shown in Fig. 14,
which has three servo motors to move the links, the position signal is measured with encoder
sensors and an optical speed.
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The values of the constants of PD and the MRPID controllers are given in Table 9 and Table
10, respectively.

Gains values for the PD kP kD

u1 0.9 0.05

u2 0.9 0.05

u3 0.9 0.05

Table 9. Gains values for the PD

Gains for the MRPID kH kM1
kM2

kL

u1 7 6 5 3

u2 7 6 5 3

u3 7 6 5 3

Table 10. Gains values for the MRPID

The results of the experiment are shown in Fig. 16a, for the behavior of the trajectory in space
with both controls, where we can see an improvement in behavior controller with the MRPID
difference with PD controller. Also notable is the improvement in the performance of the joint
velocity, as shown in Figs. 18a, 18b and 19. In Figure 16b shows the control signals generated
by MRPID for the three actuators.

The error signal with the wavelet MRPID controller and the three actuators signals are shown
in Fig. 17a, the components of the error signal is generated with the wavelet decomposition 1
actuator are shown in Fig. 17b.

(a) Joint position signal (b) Control signal law

Fig. 16. Result of the joint position and control signal on the system with PD and MRPID
controllers

In the experimental platform, we have inserted noise into the sensing output signal, this is due
to the sensors (position and speed) and the effects of friction due to the mechanical parts. The
noise is very evident in the error signal which is shown in Fig. 17a, to be used to calculate the
control signal generated by the PD control is amplified by the derivative part (kD ∗ ė), while
the control signal generated by the MRPID wavelet controller, noise is filtered wavelet for the
same control and therefore the signal generated is very smooth, as shown in Fig. 16b.
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(a) Joint position error signal (b) Decomposition of the joint error

Fig. 17. Results and decomposition of the error signal on the system with MRPID

(a) Joint velocity 1 signal (b) Joint velocity 2 signal

Fig. 18. Results of the speed signal to the actuator joint 1 y 2

Fig. 19. Results of the speed signal to the actuator joint 3.
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4. PID control based on wavelet neural network

4.1 Wavelet neural network theory

Combining the theory of wavelet transform with the basic concept of neural networks, it has
a new network called adaptive wavelet neural network or wavenet as an alternative to the
neural networks of feedforward to approximate arbitrary nonlinear functions.

A function f (t) ∈ L2(R) can be approximated by a linear combination using (12), which is
similar to a radial basis neural network. In Figure 20 shows the architecture of the adaptive
wavelet neural network, which approximates any desired signal u(t) by generalizing a linear
combination of a set of daughters wavelets ψ(τ), where they are generated by a dilation a and
b a translation of the mother wavelet ψ(t):

ψ(τ) = ψ

(

t − b

a

)

, a, b ∈ R, τ =
t − b

a
, (32)

the dilation factor a > 0.

Fig. 20. Structure of wavelet network of three layers

To achieve the approximation, we assume that the output function of the network meets the
admissibility condition and sufficiently close to the reference, i.e. the time-frequency region
is actually covered by their L windows. The signal from the network about ŷ(t) can be
represented by:

ŷ(t) = u(t)
L

∑
l=1

wlψl(τ), y, u, w ∈ R, (33)

in which ψl(τ) = ψ
(

t−bl
al

)

for l = 1, 2, · · · , L, where L ∈ Z is the number of neurons in the

layer of the wavenet.

And, as a wavenet is a local network in which the output function is well localized in both
time and frequency. In addition, a two local network can be achieved by a combination of
neural network in cascaded with a infinite impulse response filter (IIR), which provides an
efficient computational method for learning the system. In Figure 21 shows the structure of
the IIR filter and Fig. 22 shows the final structure of the IIR filter wavenet.

Defining

W(k) � [w1(k) w2(k) · · · wl(k) · · · wL−1(k) wL(k)]
T , (34)

A(k) � [a1(k) a2(k) · · · al(k) · · · aL−1(k) aL(k)]
T , (35)

B(k) � [b1(k) b2(k) · · · bl(k) · · · bL−1(k) bL(k)]
T , (36)

C(k) � [c0(k) c1(k) · · · cm(k) · · · cM−1(k) cM(k)]T , (37)
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Fig. 21. Scheme block diagram of IIR filter model

Fig. 22. Struture of wavelet network with IIR filter

D(k) � [d1(k) d2(k) · · · dj(k) · · · dJ−1(k) dJ(k)]
T , (38)

Ψ(k) � [ψ1(τ) ψ2(τ) · · · ψl(τ) · · · ψL−1(τ) ψL(τ)]
T , (39)

Z(k) � [z(k) z(k − 1) · · · z(k − m) · · · z(k − M + 1) z(k − M)]T , (40)

Ŷ(k) � [ŷ(k − 1) ŷ(k − 2) · · · ŷ(k − j) · · · ŷ(k − J + 1) ŷ(k − J)]T , (41)

in which ψl(τ) = ψ
(

k−bl(k)
al(k)

)

for l = 1, 2, . . . , L, where L ∈ Z is the number of neurons in the

layer of the neural network. Now the approximate signal ŷ(t) with the cascade IIR filter can
be expressed in vector form as

ŷ(k) � D
T(k)Ŷ(k)v(k) + C

T(k)Z(k)u(k), (42)

u(k) � K(k)Em(k), (43)

z(k) � Ψ
T(k)W(k), (44)

The wavenet parameters are optimized with minimum mean square algorithm LMS by
minimizing a cost function or energy function E, along all the time k. If we define the error en

between the plant output y and the output of wavenet ŷ, as:

en(k) = y(k)− ŷ(k), (45)

which is a function of error in time k, the energy function is defined by:

E =
1

2
ET

n En, (46)

with
En = [en(1) en(2) · · · en(k) · · · en(T )]T . (47)
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So, to minimize E using the gradient method steps down, which requires the gradients ∂E
∂A(k)

,

∂E
∂B(k)

, ∂E
∂W(k)

, ∂E
∂C(k)

y ∂E
∂D(k)

to update the incremental changes of each parameter particular.

Which are expressed as:

∂E

∂W(k)
=

[

∂E

∂w1(k)

∂E

∂w2(k)
· · · ∂E

∂wl(k)
· · · ∂E

∂wL−1(k)

∂E

∂wL(k)

]T

, (48)

∂E

∂A(k)
=

[

∂E

∂a1(k)

∂E

∂a2(k)
· · · ∂E

∂al(k)
· · · ∂E

∂aL−1(k)

∂E

∂aL(k)

]T

, (49)

∂E

∂B(k)
=

[

∂E

∂b1(k)

∂E

∂b2(k)
· · · ∂E

∂bl(k)
· · · ∂E

∂bL−1(k)

∂E

∂bL(k)

]T

, (50)

∂E

∂C(k)
=

[

∂E

∂c1(k)

∂E

∂c2(k)
· · · ∂E

∂cm(k)
· · · ∂E

∂cM−1(k)

∂E

∂cM(k)

]T

, (51)

∂E

∂D(k)
=

[

∂E

∂c1(k)

∂E

∂c2(k)
· · · ∂E

∂cj(k)
· · · ∂E

∂cJ−1(k)

∂E

∂cJ(k)

]T

. (52)

Incremental changes of each coefficient is simply the negative of their gradients,

ΔΘ(k) = − ∂E

∂Θ(k)
, (53)

where Θ can be W, A, B, C or D.

Thus wavenet coefficients are updated in accordance with the following rule:

Θ(k + 1) = Θ(k) + μΘΔΘ, (54)

where μ ∈ R is the learning rate coefficient for each parameter.

Then calculated the gradients required by (48) - (52):

The equation of the gradient for each wl is

∂E

∂wl(k)
= −en(k)C

T(k)Ψl(τ)u(k). (55)

where
Ψl(τ) = [ψl(τ) ψl(τ − 1) · · · ψl(τ − m) · · · ψl(τ − M)]T , (56)

The equation of the gradient for each bl is

∂E

∂bl(k)
= −en(k)C

T(k)Ψbl
(τ)wl(k)u(k). (57)

where

Ψbl
(τ) =

[

∂ψl(τ)

∂bl(k)

∂ψl(τ − 1)

∂bl(k)
· · · ∂ψl(τ − m)

∂bl(k)
· · · ∂ψl(τ − M)

∂bl(k)

]T

, (58)
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The equation of the gradient for each al is

∂E

∂al(k)
= −τlen(k)C

T(k)Ψbl
(τ)wl(k)u(k), (59)

= τl
∂E

∂bl(k)
, (60)

The equation of the gradient for each dj is

∂E

∂dj(k)
= −en(k)ŷ(k − j)v(k), (61)

The equation of the gradient for each cm is

∂E

∂cm(k)
= −en(k)z(k − m)u(k), (62)

Table 11 shows some mother wavelets with their derivatives with respect to b, used to estimate
(58).

Name ψ(τ)
∂ψ(τ)

∂b

Morlet cos(ω0τ)exp(−0.5τ2) 1
a [ω0 sin(ω0τ)exp(−0.5τ2) + τψ(τ)]

RASP1 τ
(τ2+1)2

3τ2−1
a(τ2+1)3

Table 11. Some mother wavelets and their derivative with respect b.

4.2 Wavenet PID controller design

Given a general SISO dynamical system represented in the following discrete time state
equations (Levin & Narendra, 1993; 1996):

x(k + 1) = f [x(k), u(k), k], (63)

y(k) = g[x(k), k], (64)

where x ∈ R
n and u, y ∈ R, besides the functions f , g ∈ R are unknown and the only

accessible data are the input u and the output, y. In (Levin & Narendra, 1993) showed that if
the linearized system of (63) and (64) around the equilibrium state is observable, then, there is
an input-output representation which has the following form:

y(k + 1) = Ω[Y(k), U(k)], (65)

Y(k) = [y(k) y(k − 1) · · · y(k − n + 1)], (66)

U(k) = [u(k) u(k − 1) · · · u(k − n + 1)], (67)

i.e., there exists a function Ω that maps to the pair (y(k), u(k)) and n − 1 past values within
y(k + 1).

Then a wavelet neural network model Ω̂, can be trained to approximate Ω on the domain of
interest. An alternative model of an unknown plant that can simplify the algorithm of the
control input is described by the following equation:

y(k + 1) = Φ[Y(k), U(k)] + Γ[Y(k), U(k)] · u(k), (68)
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where y(k) and u(k) denote the input and output at time k. If the terms Φ(·) and Γ(·) are
unknown, then it is here that uses a adaptive wavelets neural network model to approximate
the dynamic system as follows:

ŷ(k + 1) = Φ̂[Y(k), U(k), ΘΦ] + Γ̂[Y(k), U(k), ΘΓ] · u(k), (69)

comparing the model (69) with (42) we obtained that

ŷ(t) = C
T

Z(t)u(t) + D
T

Ŷ(t)v(t), (70)

we conclude that

Φ̂[Y(k), U(k), ΘΦ] = D
T

Ŷ(k)v(k), (71)

Γ̂[Y(k), U(k), ΘΓ] = C
T

Z(k), (72)

z(k) = Ψ
T

W. (73)

After the nonlinearity Φ(·) and Γ(·) are approximated with two distinct neural network

functions Φ̂(·) and Γ̂(·) with adjustables parameters (such as: weights w, the expansions a,
the translations, b, the IIR filter coefficients c and d), represented by ΘΦ and ΘΓ respectively,
control signal u(k) to obtain an output signal yre f (k + 1) can be obtained from:

u(k) =
yre f (k + 1)− Φ̂[Y(k), U(k), ΘΦ]

Γ̂[Y(k), U(k), ΘΓ]
. (74)

The wavelet control described by (20), has the difficulty to be tuned, and is a linear control
and which can not deal with complex dynamic processes such as those with larger dead time,
inverse response and characteristics of high nonlinearities. To improve the performance of
control, uses an algorithm to auto tune the values of each gain in K of the wavelet control, in
the same way that autotuning PID parameters as in (Sedighizadeh & Rezazadeh, 2008b) with
the difference that here we can have more than three parameters in the control level wavelet
decomposition. The wavenet control scheme is shown in Fig. 23

Fig. 23. Close loop block diagram of a SISO system with wavenet PID
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For the wavelet control tuning gains Ki, we use the rule (54), so that the gradient ∂E
∂Ki

is

calculated as
∂E

∂Ki(k)
= −en(k)Γ̂[Y(k), U(k), ΘΓ]ei(k), (75)

5. Wavenet PID application

5.1 Control position on a CD motor

To validate the algorithms, we are applied to the stable linear system described by equation
(25) with the parameters of the neural network shown in Table 12 and initial values are given
in Table 13.

Neurons 5

Wavelet Mother Wavelet Morlet

Feedfoward IIR coefficients c 2

Feedback IIR coefficients d 2

Table 12. Parameter of the adaptive wavelet neural network.

W [-0.5 -0.5 -0.5 -0.5 -0.5] � W 0.2

A [10 10 10 10 10] � A 0.2

B [0 30 60 90 120] � B 0.2

C [0.1 0.1] � C 0.2

D [0.1 0.1] � D 0.2

K [0.1 0.5 0.5 0.1] � K 0.05

Table 13. Initial values of the parameters of the adaptive wavelet neural network and gains of
the wavenet PID.

The experimental results with a wavelet neural network without prior training to be used
with the scheme of Fig. 23 to tune the gains of MRPID, but if you have a learning period
0 ≤ t ≤ 120 seconds to identify the system.

From the Fig. 24a, it is observed that after the learning period we get an acceptable response
with the wavenet PID and the overshoot is no more than 0.2. In Figure 24b shows as the
control signal is much smaller than that generated in MRPID controller and still has a rapid
response as seen in Fig. 24a, and this is due to tuning of the gains made by the wavelet neural
network algorithm.

In the decomposition of the error signal shown in Fig. 25, is very similar to the decomposition
of the error shown in Fig. 10a generated by the MRPID without autotuning.

The Figures 26a, 26b and 27 show the behavior of the wavenet and the IIR filter parameters,
and also the behavior of MRPID gains that are tuned during the training period. We observed
that with little training period and without prior training of the wavelet neural network, have
achieved a good response in the system output as shown in Fig. 24a.

The final values are shown in Table 14:

There exist more applications in nonlinear systems as the AC motor which are given in
(O. Islas Gómez, 2011a;b).
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(a) Joint Position (b) Control Signal

Fig. 24. Result of the joint position and control signal on the system with MRPID and
wavenet PID controller

Fig. 25. Decomposition of the error signal

(a) Wavenet parameters (b) Parameters of the IIR filter

Fig. 26. Results of parameters of the wavelet neural network
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Fig. 27. Results of the wavenet PID gains

W [-0.426 -0.47 -0.54 -0.56 -1.25]

A [10.057 10.014 10.004 9.98 9.962]

B [0.003 30.019 60.065 90.15 120.018]

C [0.775 0.8]

D [0.0973 0.0948]

K [0.615 0.45 0.448 0.2]

Table 14. Final values parameters of the wavelet neural network and the wavenet PID gains.

6. Conclusion

The properties have the wavelets, makes a mathematical tool very useful, not only for image
filtering, image compression, seismic signal analysis, denoising of audio signals, nonlinear
function approximation with neural networks (Hans, 2005; Hojjat & Karim, 2005; Li et al.,
2005; Mallat, 2008; Mertins, 1999), etc., but also in new areas such as automatic control, where
from the results obtained shows a great first step in the experimental implementation on on
Euler-Lagrange systems. The experimental implementation of the MRPID wavelet control on
haptics interfaces results in an opening in the study and analysis of experimental platforms in
the motor rehabilitation area, due at stability and robustness than shows the MRPID wavelet
the during the tracking planned trajectories. The most notable advantage that we can see
is that the MRPID wavelet controller not requires the joint velocity vector for following
trajectory, only to measure the position, makes a very good following. Another advantage
is that the characteristics of the control signal generates a soft even in the presence of noise,
so it does not require any additional filters for signal control, avoiding a filtering stage after
sensing or after generating the control signal and before the power amp. So with this type
of control, you have two in one, since you can filter the signal and generates a control signal.
Also, we summarize the theory of the adaptive wavelet neural network to get a wavenet PID
controller which it was testing in the DC motor control.
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