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1. Introduction

The systems which contain electric or magnetic media have besides the electric (respectively
magnetic) properties also the common properties of a thermodynamic systems (that is
thermal, volumic, chemical); moreover, there are correlations between the electric (magnetic)
properties and the thermal or volumic properties. Because there are a great variety of
situations with the corresponding properties, we shall present briefly only the most important
characteristics of the simplest electric or magnetic systems. For these systems there are
supplementary difficulties (comparing to the simple neutral fluid) because the inherent
non-homogeneity of these systems and also because the special coupling between the electric
(respectively magnetic) degree of freedom and the volumic degree of freedom. These
difficulties have let to the use of different methods of study in the literature, being necessary
to modify some standard thermodynamic quantities (introduced in the standard textbooks for
the simple thermodynamic systems).

In order to have a relation with the presentations of other works, we shall discuss the electric
(respectively the magnetic) systems with many methods and we shall note some improper use
of the different concepts which had been introduced initially in the standard thermodynamics.
Although the most of the electric or magnetic systems are solid, in order to maintain a short
and also an intelligible exposition we shall present explicitly only the case when the system
is of the fluid type, and when it contain a single chemical species, therefore neglecting the
anisotropy effects and the complications introduced by the theory of elasticity.

We remark that for the thermodynamics of quasi-static processes must be considered only
equilibrium states, so that we will deal only with electrostatic or magneto-static fields.
Although there are interference effects between the electric and magnetic phenomena, these
are very small; therefore, in order to simplify the exposition, we shall study separately the
electric and the magnetic systems, emphasizing the formal similitude between these type of
systems.

There are many textbooks which present the basic problems of thermodynamics, some of
the most important of them used the classical point of new [1-12], and also other used the
neo-gibbsian point of view [13-15]; in the following we shall use the last point of view (i.e. we
shall use the neo-gibbsian thermodynamics) [16].
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2. Electric systems

2.1 General electrodynamic results

Accordingly to the electrodynamics, the electrostatic field created by a distribution of static
electric charges, in an electric medium, is characterized by the vectorial fields the intensity of
the electric field E(r) and the intensity of electric induction D(r), which satisfy the electrostatic
Maxwell equations [17-20]:

rot E(r) = 0 , (1a)

div D(r) = ρ(r) , (1b)

where ρ(r) is the volumic density of the electric free charge (there are excluded the
polarization charges).

From Eq. (1a) it follows that E(r) is an irrotational field, i.e. it derives from an electrostatic
potential Φ(r):

E(r) = − grad Φ(r) . (2)

Also, on the surface of an conductor having the electric charge, the surface density of electric
charge σ is related to the normal component (this is directed towards the conductor) of the
electric induction with the relation:

Dn = − σ . (3)

Under the influence of the electrostatic field, the dielectric polarizes (it appears polarization
charges), and it is characterized by the electric dipolar moment P , respectively by the polarization
(the volumic density of dipolar electric moment) P (r):

P (r) ≡ lim
δV→0

δP(r)

δV(r)
⇐⇒ P =

∫

V
d3r P (r) . (4)

Using the polarization it results the relation between the characteristic vectors of the
electrostatic field:

D(r) = ε0 E(r) +P (r) , (5)

where ε0 is the electric permitivity of the vacuum (it is an universal constant depending on
the system of units).

The general relation between the intensity of the electric field E(r) and the polarization P (r)
is

P (r) = ε0 χ̂e(E , r) : E(r) +P0(r) , (6a)

where P0 is the spontaneous polarization, and χ̂e is the electric susceptibility tensor (generally
it is dependent on the electric field).

For simplicity, we shall consider only the particular case when there is no spontaneous
polarization (i.e. the absence of ferroelectric phenomena) P0 = 0, and the dielectric is linear
and isotropic (then χ̂e is reducible to a scalar which is independent on the electric field); in
this last case, Eq. (6a) becomes:

P = ε0 χe E , (6b)

and Eq. (5) allows a parallelism and proportionality relation between the field vectors:

D = ε0(1 + χe) E . (7)

114 Trends in Electromagnetism – From Fundamentals to Applications

www.intechopen.com



Thermodynamics of Electric

and Magnetic Systems 3

δqext

V0

Σ0

Σ1
σ

qext, Φ

E �= 0

E = 0

Fig. 1. The system chosen for the evaluation of the electric work.

In the common cases the susceptibility (for the specified types of dielectrics) depends on the
temperature and of the particle density (or of the pressure) in the form:

χe = n χe(T,P) , (8)

where n ≡ N/V is the particle density, χe is the specific (per particle) susceptibility, and P is
the pressure1.

In the narrow sense, the concrete expression of the electric susceptibility per particle is an
empirical information of the thermal state equation type; we shall consider explicitly two
simple cases:

– the ideal dielectric

χe(T) =
K

T
, (9a)

– the non-ideal dielectric

χe(T,P) =
K

T − Θ(P)
, (9b)

where K is a constant depending on the dielectric (called Curie constant), and Θ(P) is a
function of the pressure, having the dimension of a temperature.

Using the general relations of the electrostatics, we can deduce the expression of the
infinitesimal electric work, as the energy given to the thermo-isolated dielectric when the
electric field varies:

−δLe =
∫

V0

d3r E · δD , (10)

under the condition that the system is located in the domain with the volume V0 = constant,
so that outside to this domain the electric field vanishes.

Proof :

1 We can define the dipolar electric moment per particle as P = N p, resulting the susceptibility per
particle with an analogous relation to (6b) p = ε0 χe E .
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The electrostatic field from the dielectric is created by charges located on conductors; we consider
the situation illustrated in Fig. 1, where inside the domain with the volume V0 and fixed external
surface Σ0, there are dielectrics and a conductor (this last has the surface Σ1) with the electric charge
qex (respectively the charge density σ) which is the source of the electrostatic field2.

In the conditions defined above, the infinitesimal electric work is the energy given for the transport
of the small electric charge δqex from outside (the region without electric field) until the conductor
surface Σ1, which has the electrostatic potential Φ:

−δLe = Φ δqex .

In order to express the electric work in terms of the vectors for the electrostatic field, we observe that
the charge qex located on the internal conductor can be written with the normal component of the
electric induction, accordingly to Eq. (3):

qex =
∮

Σ1

σ dA = −

∮

Σ1

Dn dA ,

and from previous relation it results that a variation of the charge δqex implies a variation of the electric
induction δD (the surface Σ1 is fixed); because the electrostatic potential Φ is constant on the surface
Σ1, the expression of the electric work can be written as:

−δLe = −

∮

Σ1

dA n1 · Φ δD .

The integral on the surface Σ1 can be transformed in a volume integral, using the Gauss’ theorem:
∫

D
dV div a =

∮

∂D
dA n · a ;

then we obtain
−δLe = −

∫

V
dV div

(
Φ δD

)
+

∮

Σ0

dA n0 · Φ δD .

From the defining conditions, on the external surface Σ0 the electrostatic potential Φ and the electric
induction D vannish, so that the surface integral

∮
Σ0

. . . has no contribution.

For the volumic integral we can perform the following transformations of the integrand:

div
(
Φ δD

)
= grad Φ · δD + Φ div

(
δD

)
= −E · δD + Φ δ

(
divD

)

= −E · δD ,

because Eq. (2) and the absence of another free charges inside the dielectric:

divD = ρint = 0 .

Finally, by combining the previous results, we get Eq. (10). �

We note that the expression (10) for the electric work, implies a domain for integration with a
fixed volume (V0), and in addition the electric field must vanish outside this domain.

Therefore, there are two methods to deal the thermodynamics of dielectrics on the basis of
the electric work (and also the necessary conditions for the validity of the corresponding
expression): the open system method (when the domain of integration is fixed but it has a
fictitious frontier and it contains only a part of the dielectric), and the closed system method
(when the domain of integration has physical a frontier, possibly located at the infinity, but
the dielectric is located in a part of this domain); we observe that the second method is more
physical, but in the same time it is more complex, because we must consider a compound
system and only a part of this total system is of special interest (this is the dielectric). In
addition we shall see that the second method implies the change of the common definitions
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Fig. 2. The open system model.

for the state parameters associated to the electric and volumic degrees of freedom (both the
extensive and the intensive).

1. The open system method: we consider a fixed domain (having the volume V = const.)
which contains an electrostatic field inside, but outside to this domain the electrostatic field
vanishes; the interesting system is the dielectric located inside the above specified domain,
as an open thermodynamic system (the dielectric fills completely the domain, but there is a
part of this dielectric outside the domain, at vanishing electrostatic field, because the frontier
is totally permeable).

We note the following characteristic features of this situation:

– the thermodynamic system (the portion of the dielectric located in electrostatic field) has a
fixed volume (V = V0 = constant), but in the same time, it is an open thermodynamic system
(N �= constant);

– the electro-striction effect (this is the variation of the volume produced by the variation of
the electric field) in this case leads to the variation of the particle number, or in another words,
by variation of the particle density n ≡ N/V0 �= constant (because the volume is fixed, but
the frontier is chemical permeable);

– in the simplest case, when we consider a homogeneous electrostatic field3, inside the domain
with the volume V0, infinitesimal electric work can be written in the form

−δLe = E δ(V0 D) , (11)

and this implies the following definition for the electric state parameters (the extensive and
the intensive ones): {

Xe = V0 D = D

Pe = E
(12)

[in this case V = const., that is the volumic degree of freedom for this system is frozen; but we
emphasize that the expression −δLe = E δ(V D) when the volume of the system V can varies
is incorrect].

2 In order to have the general situation, we do not suppose particular properties for the dielectrics, so
that we consider the non-homogeneous case.

3 This situation is realized by considering a plane electric condenser having very closed plates, so that it
is possible to consider approximately that the electric field vanishes outside the condenser; the space
inside and outside the condenser is filled with a fluid dielectric. Accordingly to the previous definitions,
the thermodynamic interesting system is only the part of the dielectric which is located inside the plates
of the condenser, and the frontier of this system is fictitious.
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Fig. 3. The model for the closed system.

2. The closed system method: we consider the dielectric surrounded by an non-electric fluid
(that is, the dielectric is located on a part of the domain with electric field).
Then it is necessary to define the compound system corresponding to the whole space where
exists electric field

S(τ) = S
⋃

S′ ,

where S is the dielectric system with the volume V, and S′ is an auxiliary non-electric system
having the volume V ′ = V0 − V, as it is illustrated in Fig. 3.

We must remark that the auxiliary system (having negligible electric properties) is necessary
in order to obtain the condition E → 0 towards the frontier of the domain which have the
volume V0, and also it produces a pressure on the dielectric; thus, the volume of the dielectric
is not fixed and we can distinguish directly electro-striction effects.

Because the polarization P is non-vanishing only in the domain V, occupied by the system
S, we transform the expression (10) using Eq. (5), in order to extract the electrization work on
the subsystem S

−δL
(τ)
e =

∫

V0

d3r E · δD =
∫

V0

d3r E · ε0 δE +
∫

V0

d3r E · δP

≡ δW
(τ)
E + −δLp ,

where δW
(τ)
E is the variation of the energy for the field inside the total volume V0, and −δLp is

the work for polarize the dielectric.

The first term allows the separation of the contributions corresponding the two subsystems
when the energy of the electrostatic field changes:

δW
(τ)
E =

∫

V0

d3r δ
( ε0 E

2

2

)
= δ

{∫

V
d3r

ε0 E
2

2

}
+ δ

{∫

V ′
d3r

ε0 E
2

2

}

= δWE + δW ′
E .

The second term can be interpreted as electric polarization work and it implies only the
dielectric; in order to include the possible electro-strictive effects, we shall write this term
in the form

−δLp =
∫

V0

d3r E · δP =
∫

Vf

d3r E ·P f −

∫

Vi

d3r E ·Pi = δ

{∫

V
d3r E ·P

}∣∣∣∣
E=const.
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that is, the polarization work implies the variation of the polarization δP and of the volume
δV of the dielectric with the condition of constant electric field: E = constant (during the
process).

On the basis of the previous results we can separate the contribution of the electric work on
the dielectric (−δLe) from those on the auxiliary non-electric system (δW ′

E ):

−δL
(τ)
e = −δLe + δW ′

E , (13a)

−δLe = −δLp + δWE . (13b)

For the electric work on the dielectric (the subsystem S) we observe two interpretations in the
case when S is homogeneous4:

1. we take into account only the polarization work −δLp and we neglect systematically the
energy of the electric field inside the dielectric δWE ; then the polarization work in the
uniform electric field can be expressed with the dipolar electric moment

−δLp = E · δ
∫

V
d3r P = E · δP ; (14)

2. we estimate the contributions of the both terms from Eq. (13b), taking into account the
implications due to the homogeneity of the system:

−dLp = E dP = E d(VP) ,

dWE = d
( ε0 E

2

2
V
)
= −

ε0 E
2

2
dV + E d(V ε0 E) ,

so that we obtain the total electric work performed by the dielectric

−dLe = −dLp + dWE = −
ε0 E

2

2
dV + E d(V D) , (15)

and the last expression can be interpreted as an work performed on two degrees of freedom
(volumic and electric).

We observe that for isotropic dielectrics the vectors E , D and P are collinear; therefore, we
shall omit the vectorial notation, for simplicity.

2.2 Thermodynamic potentials

We shall discuss, for simplicity, only the case when the electric system is homogeneous
and of fluid type, being surrounded by a non-electric environment. Then, the fundamental
thermodynamic differential form is:

d U = −dQ+ −dLV + −dLe +
−dLN . (16)

For the thermodynamic study of the electric system there are many methods, depending the
choice of the fundamental variables (corresponding to the choice of the concrete expression
for the electric work −dLe).

4 The condition of homogeneity implies an uniform electric field E (r) = const. in the subsystem S, and
this property is realized only when the dielectric is an ellipsoid in an uniform external field.

119Thermodynamics of Electric and Magnetic Systems

www.intechopen.com



8 Will-be-set-by-IN-TECH

2.2.1 Pseudo-potentials method

We replace the expression (13b) – (14) for the electric work, and also the expression for the
other forms of work and for the heat; then, the fundamental thermodynamic differential form
has the explicit expression:

dU = T dS −P dV + E dP + dWE + μ dN . (17)

We observe that the preceding differential form contains a term dWE which is a exact total
differential (from the mathematical point of view) and it represents the variation of the energy
of the electric field located in the space occupied by the dielectric; we put this quantity in the
left side of the above equality we obtain:

d Ũ = T dS −P dV + E dP + μ dN , (18)

where Ũ ≡ U − WE is called the internal pseudo-energy of the dielectric5.

We present some observations concerning the differential form (18):

• Ũ (S , V,P , N) is equivalent to the fundamental thermodynamic equation of the system, since
it contains the whole thermodynamic information about the system (that is, its derivatives are
the state equations)6; and on the other side, the pseudo-energy has no specified convexity
properties (because it was obtained by subtracting a part of the energy from the total internal
energy of the system);

• Ũ (S , V,P , N) is a homogeneous function of degree 1 (because it is obtained as a difference
of two homogeneous functions of degree 1);

• by considering the differential form (18) as similar to the fundamental thermodynamic
differential form, it follows that the electric state parameters are7

{
X̃e = P = P V ,

P̃e = E ;

• if we perform the Legendre transformations of the function Ũ (S , V,P , N), then we obtain
objects of the thermodynamic potential types (that is, the derivatives of these quantities give
the state equations of the dielectric); however, these objects are not true thermodynamic
potentials (firstly since they have not the needed properties of convexity-concavity), so that
they are usually called thermodynamic pseudo-potentials.

In the following we shall present briefly only the most used pseudo-potentials: the electric
pseudo-free energy and the electric Gibbs pseudo-potential.

5 Because we consider in the expression WE = V ε0E
2/2 the intensity of the electric field in the presence

of the dielectric, this energy is due both to the vacuum and to the dielectric; thus, Ũ is not the internal
energy of the dielectric (without the energy of the electric fields in vacuum), but it is an artificial quantity.

6 We shall show later that the derivatives of the pseudo-energy (more exactly, the derivatives of the
pseudo-potentials deduced from the pseudo-energy) are the correct state equations.

7 We observe that the use of the internal pseudo-energy implies the modification of the extensive electric
state parameter (V D → VP ), but the intensive electric state parameter (E) had been unmodified.
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a.1. The electric pseudo-free energy is the Legendre transformation on the thermal and
electric degrees of freedom8

F̃ ∗ ≡ Ũ − T S − E P , (19)

having the differential form9:

dF̃ ∗ = −S dT −P dV −P dE + μ dN , (20)

so that it allows the deduce the state equations in the representation (T, V, E , N).
We consider the simplest case, when the dielectric behaves as a neutral fluid, having the free
energy F0(T, V, N), in the absence of the electric field and when the electric susceptibility is
χe(T, V/N); then, we can consider as known the electric state equation (the expression of the
dipolar electric moment):

(
∂ F̃ ∗

∂ E

)

T,V,N

= −P(T, V, E , N) = − ε0 χe(T, V/N) E V .

By partial integration, with respect to the electric field, and taking into account that at
vanishing electrical field the electric pseudo-free energy reduces to the proper free energy
(the Helmholtz potential):

F̃ ∗
∣∣∣
E=0

= U0 − T S0 = F0(T, V, N) ,

we obtain:

F̃ ∗(T, V, E , N) = F0(T, V, N) +F ∗
el(T, V, E , N) , (21a)

F ∗
el(T, V, E , N) ≡ −

ε0 E
2

2
χe(T, V/N) V , (21b)

that is, the electric pseudo-free energy of the dielectric is the sum of the free energy at null
electric field and the electric part F ∗

el.

The additivity (factorization) property of the electric pseudo-free energy is transmitted to the
non-electric state equations: the entropy, the pressure and the chemical potential (these are
sums of the non-electric part, corresponding to vanishing electric field, and the electric part):

S(T, V, E , N) = −

(
∂ F̃ ∗

∂ T

)

V,E ,N

= S0(T, V, N) +
ε0 E

2

2

(
∂ χe

∂ T

)

V,N

V , (22a)

P(T, V, E , N) = −

(
∂ F̃ ∗

∂ V

)

T,E ,N

= P0(T, V, N) +
ε0 E

2

2

(
∂ (χeV)

∂ V

)

T,N

, (22b)

μ(T, V, E , N) =

(
∂ F̃ ∗

∂N

)

T,V,E

= μ0(T, V, N)−
ε0 E

2

2

(
∂ χe

∂N

)

T,V

V . (22c)

8 Because the absence of the correct properties of the convexity, we shall use only the classic definition of
the Legendre transformation.

9 In the strictly sense, F̃ ∗ is a simple Gibbs potential, so that the common terminology is criticizable.
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a.2. The electric Gibbs pseudo-potential is defined, analogously to the previous case, as the
Legendre transformation on the thermal, volumic and electric degrees of freedom10

G̃∗ ≡ Ũ − T S +PV − E P , (23)

having the differential form

dG̃∗ = −S dT + V dP−P dE + μ dN , (24)

so that it allows the deduction of the state equations in the representation (T,P, E , N).
We consider the simplest case (analogously in the former case), when the dielectric behaves
as a neutral fluid, having the proper Gibbs potential (the free enthalpy) G0(T,P, N) in the
absence of the electric field and when the electric susceptibility is χe(T,P); then, we can
consider as known the electric state equation (the expression of the dipolar electric moment):

(
∂ G̃∗

∂ E

)

T,P,N

= −P(T,P, E , N) = − ε0 χe(T,P) E N .

By partial integration, with respect to the electric field, and taking into account that at
vanishing electrical field the electric Gibbs pseudo-potential reduces to the proper Gibbs
potential:

G̃∗
∣∣∣
E=0

= U0 − T S0 +P V0 = G0(T,P, N) ,

we obtain:

G̃∗(T,P, E , N) = G0(T,P, N) + G∗
el(T,P, E , N) , (25a)

G∗
el(T,P, E , N) ≡ −

ε0 E
2

2
χe(T,P) N , (25b)

that is, the electric Gibbs pseudo-potential of the dielectric is the sum of the Gibbs potential at
null electric field and the electric part G∗

el.

The additivity (factorization) property of the electric Gibbs pseudo-potential is transmitted to
the non-electric state equations: the entropy, the volume and the chemical potential (these are
sums of the non-electric part, corresponding to vanishing electric field, and the electric part):

S(T,P, E , N) = −

(
∂ G̃∗

∂ T

)

P,E ,N

= S0(T,P, N) +
ε0 E

2

2

(
∂ χe

∂ T

)

P

N , (26a)

V(T,P, E , N) =

(
∂ G̃∗

∂P

)

T,E ,N

= V0(T,P, N)−
ε0 E

2

2

(
∂ χe

∂P

)

T

N , (26b)

μ(T,P, E , N) =

(
∂ G̃∗

∂N

)

T,P,E

= μ0(T,P, N)−
ε0 E

2

2
χe(T,P) . (26c)

We observe, in addition, that the electric Gibbs pseudo-potential is a maximal Legendre
transformation, so that with the Euler relation we obtain

G̃∗(T,P, E , N) = μ(T,P, E) N . (27)

10 Because the absence of the correct properties of the convexity, we shall use only the classic definition of
the Legendre transformation (like in the preceding case).
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2.2.2 The method of modified potentials

We use the expression (15) for the electric work, without extracting terms with total exact
differential type from the internal energy of the dielectric; then, the differential form (16) can
be written in the following explicit manner:

dU = T dS −

(
P+

ε0 E
2

2

)
dV + E d(D V) + μ dN

= T dS − π dV + E dD+ μ dN . (28)

We observe that in this case the electric work has contributions on two thermodynamic
degrees of freedom, so that we must redefine the electric and volumic state parameters:

XV = V , P′
V = − π ≡ −

(
P+

ε0 E
2

2

)
, (29a)

X′
E = D ≡ D V , PE = E . (29b)

In this last case it appears some peculiarities of the electric state parameters (both for the
extensive and for the intensive), so that there are needed cautions when it is used this method:

– V and D ≡ D V must be considered as independent variables,

– the effective pressure has an supplementary electric contribution ε0 E
2/2.

Although the modified potential method implies the employment of some unusual state
parameters, however it has the major advantage that U (S , V,D, N) is the true fundamental
energetic thermodynamic equation, and it is a convex and homogeneous of degree 1 function;
thus, it is valid the Euler equation:

U = T S − π V + E D+ μ N , (30)

and it is possible to define true thermodynamic potential with Legendre transformations.
From the Euler relation (30) and passing to the common variables, it results

U = T S −PV + E P V +
ε0 E

2

2
V + μ N ,

so that it is ensured that Ũ ≡ U − WE is a homogeneous function of degree 1 with respect to
the variables (S , V,P , N).

In order to compare the results of the method of modified potentials with those of the method
of the pseudo-potentials we shall present only the electric free energy and the electric Gibbs
potential as energetic thermodynamic potentials.

b.1. The electric free energy is the Legendre transformation on the thermal and electric
degrees of freedom

F ∗(T, V, E , N) ≡ inf
S ,D

{
U (S , V,D, N)− T S − E D

}
, (31)

and it has the following differential form11:

dF ∗ = −S dT − π dV −D dE + μ dN . (32)

11 In the strictly sense, F ∗ is a simple Gibbs potential, so that the common terminology is criticizable.
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We shall emphasize some important properties of the above defined electric free energy
F ∗(T, V, E , N).

1. When the electric field vanishes it becomes the proper free energy (the Helmholtz potential)

F ∗(T, V, 0, N) = U0(T, V, N)− T S0(T, V, N) = F0(T, V, N) .

2. The electric state equation is

(
∂F ∗

∂ E

)

T,V,N

= −D(T, V, E , N) = − ε0

[
1 + χe(T, V/N)

]
E V .

3. By partial integration with respect to the electric field and the use of the condition of
null field, we obtain the general expression of the electric free energy (for a linear and
homogeneous dielectric)

F ∗(T, V, E , N) = F0(T, V, N)−
ε0 E

2

2

[
1 + χe(T, V/N)

]
V . (33)

4. F ∗(T, V, E , N) is a function concave in respect to the variables T and E ; as a result we get
the relation (

∂2F ∗

∂ E2

)

T,V,N

= − ε0

[
1 + χe

]
V < 0 ,

and it follows “the stability condition” χe > −1 . (We note that actually is realized a more
strong condition χe > 0, but this has no thermodynamic reasons).

5. The state equations, deduced from Eq. (33) are:

S(T, V, E , N) = −

(
∂ F ∗

∂ T

)

V,E ,N

= S0(T, V, N) +
ε0 E

2

2

(
∂ χe

∂ T

)

V,N

V , (34a)

π(T, V, E , N) = −

(
∂ F ∗

∂ V

)

T,E ,N

= P0(T, V, N) +
ε0 E

2

2

[
1 +

(
∂ (χeV)

∂ V

)

T,N

]
, (34b)

μ(T, V, E , N) =

(
∂ F ∗

∂N

)

T,V,E

= μ0(T, V, N)−
ε0 E

2

2

(
∂ χe

∂N

)

T,V

V . (34c)

Because π = P + ε0 E
2/2 , it results that the state equations (34) are identical with Eqs.

(22), and this shows that F̃ ∗ (the correspondent pseudo-potential to F ∗) gives correct state
equations.

From Eq. (33) it result that the free energy (Helmholtz potential) is

F = F ∗ + E D = F0 +
E D

2
V ,

so that the electric part of the volumic density of free energy is:

fel ≡
F −F0

V
=

E D

2
.
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We emphasize that in many books the previous expression for the electric part of the free
energy density is erroneously considered as electric part of the internal energy density.

Correctly, the internal energy has the expression

U = F ∗ + T S + E D =
(
F0 + T S0

)
+

(E D

2
+

ε0 E
2

2
T

∂ χe

∂ T

)
V ,

so that the electric part of the volumic density of internal energy is

uel =
U − U0

V
=

E D

2
+

ε0 E
2

2
T

∂ χe

∂ T
�=

E D

2
.

b.2. The electric Gibbs potential is defined analogously, as the Legendre transformation on
the thermal, volumic and electric degrees of freedom

G∗(T, π, E , N) ≡ inf
S ,V,D

{
U (S , V,D, N)− T S + π V − E D

}
, (35)

and it has the differential form

dG∗ = −S dT + V dπ −D dE + μ dN . (36)

According to the definition, G∗ is a maximal Legendre transform, so that the Euler relation
leads to:

G∗ = μ N . (37)

On the other side, by replacing the variables π and D , accordingly to the definitions (29), we
obtain the the electric Gibbs potential is equal to the electric Gibbs pseudo-potential12 (but they have
different variables):

G∗(T, π, E , N) = G̃∗(T,P, E , N)

π = P+
ε0 E

2

2
.

From the preceding properties it follows that the equations deduced from the potential G∗

are identical with Eqs. (22); we observe, however, that it is more convenient to use the

pseudo-potential G̃∗, because this has more natural variables than the corresponding potential
G∗.

2.2.3 Thermodynamic potentials for open systems

Previously we have shown that the electric work implies two methods for treating the
dielectrics: either as a closed subsystem of a compound system (this situation was discussed
above), or as an open system located in a fixed volume (and the electric field is different from
zero only inside the domain with fixed volume).

12 The equality G∗ = G̃∗ (as quantities, but not as functions) can be obtained directly by comparing the
consequences of the Euler equation (27) and (37).
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If we use the second method, then the electric work has the expression (11) and the dielectric
system has only 3 thermodynamic degrees of freedom: thermal, electric and chemical (the
volumic degree of freedom is frozen); then, the fundamental differential form is

dU = T dS + E d(V0 D) + μ dN . (38)

Among the thermodynamic potentials, that can be obtained by Legendre transformations
of the energetic fundamental thermodynamic equation, denoted as U (S , V0 D, N) ≡
U (S ,D, N; V0), we shall present only the electric free energy:

F ∗(T, E , N; V0) ≡ inf
S ,D

{
U (S ,D, N; V0)− T S − E D

}
, (39)

which has the following properties:

1. the differential form:
dF ∗ = −S dT − V0 D dE + μ dN ; (40)

2. it reduces to the free energy (the Helmholtz potential) at vanishing electric field

F ∗(T, 0, N; V0) = U0(T, N; V0)− T S0(T, N; V0) = F0(T, N; V0) ;

3. by integrating the electric state equation V0 D(T, E , N) = V0 [1 + χe] ε0 E , we obtain

F ∗(T, E , N; V0) = F0(T, N; V0)− V0
ε0 E

2

2

[
1 + χe(T, V/N)

]
. (41)

We note that the results are equivalent to those obtained by the previous method, but the
situation is simpler because the volumic degree of freedom is frozen.

2.3 Thermodynamic coefficients and processes

2.3.1 Definitions for the principal thermodynamic coefficients

Because the dielectric has 4 thermodynamic degrees of freedom (in the simplest case, when it
is fluid), there are a great number of simple thermodynamic coefficients; taking into account
this complexity, we shall present only the common coefficients, corresponding to closed
dielectric systems (N = constant). In this case it is convenient to use reduced extensive

parameters with respect to the particle number; thus, we shall use the specific entropy s =
S

N

and the specific volume v =
V

N
.

a.1. The sensible specific heats are defined for non-isothermal processes ”ϕ ”:

cϕ ≡
Cϕ

N
=

1

N
T

(
∂S

∂ T

)

ϕ

= T

(
∂ s

∂ T

)

ϕ

. (42)

In the case, when the process ϕ is simple, we obtain the following specific isobaric/isochoric
and iso-polarization/iso-field heats: cV,p, cV,E , cP,p, cP,E .

a.2. The latent specific heats are defined for isothermal processes ”ψ ”:

λ
(a)
ψ =

1

N
T

(
∂ S

∂ a

)

ψ

= T

(
∂ s

∂ a

)

ψ

. (43)
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The most important cases (for ”ψ ” and a) are the isothermal-isobaric process with a = E when
we have the isobaric electro-caloric coefficient λ and the conjugated isothermal-isofield process

with a = P, when we have the iso-field piezo-caloric coefficient λ
(P)
E :

λ = T

(
∂ s

∂ E

)

T,P

, λ
(P)
E = T

(
∂ s

∂P

)

T,E

. (44)

a.3. The thermodynamic susceptibilities are of two types: for the volumic degree of freedom
(in this case they are called compressibility coefficients) and for the electric degree of freedom
(these are called electric susceptibilities):

κϕ =
−1

V

(
∂ V

∂P

)

ϕ

=
−1

v

(
∂ v

∂P

)

ϕ

, (45)

χ
(el)
ψ =

1

V

(
∂ P

∂ E

)

ψ

=

(
∂P

∂ E

)

ψ

. (46)

In the simple cases ”ϕ ” is an isothermal/adiabatic and iso-polarization/iso-field processes;
it results the following simple compressibility coefficients: κ T,P , κ T,E , κs,P and κs,E .
Analogously ”ψ ” as simple process is isothermal/adiabatic and isobaric/isochoric, resulting

the following simple electric susceptibilities: χ
(el)
T,v , χ

(el)
T,P, χ

(el)
s,v and χ

(el)
s,P.

From Eq. (6b) we observe that the isothermal electric susceptibility is proportional to the
susceptibility used in the electrodynamics:

χ
(el)
T,v =

(
∂P

∂ E

)

T,v

= ε0 χe(T, v) .

a.4. The thermal coefficients are of two types, corresponding to the two non-thermal and
non-chemical degrees of freedom (the volumic and the electric ones). If we consider only
thermal coefficients for extensive parameters, then we can define the following types of simple
coefficients:

• the isobaric thermal expansion coefficients (also iso-polarization/iso-field)

αy =
1

V

(
∂ V

∂ T

)

P,y,N

=
1

v

(
∂ v

∂ T

)

P,y

, (47)

where the index y is P or E ;

• the pyro-electric coefficients (also isochoric/isobaric)

πa =
1

N

(
∂ P

∂ T

)

E ,a,N

=

(
∂ p

∂ T

)

E ,a

, (48)

where the index a is V (for the volume V) or P (for the pressure P).

a.5. The mixed coefficients express correlations between the volumic and the electric degrees
of freedom; we mention the following simple coefficients:
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• the electro-strictive coefficient

γ =
1

V

(
∂ V

∂ E

)

T,P,N
=

1

v

(
∂ v

∂ E

)

T,P
; (49)

• the piezo-electric coefficient

� =
1

N

(
∂P

∂P

)

T,E ,N

=

(
∂ p

∂P

)

T,E

. (50)

2.3.2 Relations between simple coefficients

Because the great number of thermodynamic coefficients, corresponding to the dielectrics, we
must select among all possible relations between the simple coefficients; therefore, we shall
present only the most important relations: the symmetry relations (consequences of some
Maxwell relations) and special relations (of the type Reech or Mayer).

In order to emphasize symmetry relations expressed by the temperature, the pressure and
the electric field (T,P, E), as variables, for an closed system (N = constant), we use the
differential form of the reduced Gibbs pseudo-potential g̃∗(T,P, E) ≡ G∗/N, which is
obtained with the general reduction formulae from Eqs. (23) – (24):

dg̃∗ = − s dT + v dP− p dE . (51)

From the above differential form it results 3 Maxwell relations, which can be expressed by
simple coefficients, resulting symmetry relations between these coefficients:

(
∂ s

∂P

)

T,E

= −

(
∂ v

∂ T

)

P,E

=⇒ λ
(P)
E = − T v αE , (52a)

(the relation between the iso-field piezo-caloric coefficient and the isobaric-isofield thermal
expansion coefficient);

(
∂ s

∂ E

)

T,P

=

(
∂ p

∂ T

)

P,E

=⇒ λ = T πP , (52b)

(the relation between the isobaric electro-caloric coefficient and the isobaric pyro-electric
coefficient);

(
∂ v

∂ E

)

T,P

= −

(
∂ p

∂P

)

T,E

=⇒ v γ = − � , (52c)

(the relation between the electro-strictive coefficient and the piezo-electric coefficient).

Relations of Reech type can be obtained from the general relation (see [16], Eq. (3.25)),
resulting the equality between the ratios of the isobaric specific heats, of the compressibility
coefficients, and of the electric susceptibilities (isothermal, and respectively adiabatic):

cP,p

cP,E
=

κs,E

κT,E
=

χ
(el)
s,P

χ
(el)
T,P

. (53)
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Analogously, from the general Mayer relation for the specific heats (see [16] Eq. (3.28)) we
obtain in this case

cP,E − cP,p = T v
α2
E

χ
(el)
T,P

. (54)

Similar relations with Eqs. (53) – (54) can be obtained for the coefficients associated to another
sets of simple processes (e.g. isochoric, iso-polarization processes).

2.3.3 The factorization of some simple coefficients

An important characteristics of some thermodynamic coefficients is the factorization property:
the expression of the considered coefficient is the sum of the part corresponding to the absence
of the electric field (similarly as for the neutral fluid) and the “electric part”, and this result
comes from the factorization of the state equations.

We shall present the factorization of some coefficients using the variables of the electric Gibbs
representation13 (T,P, E , N); in this case the state equations are Eqs. (26).

The entropy is given by Eq. (26a), and here we write it without the variables (for simplicity),
and for using later the convenient variables

S = S0 + Sel , (55)

where S0 is the entropy of the dielectric as a neutral fluid, in the absence of the electric field,
and Sel is the electric part of the entropy:

Sel =
ε0 E

2

2

(
∂ χe

∂ T

)

P

N =
ε0 E

2

2

(
∂ χe

∂ T

)

v

V . (56)

Accordingly to the general definition (42), we obtain a factorization of the specific heats:

cϕ = c
(0)
ϕ + c

(el)
ϕ , (57)

where c
(0)
ϕ = T(∂s(0)/∂ T)ϕ is the specific heat of the dielectric in the absence of the electric

field, and c
(el)
ϕ = T(∂s(el)/∂ T)ϕ is the electric part of the specific heat.

For the isobaric processes there are the specific heat at constant electric field or at constant
polarization. From Eq. (56) it results

c
(el)
P,E = T

(
∂ χe

∂ T

)

P

ε0 E
2

2
. (58)

To obtain c
(el)
P,p we express the electric entropy Sel in terms of the dipolar electric moment

(instead the electric field), using Eq. (6b):

Sel =
p2

2 ε0 χ2
e

(
∂ χe

∂ T

)

P

N =
−p2

2 ε0

(
∂ (χe)

−1

∂ T

)

P

N ;

13 We remark that some coefficients need the use of other thermodynamic representations.
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then it results for the electric part of the isobaric-isopolarization specific heat the expression:

c
(el)
P,p =

−p2

2 ε0
T

(
∂2 (χe)

−1

∂ T2

)

P

. (59)

We observe that for an ideal dielectric (χe)
−1 ∼ T , so that we obtain c

(el)
P,p = 0 , that is cP,p =

c
(0)
P (the iso-polarization specific heat is independent of the electric field)14.

It is interesting to emphasize that for the ideal dielectrics the internal energy has also particular
properties. The electric part of the volumic density of internal energy for an arbitrary dielectric
has the expression

u(el) =
ε0 E

2

2

(
1 + χe + T

∂ χe

∂ T

)
.

For an ideal dielectric we obtain that this energy density is equal to the energy density of

the electric field u(el) = ε0 E
2/2 = wel , that is the whole electric energy is given only by the

electric field, without any contribution from the processes of the electric polarization. The
behavior of the iso-polarization specific heats and of the internal energy are similar to the
neutral fluids which satisfy the Clapeyron - Mendeleev equations, so that it is justified the
terminology “ideal” for the dielectrics which have Curie susceptibility.

In contrast with the specific heats, the isobaric electro-caloric coefficient has contribution only
from the electric part of the entropy:

λ = ε0 E T

(
∂ χe

∂ T

)

P

.

The volume is given by Eq. (26b), that is it can be expressed in the form:

V = V0 + Vel ,

where V is the volume of the dielectric as neutral fluid, in the absence of the electrical field,
and Vel is the electric part of the volume:

Vel = −
ε0 E

2

2

(
∂ χe

∂P

)

T

N . (60)

Accordingly to the general definitions (45) and respectively (47), the isothermal
compressibility coefficients κ T,E and the isobaric thermal expansion coefficient αE (both of
them at constant field) factorize in non-electric part (corresponding to null electric field, when
the dielectric behaves as a neutral fluid) and electric part:

κ T,E = κ
(0)
T +κ

(el)
T,E , (61a)

αE = α(0) + α
(el)
E , (61b)

14 For the corresponding isochoric specific heat we obtain the same result c
(el)
V,P = cV .
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where15

κ
(el)
T,E =

ε0 E
2

2 v0

(
∂2χe

∂P2

)

T

, (62a)

α
(el)
E = −

ε0 E
2

2 v0

∂2χe

∂ T ∂P
. (62b)

In contrast with the previous coefficients, the electro-strictive coefficient is obtained only from
the electric part of the volumic state equation16

γ ≈ −
ε0 E

v0

(
∂ χe

∂P

)

T

. (63)

2.3.4 Thermodynamic processes

Using the previous results we shall present the most significant thermodynamic processes for
the dielectrics as closed system (we shall choose the variable set T, P, E , N = constant).

d.1. The isothermal electrization: we consider that initially the dielectric is in null electric
field (T,P, Ei = 0, N) and we apply the electric field with an isothermal-isobaric process, so
that the final state has the parameters: (T,P, E f = E , N).

Using Eq. (26a) for the entropy, the heat transfered in this process is

Qi f = T ∆ Si f = T
{
S(T,P, E , N)− S(T,P, 0, N)

}

=
ε0 E

2

2
T

(
∂ χe

∂ T

)

P

N . (64)

Since χe(T,P) is in general a decreasing function with respect to the temperature, it results
that in the electrization process the dielectric yields heat: Qi f < 0 .

d.2. The adiabatic-isobaric depolarization: we consider that initially the dielectric is in
the presence of the electric field E and it has the temperature Ti; then, by a quasi-static
adiabatic-isobaric process the electric field is decreasing to vanishing value.

Since the equation of this process is S(T,P, E , N) = constant , with the supplementary
conditions P = constant and N = constant, then by using Eq. (26a), we obtain the equation
of the temperature:

S(Ti,P, E , N) + S(Tf ,P, 0, N) ;

that is, after simple algebraical operations, we get:

s0(Ti,P) +
ε0 E

2

2

(
∂ χe

∂ T

)

P

= s0(Tf ,P) . (65)

Because the electric susceptibility is in general an decreasing function in respect to the
temperature (∂ χe/∂T)P < 0 and the entropy s0(T,P) is an increasing function of

15 In fact, the factorization is obtained only if we consider small electric effects, so that we could
approximate v ≈ v0 at the denominators.

16 We consider that the electro-strictive effects are small, so that we can use the approximation v ≈ v0, at
the denominator.
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temperature, it results si < s f , that is the dielectric gets cool during the adiabatic
depolarization: Tf < Ti.

d.3. The electro-strictive and piezo-electric effects
The electro-strictive effect means the variation of the volume (of the dielectric) due to the
variation of the electric field, in conditions isothermal-isobaric (also the dielectric is a closed
system)17; and the electro-strictive coefficient is defined by Eq. (49).
The piezo-electric effect means the variation of the dipolar electric moment (of the dielectric),
due to the variation of the pressure, in conditions isothermal and at constant electric field
(also the dielectric is a closed system)18 and the piezo-electric effect coefficient is defined by
Eq. (50).
Between coefficients of the two effects it is the symmetry relation (53), and the corresponding
expressions can be put in explicit forms using the electric susceptibility:

γ = −
1

v
� =

−ε0 E

v

(
∂ χe

∂P

)

T

. (66)

We observe that the necessary condition to have an electro-strictive effect and an piezo-electric
effect is that χe depends on the pressure; accordingly to Eqs. (9), it results that only the
non-ideal dielectrics can have these effects.
Using the volumic equation of state (26b), we can evaluate the global electro-strictive effect,
that is the variation of the volume (of the dielectric) at the isothermal-isobaric electrization:

∆ Vi f (E) = V(T,P, E , N)− V(T,P, 0, N) = −
ε0 E

2

2

(
∂ χe

∂P

)

T

N . (67)

From the previous expression it results that when the electric susceptibility is a decreasing
function of the pressure (∂ χe/∂P)T < 0 , then it follows a contraction (a reduction of the
volume) at the electrization of the dielectric.

3. Magnetic systems

The thermodynamics of magnetic systems has many formal similitude with the
thermodynamics of electric systems; in fact, we shall show that it is possible to obtain the most
of the results for magnetic systems by simple replacements from the corresponding relations
for dielectric systems.

Because this similitude is only formal, and there are physical differences, and on the other
side, in order to have an autonomy with respect to the previous section, we shall present
briefly the thermodynamics of the magnetic systems independently of the results obtained
for the dielectrics. However, for emphasizing the formal similitude between the electric and
the magnetic systems, we shall do this presentation analogously to the previous one (which
corresponds to dielectrics).

17 In other words, the electro-strictive effect can be considered as the volumic response of the dielectric to
an electric perturbation.

18 We observe that the piezo-electric effect can be considered as the electric response of the dielectric to a
volumic perturbation, being conjugated to the electro-strictive effect.
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3.1 General electrodynamic results

Accordingly to the electrodynamics, the magneto-static field created by a distribution of
stationary electric currents, in an magnetic medium is characterized by the vectorial fields
the intensity of magnetic induction B(r) and the intensity of the magnetic field H(r) (called also
the magnetic excitation) which satisfy the magneto-static Maxwell equations [17-20]:

rot H(r) = j(r) , (68a)

div B(r) = 0 , (68b)

where j(r) is the volumic density of the conduction currents (there are excluded the
magnetization currents).

Under the influence of the magneto-static field the medium becomes magnetized (it
appears magnetization currents), and it is characterized by the magnetic dipolar moment M,
respectively by the magnetization (the volumic density of dipolar magnetic moment) M (r):

M (r) ≡ lim
δV→0

δM(r)

δV(r)
⇐⇒ M =

∫

V
d3r M (r) . (69)

Using the magnetization it results the relation between the characteristic vectors of the
magneto-static field:

H(r) =
1

μ0

B(r)−M (r) , (70)

where μ0 is the magnetic permeability of the vacuum (it is an universal constant depending
on the system of units).

The general relation between the intensity of the magnetic field H(r) and the magnetization
M (r) is

M (r) = χ̂m(H, r) : H(r) +M0(r) , (71a)

where M0 is the spontaneous magnetization, and χ̂m is the magnetic susceptibility tensor
(generally it is dependent on the magnetic field).

For simplicity, we shall consider only the particular case when there is no spontaneous
magnetization (that is the absence of ferromagnetic phenomena) M0 = 0, and the magnetic
medium is linear and isotropic (then χ̂m is reducible to a scalar which is independent on the
magnetic field); in this last case, Eq. (71a) becomes:

M = χm H , (71b)

and Eq. (70) allows a parallelism and proportionality relation between the field vectors:

B = μ0(1 + χm)H . (72)

In the common cases the susceptibility (for the specified types of magnetic media) depends on
the temperature and of the particle density (or of the pressure) in the form:

χm = n χm(T,P) , (73)

where n ≡ N/V is the particle density, and χm is the specific (per particle) susceptibility19.

19 We can define the dipolar magnetic moment per particle as M = N m, resulting the susceptibility per
particle with an analogous relation to (71b) m = χm H.
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V0

Σ0

H �= 0

H = 0

δB =⇒ E

Fig. 4. The system chosen for the evaluation of the magnetic work.

In the strictly sense, the concrete expression of the magnetic susceptibility per particle is an
empirical information of the thermal state equation type. On the basis of the type of specific
susceptibility, the linear magnetic media are divided in two classes:

a. the diamagnetic media, which have negative specific susceptibilities, depending very little
of the temperature and the pressure20

χm(T,P) ≈ constant < 0 ; (74a)

b. the paramagnetic media, which have positive specific susceptibilities, with small values; in
addition, there are two types of para-magnets:

– ideal para-magnets, having susceptibilities of the Curie type and independent of the pressure

χm(T) =
K

T
, (74b)

– non-ideal para-magnets, having susceptibilities of the Curie - Weiss type

χm(T,P) =
K

T − Θ(P)
, (74c)

where K is a constant depending on the paramagnet, called Curie constant), and Θ(P) is a
function of the pressure, having the dimension of a temperature.

Using the general relations of the magneto-statics, we can deduce the expression of the
infinitesimal magnetic work, as the energy given to the thermo-isolated magnetic medium
when the magnetic field varies:

−δLm =
∫

V0

d3r H · δB , (75)

under the condition that the system is located in the domain with the volume V0 = constant,
so that outside to this domain the magnetic field is null.

20 In this case the magnetization is in the opposite direction to the magnetic field [see Eq. (71)].
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Proof :

The magneto-static field from the magnetic medium is created by conduction electric currents; we
consider the situation illustrated in Fig. 4, where inside the domain with the volume V0 and fixed
external surface Σ0, there are magnetic media and electric conductors21 .

In contrast to the electric case, the magnetic work cannot be evaluated directly, since the magnetic
forces are not conservative, and also because the variation of the magnetic field produces an electric
field through the electro-magnetic induction, accordingly to the Maxwell – Faraday equation

rotE(r) = −
∂B(r, t)

∂t
. (76)

For this reasons, the magnetic work, as the variation of the energy corresponding to the magnetic field
inside the considered domain, will be evaluated from the electric work on the currents (as sources of
the magnetic field) produced by the electric field which was induced at the variation of the magnetic
field.

We consider an infinitesimal variation of the magnetic field δB(r) produced in the infinitesimal time
interval δt; the induced electric field performs in the time interval δt, on the currents, the work

−δLel = δt
∫

V0

d3r j · E . (77)

Using Eq. (68a) we transform the integrand in the following form:

j · E = E · rot H = div
(
H× E

)
+H · rotE ,

and it results for the electric work the expression

−δLel = δt
∫

V0

d3r div
(
H× E

)
+ δt

∫

V0

d3r H · rot E .

We transform the first term in a surface integral, using the Gauss’ theorem, and this integral vanishes,
because the hypothesis that the magnetic field is null on the frontier of the domain

∫

V0

d3r div
(
H× E

)
=

∮

Σ0

dA n0 ·
(
H× E

)
= 0 ;

in the second term we use the Maxwell - Faraday equation (76) and we introduce the variation of the
magnetic induction with the relation (∂B/∂t) δt = δB , so that it results

δt
∫

V0

d3r H · rotE = −

∫

V0

d3r H ·
∂B

∂t
δt = −

∫

V0

d3r H · δ B .

We observe that the electric work, determined previously, must be compensated by an additional
work supplied from outside; therefore the magnetic work given to the system for an infinitesimal
variation of the magnetic field is −δLm = − −δLel , and it results Eq. (75). �

We note that the expression (75) for the magnetic work, implies a domain for integration with
a fixed volume (V0), and in addition the magnetic field must vanish outside this domain.

21 In order to have the general situation, we do not suppose particular properties for the magnetic medium
inside the chosen domain, so that we consider the non-homogeneous case.
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H �= 0

H = 0 N

V0

Fig. 5. The open system model.

By comparing the expressions of the magnetic work and electric work (10) we observe the
formal similitude between these formula, and this leads to the following substitution rule to
obtain the magnetic results from the electric ones:

{
E −→ H

D −→ B .

However this similitude is only formal, since from the physical point of view, the
correspondence between the electrical field vectors and the magnetic ones is E ↔ B and
D ↔ H.

In the following we shall present the consequences derived from the expression of the
magnetic work (75) in an analog manner as the electric case; therefore we shall consider two
methods to deal with the thermodynamics of the magnetic media, based on the expression of
the magnetic work (and of the necessary conditions for the validity of this expression).

1. The open system method: we consider a fixed domain (having the volume V = constant)
which contains an magneto-static field inside, but outside to this domain the magneto-static
field vanishes; the interesting system is the magnetic medium located inside the above
specified domain, as an open thermodynamic system (the magnetic medium fills completely
the domain, but there is a part of this medium, outside the domain at vanishing magneto-static
field, because the frontier is totally permeable).

We note the following characteristic features of this situation:

– the thermodynamic system (the portion of the magnetic medium located in magneto-static
field) has a fixed volume (V = V0 = constant), but it is an open thermodynamic system (N �=
constant);

– the magneto-striction effect (this is the variation of the volume produced by the variation
of the magnetic field) in this case leads to the variation of the particle number, or in another
words, by variation of the particle density n ≡ N/V0 �= constant;

– in the simplest case, when we consider a homogeneous magneto-static field22, inside the
domain with the volume V0, infinitesimal magnetic work can be written in the form

−δLm = H δ(V0B) , (78)

22 This situation is realized by considering a very long cylindrical solenoid, so that it is possible to consider
approximately that the magnetic field vanishes outside the solenoid; the space inside and outside the
solenoid is filled with a fluid paramagnet (or diamagnet). Accordingly to the previous definitions, the
thermodynamic interesting system is only the part of the magnetic medium which is located inside the
solenoid, and the frontier of this system is fictitious.
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V0

H �= 0

H = 0

V S

S′

Fig. 6. The model for the closed system.

and this implies the following definition for the magnetic state parameters

{
Xm = V0B ≡ B ,
Pm = H ;

(79)

[in this case V = constant, that is the volumic degree of freedom for this system is frozen; but
we emphasize that the expression −δLm = H δ(VB) when the volume of the system V can
varies is incorrect].

2. The closed system method: we consider the magnetic medium surrounded by an
non-magnetic medium, so that the magnetic medium does not occupy the whole space where
is present the magnetic field.
In this case it is necessary to define the compound system corresponding to the domain with
magnetic field

S(τ) = S
⋃

S′ ,

where S is the magnetic system with the volume V, and S′ is an auxiliary non-magnetic
system having the volume V ′ = V0 − V, as it is illustrated in Fig. 6.

We must remark that the auxiliary system (having negligible magnetic properties) is necessary
in order to obtain the condition H → 0 towards the frontier of the domain which have the
volume V0, and also it produces a pressure on the magnetic medium; thus, the volume of the
magnetic medium is not fixed and we can distinguish directly magneto-striction effects.

Because the magnetization M is non-vanishing only in the domain V, occupied by the system
S, we transform the expression (75) using Eq. (70), in order to extract the magnetization work
on the subsystem S

−δL
(τ)
m =

∫

V0

d3r H · δ B =
∫

V0

d3r H · μ0 δ H+
∫

V0

d3r H · μ0 δM

≡ δW
(τ)
H + −δLM ,

where δW
(τ)
H is the variation of the energy for the field inside the total volume V0, and −δLp is

the work for magnetize the magnetic medium.
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The first term allows the separation of the contributions corresponding the two subsystems
when the energy of the magneto-static field changes:

δW
(τ)
H =

∫

V0

d3r δ
(μ0H

2

2

)
= δ

{∫

V
d3r

μ0H
2

2

}
+ δ

{∫

V ′
d3r

μ0H
2

2

}

= δWH + δW ′
H .

The second term can be interpreted as magnetization work and it implies only the magnetic
medium; in order to include the possible magneto-strictive effects, we shall write this term in
the form

−δLM =
∫

V0

d3r μ0 H · δM =
∫

Vf

d3r μ0 H ·M f −

∫

Vi

d3r μ0 H ·Mi

= δ

{∫

V
d3r μ0 H ·M

}∣∣∣∣
H=const.

that is, the magnetization work implies the variation of the magnetization δM and also the
variation of the volume δV of the magnetic medium, with the condition of constant magnetic
field: H = constant (during the process).

On the basis of the previous results we can separate the contribution of the magnetic work on
the magnetic medium (−δLm) from those on the auxiliary non-magnetic system (δW ′

H):

−δL
(τ)
m = −δLm + δW ′

H , (80a)

−δLm = −δLM + δWH . (80b)

For the magnetic work on the magnetic medium (the subsystem S) we observe two
interpretations in the case when S is homogeneous23:

1. we take into account only the magnetization work −δLM and we neglect systematically the
energy of the magnetic field inside the magnetic medium δWH; then the magnetization
work in the uniform magnetic field can be expressed with the dipolar magnetic moment

−δLM = μ0 H · δ
∫

V
d3r M = μ0 H · δM ; (81)

2. we estimate the contributions of the both terms from Eq. (80b), taking into account the
implications due to the homogeneity of the system:

−dLM = μ0 H dM = μ0 H d(VM) ,

dWH = d
(μ0H

2

2
V
)
= −

μ0H
2

2
dV +H d(Vμ0H) .

so that we obtain the total magnetic work performed by the magnetic system

−dLm = −dLM + dWH = −
μ0H

2

2
dV +H d(VB) , (82)

23 The condition of homogeneity implies an uniform magnetic field H(r) = constant in the subsystem
S, and this property is realized only when the magnetic medium is an ellipsoid in an uniform external
field.
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and the last expression can be interpreted as an work performed on two degrees of freedom
(volumic and magnetic).

We observe that for isotropic magnetic media the vectors H, B and M are colinear; therefore,
we shall omit the vector notation, for simplicity.

3.2 Thermodynamic potentials

We shall discuss, for simplicity, only the case when the magnetic system is homogeneous
and of fluid type, being surrounded by a non-magnetic environment. Then, the fundamental
thermodynamic differential form is:

dU = −dQ+ −dLV + −dLm + −dLN . (83)

For the thermodynamic study of the magnetic system there are many methods, depending the
choice of the fundamental variables (corresponding to the choice of the concrete expression
for the magnetic work −dLm).

3.2.1 Pseudo-potentials method

We replace the expression (80b) – (81) for the magnetic work, and also the expression for the
other forms of work and for the heat; then, the fundamental thermodynamic differential form
has the explicit expression:

dU = T dS −P dV + μ0H dM+ dWH + μ dN . (84)

We observe that the preceding differential form contains a term dWH which is a exact total
differential (from the mathematical point of view) and it represents the variation of the energy
of the magnetic field located in the space occupied by the magnetic medium; we put this
quantity in the left side of the above equality we obtain:

d Ũ = T dS −P dV + μ0H dM+ μ dN , (85)

where Ũ ≡ U − WH is the internal pseudo-energy of the magnetic medium24.

We present some observations concerning the differential form (85):

• Ũ (S , V,M, N) is equivalent to the fundamental thermodynamic equation of the system,
since it contains the whole thermodynamic information about the system (that is, its
derivatives are the state equations); and on the other side, the pseudo-energy has no specified
convexity properties (because it was obtained by subtracting a part of the energy from the
total internal energy of the system);

• Ũ (S , V,M, N) is a homogeneous function of degree 1 (because it is obtained as a difference
of two homogeneous functions of degree 1);

24 Because we consider in the expression WH = V μ0H
2/2 the intensity of the magnetic field in the

presence of the magnetic medium, this energy is due both to the vacuum and to the magnetic medium;

thus, Ũ is not the internal energy of the magnetic medium (without the energy of the magnetic field in
vacuum), but it is an artificial quantity.
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• by considering the differential form (85) as similar to the fundamental thermodynamic
differential form, it follows that the magnetic state parameters are

{
X̃m = M = M V ,

P̃m = μ0 H ;

• if we perform the Legendre transformations of the function Ũ (S , V,M, N), then we
obtain objects of the thermodynamic potential types (that is, the derivatives of these
quantities give the state equations of the magnetic medium); however, these objects are
not true thermodynamic potentials (firstly since they have not the needed properties of
convexity-concavity), so that they are usually called thermodynamic pseudo-potentials.

In the following we shall present briefly only the most used pseudo-potentials: the magnetic
pseudo-free energy and the magnetic Gibbs pseudo-potential.

a.1. The magnetic pseudo-free energy is the Legendre transformation on the thermal and
magnetic degrees of freedom25

F̃ ∗ ≡ Ũ − T S − μ0HM , (86)

having the differential form26:

dF̃ ∗ = −S dT −P dV −M d(μ0H) + μ dN , (87)

so that it allows the deduction of the state equations in the representation (T, V,H, N).
We consider the simplest case, when the magnetic medium behaves as a neutral fluid, having
the free energy F0(T, V, N), in the absence of the magnetic field and when the magnetic
susceptibility is χm(T, V/N); then, we can consider as known the magnetic state equation
(the expression of the dipolar magnetic moment):

(
∂ F̃ ∗

∂ H

)

T,V,N

= − μ0 M(T, V,H, N) = − μ0 χm(T, V/N) H V .

By partial integration, with respect to the magnetic field, and taking into account that at
vanishing magnetic field the magnetic pseudo-free energy reduces to the proper free energy
(the Helmholtz potential):

F̃ ∗
∣∣∣
H=0

= U0 − T S0 = F0(T, V, N) ,

we obtain:

F̃ ∗(T, V,H, N) = F0(T, V, N) +F ∗
mag(T, V,H, N) , (88a)

F ∗
mag(T, V,H, N) ≡ −

μ0H
2

2
χm(T, V/N) V , (88b)

25 Because the absence of the correct properties of the convexity, we shall use only the classic definition of
the Legendre transformation.

26 In the strictly sense, F̃ ∗ is a simple Gibbs potential, so that the common terminology is criticizable.
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that is, the magnetic pseudo-free energy of the magnetic medium is the sum of the free energy
at null magnetic field and the magnetic part F ∗

mag.

The factorization property of the magnetic pseudo-free energy is transmitted to the
non-magnetic state equations: the entropy, the pressure and the chemical potential (these are
sums of the non-magnetic part, corresponding to null magnetic field, and the magnetic part):

S(T, V,H, N) = −

(
∂ F̃ ∗

∂ T

)

V,H,N

= S0(T, V, N) +
μ0H

2

2

(
∂ χm

∂ T

)

V,N

V , (89a)

P(T, V,H, N) = −

(
∂ F̃ ∗

∂ V

)

T,H,N

= P0(T, V, N) +
μ0H

2

2

(
∂ (χmV)

∂ V

)

T,N

, (89b)

μ(T, V,H, N) =

(
∂ F̃ ∗

∂N

)

T,V,H

= μ0(T, V, N)−
μ0H

2

2

(
∂ χm

∂N

)

T,V

V . (89c)

a.2. The magnetic Gibbs pseudo-potential is defined, analogously to the previous case, as
the Legendre transformation on the thermal, volumic and magnetic degrees of freedom27

G̃∗ ≡ Ũ − T S +PV − μ0H M , (90)

having the differential form

dG̃∗ = −S dT + V dP−M d(μ0H) + μ dN , (91)

so that it allows the deduction of the state equations in the representation (T,P,H, N).
We consider the simplest case (analogously in the former case), when the magnetic medium
behaves as a neutral fluid, having the proper Gibbs potential (the free enthalpy) G0(T,P, N)
in the absence of the magnetic field and when the magnetic susceptibility is χm(T,P); then,
we can consider as known the magnetic state equation (the expression of the dipolar magnetic
moment): (

∂ G̃∗

∂ H

)

T,P,N

= − μ0 M(T,P,H, N) = − μ0 χm(T,P) H N .

By partial integration, with respect to the magnetic field, and because at null magnetic field
the magnetic Gibbs pseudo-potential reduces to the proper Gibbs potential:

G̃∗
∣∣∣
H=0

= U0 − T S0 +PV0 = G0(T,P, N) ,

we obtain:

G̃∗(T,P,H, N) = G0(T,P, N) + G∗
mag(T,P,H, N) , (92a)

G∗
mag(T,P,H, N) ≡ −

μ0H
2

2
χm(T,P) N , (92b)

that is, the magnetic Gibbs pseudo-potential of the magnetic medium is the sum of the Gibbs
potential at null magnetic field and the magnetic part G∗

mag.

27 Because the absence of the correct properties of the convexity, we shall use only the classic definition of
the Legendre transformation (like in the preceding case).
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The additivity (factorization) property of the magnetic Gibbs pseudo-potential is transmitted
to the non-magnetic state equations: the entropy, the volume and the chemical potential
(these are sums of the non-magnetic part, corresponding to vanishing magnetic field, and
the magnetic part):

S(T,P,H, N) = −

(
∂ G̃∗

∂ T

)

P,H,N

= S0(T,P, N) +
μ0H

2

2

(
∂ χm

∂ T

)

P

N , (93a)

V(T,P,H, N) =

(
∂ G̃∗

∂P

)

T,H,N

= V0(T,P, N)−
μ0H

2

2

(
∂ χm

∂P

)

T

N , (93b)

μ(T,P,H, N) =

(
∂ G̃∗

∂ N

)

T,P,H

= μ0(T,P)−
μ0H

2

2
χm(T,P) . (93c)

We observe, in addition, that the magnetic Gibbs pseudo-potential is a maximal Legendre
transformation, so that with the Euler relation we obtain

G̃∗(T,P,H, N) = μ(T,P,H) N . (94)

3.2.2 The method of modified potentials

We use the expression (82) for the magnetic work, without to extract terms of the total exact
differential type from the internal energy of the magnetic medium; then, the differential form
(83) can be written in the following explicit manner:

dU = T dS −

(
P+

μ0H
2

2

)
dV +H d(B V) + μ dN

= T dS − π dV +H dB+ μ dN . (95)

We observe that in this case the magnetic work has contributions on two thermodynamic
degrees of freedom, so that we must redefine the magnetic and volumic state parameters:

XV = V , P′
V = −π ≡ −

(
P+

μ0H
2

2

)
, (96a)

X′
H = B ≡ B V , PH = H . (96b)

In this last case it appears the following peculiarities:

– V and B ≡ B V must be considered as independent variables,

– the effective pressure has an supplementary magnetic contribution μ0 H
2/2.

Although the modified potential method implies the employment of some unusual state
parameters, however it has the major advantage that U (S , V,B, N) is the true fundamental
energetic thermodynamic equation, and it is a convex and homogeneous of degree 1 function;
thus, it is valid the Euler equation:

U = T S − π V +HB+ μ N (97)
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and it is possible to define true thermodynamic potential with Legendre transformations.
From the Euler relation (97) and passing to the common variables, it results

U = T S −PV + μ0H M V +
μ0H

2

2
V + μ N ,

so that it is ensured that Ũ ≡ U − WH is a homogeneous function of degree 1 with respect to
the variables (S , V,M, N).

In order to compare the results of the method of modified potentials with those of the method
of the pseudo-potentials we shall present only the magnetic free energy and the magnetic Gibbs
potential as energetic thermodynamic potentials.

b.1. The magnetic free energy is the Legendre transformation on the thermal and magnetic
degrees of freedom

F ∗(T, V,H, N) ≡ inf
S ,B

{
U (S , V,B, N)− T S −HB

}
, (98)

and it has the following differential form28:

dF ∗ = −S dT − π dV −B dH+ μ dN . (99)

We shall emphasize some important properties of the magnetic free energy F ∗(T, V,H, N).

1. When the magnetic field vanishes it becomes the proper free energy (Helmholtz potential)

F ∗(T, V, 0, N) = U0(T, V, N)− T S0(T, V, N) = F0(T, V, N) .

2. The magnetic state equation is

(
∂ F ∗

∂H

)

T,V,N

= −B(T, V,H, N) = − μ0

[
1 + χm(T, V/N)

]
HV .

3. By partial integration with respect to the magnetic field and the use of the condition of
null field, we obtain the general expression of the magnetic free energy (for a linear and
homogeneous magnetic medium)

F ∗(T, V,H, N) = F0(T, V, N)−
μ0H

2

2

[
1 + χm(T, V/N)

]
V . (100)

4. F ∗(T, V,H, N) is a function concave in respect to the variables T and H; as a result we get
the relation (

∂2 F ∗

∂H2

)

T,V,N

= − μ0

[
1 + χm

]
V < 0 ,

and it follows “the stability condition” χm > −1 . We observe that the thermodynamics allows
the existence of negative values of the magnetic susceptibility, that is the diamagnetism; the
minimum value χm = −1 corresponds to the perfect diamagnetism.

28 In the strictly sense, F ∗ is a simple Gibbs potential, so that the common terminology is criticizable.
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5. The state equations, deduced from Eq. (100) are:

S(T, V,H, N) = −

(
∂ F ∗

∂ T

)

V,H,N

= S0(T, V, N) +
μ0H

2

2

(
∂ χm

∂ T

)

V,N

V , (101a)

π(T, V,H, N) = −

(
∂ F ∗

∂ V

)

T,H,N

= P0(T, V, N) +
μ0H

2

2

[
1 +

(
∂ (χmV)

∂ V

)

T,N

]
(101b)

μ(T, V,H, N) =

(
∂ F ∗

∂ N

)

T,V,H

= μ0(T, V, N)−
μ0H

2

2

(
∂ χm

∂N

)

T,V

V . (101c)

Because π = P + μ0H
2/2 , it results that the state equations (101) are identical with Eqs.

(89), and this shows that F̃ ∗ (the correspondent pseudo-potential to F ∗) gives correct state
equations.

From Eq. (100) it result that the free energy (Helmholtz potential) is

F = F ∗ +HB = F0 +
HB

2
V ,

so that the electric part of the volumic density of free energy is:

fmag ≡
F −F0

V
=

HB

2
.

We emphasize that in many books the previous expression for the magnetic part of the free
energy density is erroneously considered as magnetic part of the internal energy density.

Correctly, the internal energy has the expression

U = F ∗ + T S +HB =
(
F0 + T S0

)
+

(HB

2
+

μ0H
2

2
T

∂ χm

∂ T

)
V ,

so that the magnetic part of the volumic density of internal energy is

umag =
U − U0

V
=

HB

2
+

μ0H
2

2
T

∂ χm

∂ T
�=

HB

2
.

b.2. The magnetic Gibbs potential is defined analogously, as the Legendre transformation on
the thermal, volumic and magnetic degrees of freedom

G∗(T, π,H, N) ≡ inf
S ,V,B

{
U (S , V,B, N)− T S + π V −HB

}
, (102)

and it has the differential form

dG∗ = −S dT + V dπ −B dH+ μ dN . (103)

According to the definition, G∗ is a maximal Legendre transform, so that the Euler relation
leads to:

G∗ = μ N . (104)
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On the other side, by replacing the variables π and B , accordingly to the definitions (96), we
obtain the the magnetic Gibbs potential is equal to the magnetic Gibbs pseudo-potential29 (but they
have different variables):

G∗(T, π,H, N) = G̃∗(T,P,H, N)

π = P+
μ0H

2

2
.

From the preceding properties it follows that the equations deduced from the potential G∗

are identical with Eqs. (93); we observe, however, that it is more convenient to use the

pseudo-potential G̃∗, because this has more natural variables than the corresponding potential
G∗.

3.2.3 Thermodynamic potentials for open systems

Previously we have shown that the magnetic work implies two methods for treating the
magnetic media: either as a closed subsystem of a compound system (this situation was
discussed above), or as an open system located in a fixed volume (and the magnetic field
is different from zero only inside the domain with fixed volume).

If we use the second method, then the magnetic work has the expression (78) and the magnetic
medium system has only 3 thermodynamic degrees of freedom: thermal, magnetic and
chemical (the volumic degree of freedom is frozen); then, the fundamental differential form is

dU = T dS +H d(V0 B) + μ dN . (105)

Among the thermodynamic potentials, obtained by Legendre transformations of the energetic
fundamental thermodynamic equation, denoted as U (S , V0 B, N) ≡ U (S ,B, N; V0), we shall
present only the magnetic free energy:

F ∗(T,H, N; V0) ≡ inf
S ,B

{
U (S ,B, N; V0)− T S −HB

}
, (106)

which has the following properties:

1. the differential form:
dF ∗ = −S dT − V0 B dH+ μ dN ; (107)

2. it reduces to the free energy (the Helmholtz potential) at vanishing magnetic field

F ∗(T, 0, N; V0) = U0(T, N; V0)− T S0(T, N; V0) = F0(T, N; V0) ;

3. by integrating the magnetic state equation, that is written in the form V0 B(T,H, N) =
V0 [1 + χm] μ0H , we obtain

F ∗(T,H, N; V0) = F0(T, N; V0)− V0
μ0H

2

2

[
1 + χm(T, V/N)

]
. (108)

We note that the results are equivalent to those obtained by the previous method, but the
situation is simpler because the volumic degree of freedom is frozen.

29 The equality G∗ = G̃∗ (as quantities, but not as functions) can be obtained directly by comparing the
consequences of the Euler equation (94) and (104).
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3.3 Thermodynamic coefficients and processes

3.3.1 Definitions for the principal thermodynamic coefficients

Because the magnetic media has 4 thermodynamic degrees of freedom (in the simplest case,
when it is fluid), there are a great number of simple thermodynamic coefficients; taking into
account this complexity, we shall present only the common coefficients, corresponding to
closed magnetic media systems (N = constant).

a.1. The sensible specific heats are defined for non-isothermal processes ”ϕ ”:

cϕ =
1

N
T

(
∂S

∂ T

)

ϕ

= T

(
∂ s

∂ T

)

ϕ

. (109)

In the case, when the process ϕ is simple, we obtain the following specific isobaric/isochoric
and iso-magnetization/iso-field heats: cV,m, cV,H , cP,m, cP,H.

a.2. The latent specific heats are defined for isothermal processes ”ψ ”:

λ
(a)
ψ =

1

N
T

(
∂ S

∂ a

)

ψ

= T

(
∂ s

∂ a

)

ψ

. (110)

The most important cases (for ”ψ ” and a) are the isothermal-isobaric process with a = H

when we have the isobaric magnetic-caloric coefficient λ and the conjugated isothermal-isofield

process with a = P, when we have the iso-field piezo-caloric coefficient λ
(P)
H :

λ = T

(
∂ s

∂H

)

T,P

, λ
(P)
H = T

(
∂ s

∂P

)

T,H

. (111)

a.3. The thermodynamic susceptibilities are of two types: for the volumic degree of freedom
(in this case they are called compressibility coefficients) and for the magnetic degree of freedom
(these are called magnetic susceptibilities):

κϕ =
−1

V

(
∂ V

∂P

)

ϕ

=
−1

v

(
∂ v

∂P

)

ϕ

, (112)

χ
(m)
ψ =

1

V

(
∂ M

∂ (μ0H)

)

ψ

=
1

μ0

(
∂M

∂ H

)

ψ

. (113)

In the simple cases ”ϕ ” is an isothermal/adiabatic and iso-magnetization/iso-field processes;
it results the following simple compressibility coefficients: κ T,M, κ T,H, κs,M and κs,H.
Analogously ”ψ ” as simple process can be isothermal/adiabatic and isobaric/isochoric,

resulting the following simple magnetic susceptibilities: χ
(m)
T,v , χ

(m)
T,P, χ

(m)
s,v and χ

(m)
s,P .

From Eq. (71b) we observe that the isothermal magnetic susceptibility is proportional to the
susceptibility used in the electrodynamics:

χ
(m)
T,v =

(
∂M

∂ H

)

T,v

=
1

μ0

χm(T, v) .

a.4. The thermal coefficients are of two types, corresponding to the two non-thermal and
non-chemical degrees of freedom (the volumic and the magnetic ones). If we consider only
thermal coefficients for extensive parameters, then we can define the following types of simple
coefficients:

146 Trends in Electromagnetism – From Fundamentals to Applications

www.intechopen.com



Thermodynamics of Electric

and Magnetic Systems 35

• the isobaric thermal expansion coefficients (also iso-magnetization/iso-field)

αy =
1

V

(
∂ V

∂ T

)

P,y,N

=
1

v

(
∂ v

∂ T

)

P,y

, (114)

where the index y is M or H;

• the pyro-magnetic coefficients (also isochoric/isobaric)

πa =
1

N

(
∂ M

∂ T

)

H,a,N

=

(
∂m

∂ T

)

H,a

, (115)

where the index a is V (for the volume V) or P (for the pressure P).

a.5. The mixed coefficients express correlations between the volumic and the magnetic
degrees of freedom; we mention the following simple coefficients:

• the magnetic-strictive coefficient

γ =
1

V

(
∂ V

∂ H

)

T,P,N

=
1

v

(
∂ v

∂ H

)

T,P

; (116)

• the piezo-magnetic coefficient

� =
1

N

(
∂ M

∂P

)

T,H,N
=

(
∂m

∂P

)

T,H
. (117)

3.3.2 Relations between simple coefficients

Because the great number of thermodynamic coefficients, corresponding to the magnetic
media, we must select among all possible relations between the simple coefficients; therefore,
we shall present only the most important relations: the symmetry relations (consequences of
some Maxwell relations) and special relations (of the type Reech or Mayer).

In order to emphasize symmetry relations expressed by the temperature, the pressure and the
magnetic field intensity (T,P,H), as variables, for an closed system (N = constant), we use
the differential form of the reduced Gibbs pseudo-potential g̃∗(T,P,H), which is obtained
with the general reduction formulae from Eqs. (90) – (91):

dg̃∗ = − s dT + v dP−m d(μ0H) . (118)

From the above differential form it results 3 Maxwell relations, which can be expressed by
simple coefficients, resulting symmetry relations between these coefficients:

(
∂ s

∂P

)

T,H

= −

(
∂ v

∂ T

)

P,H

=⇒ λ
(P)
H = − T v αH , (119a)

(the relation between the iso-field piezo-caloric coefficient and the isobaric-isofield thermal
expansion coefficient);

(
∂ s

∂ (μ0H)

)

T,P

=

(
∂m

∂ T

)

P,H

=⇒ λ = μ0 T πP , (119b)
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(the relation between the isobaric magneto-caloric coefficient and the isobaric pyro-magnetic
coefficient);

(
∂ v

∂ (μ0H)

)

T,P

= −

(
∂m

∂P

)

T,H

=⇒
v

μ0

γ = −� . (119c)

(the relation between the magnetic-strictive coefficient and the piezo-magnetic coefficient).

Relations of Reech type can be obtained from the general relation (see [16] Eq. (3.25)), resulting
the equality between the ratios of the isobaric specific heats, of the compressibility coefficients,
and of the magnetic susceptibilities (isothermal, and respectively adiabatic):

cP,m

cP,H
=

κs,H

κT,H
=

χ
(m)
s,P

χ
(m)
T,P

. (120)

Analogously, from the general Mayer relation for the specific heats (see [16] Eq. (3.28)) we
obtain in this case

cP,H − cP,m = T v
α2
H

χ
(m)
T,P

. (121)

Similar relations with Eqs. (120) – (121) can be obtained for the coefficients associated to
another sets of simple processes (e.g. isochoric, iso-magnetization processes).

3.3.3 The factorization of some simple coefficients

An important characteristics of some thermodynamic coefficients is the factorization property:
the expression of the considered coefficient is the sum of the part corresponding to the absence
of the magnetic field (like for the neutral fluid) and the “magnetic part”, and this result comes
from the factorization of the state equations.

We shall present the factorization of some coefficients using the variables of the magnetic
Gibbs representation30 (T,P,H, N); in this case the state equations are Eqs. (93).

The entropy is given by Eq. (93a), and here we write it without the variables, for simplicity
and for using later the convenient variables

S = S0 + Smag , (122)

where S0 is the entropy of the magnetic medium as a neutral fluid, in the absence of the
magnetic field, and Smag is the magnetic part of the entropy:

Smag =
μ0H

2

2

(
∂ χm

∂ T

)

P

N =
μ0H

2

2

(
∂ χm

∂ T

)

v

V . (123)

Accordingly to the general definition (109), we obtain a factorization of the specific heats:

cϕ = c
(0)
ϕ + c

(mag)
ϕ , (124)

30 We remark that some coefficients need the use of other thermodynamic representations.
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where c
(0)
ϕ = T(∂s(0)/∂ T)ϕ is the specific heat of the magnetic medium in the absence of the

magnetic field, and c
(mag)
ϕ = T(∂s(mag)/∂ T)ϕ is the magnetic part of the specific heat.

For the isobaric processes there are the specific heat at constant magnetic field or at constant
magnetization. From Eq. (123) it results

c
(mag)
P,H = T

(
∂ χm

∂ T

)

P

μ0H
2

2
, (125)

To obtain c
(mag)
P,m we express the magnetic entropy Smag in terms of the dipolar magnetic

moment (instead the magnetic field), using Eq. (71b):

Smag =
m2

2 μ0 χ2
m

(
∂ χm

∂ T

)

P

N =
−m2

2 μ0

(
∂ (χm)

−1

∂ T

)

P

N ;

then it results for the magnetic part of the isobaric-isomagnetization specific heat the
expression:

c
(mag)
P,m =

−m2

2 μ0

T

(
∂2 (χm)

−1

∂ T2

)

P

; (126)

We observe that for an ideal paramagnet (χm)
−1 ∼ T , so that we obtain c

(mag)
P,m = 0 , that is

cP,m = c
(0)
P (the iso-magnetization specific heat is independent of the magnetic field)31.

It is interesting to emphasize that for the ideal para magnets the internal energy has also
particular properties. The magnetic part of the volumic density of internal energy for an
arbitrary magnetic medium has the expression

u(mag) =
μ0H

2

2

(
1 + χm + T

∂ χm

∂ T

)
.

For an ideal paramagnet we obtain that this energy density is equal to the energy density of

the magnetic field u(mag) = μ0H
2/2 = wmag , that is the whole magnetic energy is given only

by the magnetic field, without any contribution from the processes of the magnetization. The
behavior of the iso-magnetization specific heats and of the internal energy are similar to the
neutral fluids which satisfy the Clapeyron - Mendeleev equations, so that it is justified the
terminology “ideal” for the para-magnets which have Curie susceptibility.

We observe, in addition, that the diamagnetic systems, having a constant magnetic
susceptibility (approximatively), have null magnetic entropy Smag, accordingly to Eq. (123);
therefore, the diamagnetic systems have caloric properties independent of the magnetic field
(or of the magnetization).

In contrast with the specific heats, the isobaric magneto-caloric coefficient has contribution
only from the magnetic part of the entropy:

λ = μ0 H T

(
∂ χm

∂ T

)

P

.

31 For the corresponding isochoric specific heat we obtain the same result c
(mag)
V,P = c

(0)
V .

149Thermodynamics of Electric and Magnetic Systems

www.intechopen.com



38 Will-be-set-by-IN-TECH

The volume is given by Eq. (93b), that is it can be expressed in the form:

V = V0 + Vmag ,

where V is the volume of the magnetic medium as neutral fluid, in the absence of the magnetic
field, and Vmag is the magnetic part of the volume:

Vmag = −
μ0H

2

2

(
∂ χm

∂P

)

T

N . (127)

Accordingly to the general definitions (112) and respectively (114), the isothermal
compressibility coefficients κ T,H and the isobaric thermal expansion coefficient αH (both of
them at constant field) factorize in non-magnetic part (corresponding to null magnetic field,
when the magnetic medium behaves as a neutral fluid) and magnetic part:

κ T,H = κ
(0)
T +κ

(mag)
T,H , (128a)

αH = α(0) + α
(mag)
H , (128b)

where32

κ

(mag)
T,H =

μ0 H
2

2 v0

(
∂2χm

∂P2

)

T
, (129a)

α
(mag)
H = −

μ0 H
2

2 v0

∂2χm

∂ T ∂P
. (129b)

In contrast with the previous coefficients, the magneto-strictive coefficient is obtained only
from the magnetic part of the volumic state equation33

γ ≈ −
μ0H

v0

(
∂ χm

∂P

)

T
. (130)

3.3.4 Thermodynamic process

Using the previous results we shall present the most significant thermodynamic processes for
the magnetic media as closed system (we shall choose the variable set T, P, H, N = constant).

d.1. The isothermal magnetization: we consider that initially the magnetic medium in null
magnetic field (T,P,Hi = 0, N) and we apply the magnetic field with an isothermal-isobaric
process, so that the final state has the parameters: (T,P,H f = H, N).

Using Eq. (93a) for the entropy, the heat transfered in this process is

Qi f = T ∆ Si f = T
{
S(T,P,H, N)− S(T,P, 0, N)

}

=
μ0 H

2

2
T

(
∂ χm

∂ T

)

P

N . (131)

32 In fact, the factorization is obtained only if we consider small magnetic effects, so that we could
approximate v ≈ v0 at the denominators.

33 We consider that the magneto-strictive effects are small, so that we can use the approximation v ≈ v0,
at the denominator.
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Since χm(T,P) is in general a decreasing function with respect to the temperature, it results
that in the magnetization process the magnetic medium yields heat: Qi f < 0 .

d.2. The adiabatic-isobaric demagnetization: we consider that initially the magnetic medium
is in the presence of the magnetic field H and it has the temperature Ti ; then, by a quasi-static
adiabatic-isobaric process the magnetic field is decreasing to vanishing value.

Because the equation of this process is S(T,P,H, N) = constant , with the supplementary
conditions P = constant and N = constant, then by using Eq. (93a), we obtain the equation
of the temperature:

S(Ti,P,H, N) = S(Tf ,P, 0, N) ;

that is, after simple algebraical operations, we get:

s0(Ti,P) +
μ0H

2

2

(
∂χm

∂ T

)

P

= s0(Tf ,P) . (132)

Because the magnetic susceptibility is in general an decreasing function in respect to
the temperature (∂ χm/ ∂T)P < 0 and the entropy s0(T,P) is an increasing function of
temperature, it results si < s f , that is the paramagnet gets cool during the adiabatic
demagnetization: Tf < Ti.

d.3. The magneto-strictive and piezo-magnetic effects
The magneto-strictive effect means the variation of the volume (of the magnetic medium) due
to the variation of the magnetic field, in conditions isothermal-isobaric (also the magnetic
medium is a closed system)34; and the magneto-strictive coefficient is defined by Eq. (116).
The piezo-magnetic effect means the variation of the dipolar magnetic moment (of the magnetic
medium), due to the variation of the pressure, in conditions isothermal and at constant
magnetic field (also the magnetic medium is a closed system)35 and the piezo-magnetic effect
coefficient is defined by Eq. (117).
Between the coefficients of the two effects it is the symmetry relation (53), and the
corresponding expressions can be put in explicit forms using the magnetic susceptibility:

γ = −
1

v
� =

−μ0H

v

(
∂ χm

∂P

)

T
. (133)

We observe that the necessary condition to have an magneto-strictive effect and an
piezo-magnetic effect is that χm depends on the pressure; accordingly to Eqs. (76), it results
that only the non-ideal para-magnets can have these effects.
Using the volumic equation of state (93b), we can evaluate the global magneto strictive
effect, that is the variation of the volume (of the paramagnet) at the isothermal-isobaric
magnetization:

∆ Vi f (H) = V(T,P,H, N)− V(T,P, 0, N) = −
μ0H

2

2

(
∂ χm

∂P

)

T
N . (134)

From the previous expression it results that when the magnetic susceptibility is a decreasing
function of the pressure (∂ χm/∂P)T < 0 , then it follows a contraction (a reduction of the
volume) at the magnetization of the diamagnet.

34 In other words, the magneto-strictive effect can be considered as the volumic response of the magnetic
medium to an magnetic perturbation.

35 We observe that the piezo-magnetic effect can be considered as the magnetic response of the magnetic
medium to a volumic perturbation, being conjugated to the magneto-strictive effect.
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