
13

Modelling a Network Traffic Probe
Over a Multiprocessor Architecture

Luis Zabala, Armando Ferro,
Alberto Pineda and Alejandro Muñoz

University of the Basque Country (UPV/EHU)
Spain

1. Introduction

The need to monitor and analyse data traffic grows with increasing network usage by

businesses and domestic users. Disciplines such as security, quality of service analysis,

network management, billing and even routing require traffic monitoring and analysis

systems with high performance. Thus, the increasing bandwidth in data networks and the

amount and variety of network traffic have increased the functional requirements for

applications that capture, process or store monitored traffic. Besides, the availability of

capture hardware (monitoring cards, taps, etc.) and mass storage solutions at a reasonable

cost makes the situation better in the field of network traffic monitoring. For these reasons,

several research groups are studying how to monitor heterogeneous network environments,

such as wired broadband backbone networks, next generation cellular networks, high-speed

access networks or WLAN in campus-like environments. In keeping with this line, our

research group NQaS (Networking, Quality and Security) aims to contribute in this

challenge and presents theoretical and experimental research to study the behaviour of a

probe (Ksensor) that can perform traffic capturing and analysis tasks in Gigabit Ethernet

networks. Not only do we intend to progress in the design of traffic analysis systems, but we

also want to obtain mathematical models to study the performance of these devices.

The widespread of 1/10 Gigabit Ethernet networks, emphasizes the problems related to

system losses which invalidate the results for certain analyses. New Gigabit networks, even

at 40 and 100 Gbps, are already being implemented and the problem becomes accentuated.

On top of that, commodity systems are not optimized for monitoring [Wang&Liu, 2004]

and, as a result, processing resources are often wasted on inefficient tasks. Because of this,

new research works have arisen focusing on the development of analysis systems that are

able to process all the information carried by actual networks.

Taking all this into account, we would like to develop analytical models that represent

traffic monitoring systems in order to provide solutions to the problems mentioned before.

Modelling helps to predict the system's performance when it is subjected to a variety of

network traffic load conditions. Designers and administrators can identify bottlenecks,

deficiencies and key system parameters that impact its performance, and thereby the system

can be properly tuned to give the optimal performance. By means of modelling technique, it

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

304

is possible to draw qualitative and, in many cases, also quantitative conclusions about

features related to modelled systems even without having to develop them. The impact of

developing costs, which is a determining factor in some cases, can be dramatically reduced

by using modelling.

Having this in mind, and considering the experience of our group, we present our original

design (Ksensor) that improves system performance, as well as a mathematical model based

on a closed queueing network which represents the behaviour of a multiprocessor traffic

monitoring and analysis system. Both things are considered together in the validation of the

model, where Ksensor is used as well as a testing platform developed by NQaS. All these

aspects are presented throughout this chapter.

A number of papers has addressed the issue of modelling traffic monitoring systems.

However, there are more related to the hardware and software involved in this type of

systems.

Regarding hardware proposals, one of the most relevant was the development of the high-

performance DAG capture cards [Cleary et al., 2000] at the University of Waikato (New

Zealand). Several research works and projects have made use of these cards for traffic

analysis system design. Some other works proposed the use of Network Processors (NP)

[Intel, 2002]. Conventional hardware also showed bottlenecks and new input/output

architectures were proposed, such as Intel’s CSA (Communication Streaming Architecture).

At the software level, Mogul and Ramakrishnan [Mogul&Ramakrishnan, 1996] identified

the most important performance issues on interrupt-driven capture systems. Zero-copy

architectures are also remarkable [Zhu et al, 2006]. They try to omit the path followed by

packets through the system kernel to the user-level applications, providing a direct access to

captured data or mapping memory spaces (mmap). Biswas and Sinha proposed a DMA ring

architecture [Biswas&Sinha, 2006] shared by user and kernel levels. Luca Deri suggests a

passive traffic monitoring system over general purpose hardware at Gbps speeds (nProbe).

Deri has also suggested improvements for the capture subsystem of GNU/Linux, such as a

driver-level ring [Deri, 2004], and a user-level library, nCap [Deri, 2005a]. Recently, Deri has

proposed a method for speeding up network analysis applications running on Virtual

Machines [Cardigliano, 2011], and has presented a framework [Fusco&Deri, 2011] that can

be exploited to design and implement this kind of applications.

Other proposals focus on parallel systems. Varenni et al. described the logic architecture of a

multiprocessor monitoring system based on a circular capture buffer [Varenni et al.,2003]

and designed an SMP driver for DAG cards. We must also remark the KNET module

[Lemoine et al., 2003], a packet classifying system at the NIC to provide independent per

connection queues for processors. In addition, Schneider and Wallerich studied the

performance challenges over general purpose architectures and described a methodology

[Schneider, 2007] for evaluating and selecting the ideal hardware/software in order to

monitor high-speed networks.

Apart from the different proposals about architectures for capture and analysis systems,

there are analytical studies which aim at the performance evaluation of these computer

systems. Among them, we want to underline the works done by the group led by Salah

www.intechopen.com

Modelling a Network Traffic Probe Over a Multiprocessor Architecture

305

[Salah, 2006][Salah et al., 2007]. They analyse the performance of the capturing system

considering CPU consumptions in a model based on queuing theory. Their last

contributions explain the evolution of their models towards applications like Snort or PC

software routers. Another work in the same line was developed by Wu [Wu et al., 2007],

where a mathematical model based on the ‘token bucket’ algorithm characterized Linux

packet reception process.

We also have identified more complex models whose application to traffic capturing and

analysis systems can be very beneficial. They are models based on queuing systems with

vacations. In this field, we want to underline the contributions from Lee [Lee, 1989], Takagi

[Takagi, 1994, 1995] and Fiems [Fiems, 2004].

Most of the previous approaches are for single processor architectures. However, it is clear
interest in the construction of analytical models for multiprocessor architectures, in order to
evaluate their performance. This paper contributes in this sense from a different point of
view, given that the model is based on a closed queueing network. Furthermore, the
analytical model and the techniques presented in this paper can be considerably useful not
only to model traffic monitoring systems, but also to characterize similarly-behaving
queueing systems, particularly those of multiple-stage service. These systems may include
intrusion detection systems, network firewalls, routers, etc.

The rest of the chapter is organized as follows: in Section 2 we introduce the framework of
our traffic and analysis system called ‘Ksensor’. Section 3 presents the analytical model for
evaluating the performance of the traffic monitoring system. Section 4 provides details on
the analytical solution of the model. Section 5 deals with the validation and obtained results
are discussed. Finally, Section 6 remarks the conclusions and future work.

2. Ksensor: Multithreaded kernel-level probe

In a previous work [Muñoz et al., 2007], our research group, NQaS, proposed a design for an
architecture able to cope with high-speed traffic monitoring using commodity hardware. This
kernel-level framework is called Ksensor and its design is based on the following elements:

• Migration to the kernel which consists in migrating the processing module from user-
level to the kernel of the operating system.

• Execution threads defined to take advantage of multiprocessor architectures at kernel-
level and solve priority problems. Independent instances are defined for capture and
analysis phases. There are as many analysing instances as processors, and as many
capturing instances as capturing NICs.

• A single packet queue, shared by all the analysing instances, omitting the filtering
module and so saving processing resources for the analysis.

This section explains the main aspects of Ksensor, because of its importance in the validation

of the mathematical model which will be explained in a subsequent section.

2.1 Architecture of Ksensor

The kernel-level framework, called Ksensor, intended to exploit the parallelism in QoS

algorithms, improving the overall performance.

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

306

Fig. 1. Architecture of Ksensor.

Fig. 1 shows the architecture of Ksensor. As we can see, only the system configuration

(parser) and the result management (Offline Processing Module, OPM) modules are at user-

level. Communication between user and Kernel spaces is offered by a module called driver.

The figure also shows a module called memory map. This module is shared memory where

the analysis logic and some variables are stored.

The definition of execution threads is aimed to take advantage of multiprocessor

architectures at kernel-level and solve priority problems, minimizing context and CPU

switching. Kernel threads are scheduled at the same level than other processes, so the

Kernel’s scheduler is responsible for this task.

Ksensor executes two tasks. On one hand, it has to capture network traffic. On the other

hand, it has to analyse those captured packets. In order to do that, we define independent

instances for capture and analysis phases. Each thread belongs to an execution instance of

the system and is always linked with the same processor. All threads share information

through the Kernel memory.

In Fig. 2 we can see the multithreaded execution instances in Ksensor. There are as many

analysing instances as processors (ksensord#n) and as many capturing instances as

capturing NICs (ksoftirqd#n). For example, if the system has two processors, one of them is

responsible for capturing packets and analysing some of them and the other one is

responsible for analysing packets. This way an analysis task could fill the 100% of one

processor’s resources if necessary.

The capturing instance takes the packets that the networking subsystem captures and stores

them in the packet queue. There is only one packet queue. Processing instances take packets

from that queue in order to analyse them.

www.intechopen.com

Modelling a Network Traffic Probe Over a Multiprocessor Architecture

307

Fig. 2. Multithreaded execution instances in Ksensor.

It does not matter what processing thread analyses a packet because all of them use the

same analysis logic. As we said before, there is a shared memory (memory map module)

that stores the analysis logic. All the processing threads can access this memory.

2.2 Capturing mechanism in Linux

Ksensor is integrated into the Linux Kernel. In order to capture the packets of the net,

Ksensor uses the Kernel networking subsystem. The capturing interface of this subsystem is

called NAPI (New API). Nowadays, all the devices have been upgraded to NAPI. Because of

that it is important to explain how this interface works [Benvenuti, 2006].

When the first packet arrives to the NIC, it is stored on the card’s internal buffer. When the

PCI bus is free, the packets are copied from the NIC’s buffer to a ring buffer through DMA.

The ring buffer is also known as DMA buffer. Once this copy has finished, a hardware

interrupt (hardirq) is generated. All of these actions have been executed without consuming

any processor’s resources.

If the network interface copies a lot of packets in the ring buffer and the Kernel does not take

them out, the ring buffer fills up. In this case, unless the interrupts are disabled, another

interrupt is generated in order to notify this situation. Then, while the ring buffer is full, the

new captured packets will be stored on the NIC’s buffer. When this buffer fills up too, the

arriving packets will be dropped.

In any case, when the kernel detects the network card interrupt, its handler is executed. In
this handler, the NIC driver registers the network interface in an especial list called poll list.
This means that this interface has captured packets and needs the Kernel to take them out of
the ring buffer. In order to do that, a new software interrupt (softIRQ) is scheduled. Finally,
hardIRQs are disabled. From now on, the NIC will not notify new packet arrivals or
overload of the ring buffer.

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

308

2.3 Network interfaces polling

The softIRQ handler takes out packets from the ring buffer. In Ksensor, after taking out a

packet from the ring buffer, the handler stores it in a special queue called packet queue, as

we can see in Fig. 2.

The system decides when a softIRQ handler is executed. When its execution starts, the handler

polls the first interface in the poll list and starts taking out packets from its ring buffer. In each

poll, the softIRQ handler can only pull out packets up to a maximum number called quota.

When it reaches the quota it has to poll the next interface in the poll list. If an interface does not

have more packets it is deleted from the poll list. Besides, in a softIRQ, the handler can only

take out a maximum number of packets called budget. When the handler reaches this

maximum, the softIRQ finishes. If there are interfaces left in the poll list, a new softIRQ is

scheduled. Furthermore, a softIRQ may take one jiffy (4 ms) at most. If it consumes this time

and there are still packets to pull out, the softIRQ finishes and a new one is scheduled.

There is only one poll list in each processor. When the hardIRQ handler is called it registers

the network interface in the poll list of the processor that is executing the handler. The

softIRQ handler is executed in the same processor. At any given time, a network interface

can only be registered in one poll list.

Ksensor has a system to improve the performance in case of congestion. When the packet

queue reaches a maximum number of stored packets, this system forces NAPI to stop

capturing packets. This means that all the resources of all the processors are dedicated to

analysing instances. When the number of packets in the packet queue reaches a fixed

threshold value the system starts capturing again.

3. Model for a traffic monitoring system

This section introduces an analytical model which works out some characteristics of

network traffic analysis systems. There are several alternatives to model theoretically this

type of system. For example, you can use models of queuing theory, Petri nets and, even,

mixed models. The ultimate goal is to have a theoretical model that allows us to study the

performance of a network traffic analysis system, considering those parameters that are the

most representative: throughput, number of processors, analysis load and so on.

We have chosen a theoretical model based on closed queuing networks. It is able to

represent accurately the behaviour of a system in charge of analysing network traffic loaded

in a multiprocessor architecture. Queuing theory allows us to develop models in order to

study the performance of computer’s systems [Kobayashi, 1978]. Proposed model consists in

a closed queue network where CPU consumptions are related to the service capacity of the

queues.

It is worth mentioning that both the flowing traffic and the processing capacity at the nodes

are modelled by Poisson arrival rates and exponential service rates. Poisson’s distributions

are considered to be acceptable for modelling incoming traffic [Barakat et al., 2002]. This

assumption can be relaxed to more general processes such as MAPs (Markov Arrival

Processes) [Altman et al., 2000], or non homogeneous Poisson processes, but we will keep

working with it for simplicity of the analysis. Regarding service rate modelling, although

www.intechopen.com

Modelling a Network Traffic Probe Over a Multiprocessor Architecture

309

program’s code has a quite deterministic behaviour, some randomness is introduced by

Poisson incoming traffic, variable length of packets and kernel scheduler uncertainty.

3.1 Description of the model

The proposed queuing network for modelling a traffic monitoring system is showed in Fig.

3. It consists of two parts; the upper one has a set of multi-server queues which represents

the processing ability of the traffic analysis system. The lower part models the injection of

network traffic with λ rate with a simple queue. The number of packets that are permitted in

the closed queue network is fixed and its value is N.

 SYSTEM BASIC
TREATMENT

ANALYSIS

µkk

µkk

p

µTk

µTk

p

µTu

µTu

p

µAu

µAu

p

λ

γ

W = N

µAk

µAk

p

qa

TRAFFIC
INJECTIÓN

Fig. 3. General model for the traffic analysis system.

Some stages are divided into multiple queues, due to the need to differentiate the processing

done in the Kernel and the processing done at user level. Although the process code is

usually running on the user level, system calls that require Kernel services are also used.

Four different stages have been distinguished for the closed network, each one with a

specific function:

• System stage (system queue): it consists in a queue of μkk (measured in packets per
second) capacity. This stage represents the time spent on the Kernel level of the
operating system by the traffic analysis system. It comprises treatments of device
controllers and attention paid by kernel to interruptions (hardIRQ and softIRQ) due to
packet arrival.

• Basic treatment stage (treatment queues): it is modelled by two queues with μTk and μTu
capacities. This stage represents the amount of time consumed by the system to perform
basic treatment to packets captured from the net. This is mainly accomplished by
studying control headers of the packets and by determining through a decision tree
whether a packet need to be further analysed or not.

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

310

• Analysis stage (analysis queues): it is integrated by two queues with μAk and μAu. This

stage simulates the analysis treatment that the system does to packets that need further

analysis. Not all the packets need to be analysed in this stage. For this reason, a rate

called qa has been defined to represent the proportion of received packet that has to be

analysed.

• Traffic injection stage (injection queue): it is a simple queue of λ capacity. This stage

simulates the arrival of packets to the system with a λ rate. Since the number of packets

in the closed network is fixed to N, the traffic injection queue can be empty. This

situation simulates the blocking and new packets will not be introduced on the system.

Each service queue has p servers that represent the p processors of a multiprocessor system.

Multiple server representation has been chosen to emphasize the possibility of parallelizing

every stage of processing. However, all stages may not be necessarily parallelizable. For

example, only one processor can access NIC at the same time, so the packet capturing

process will not be parallelizable in different instances.

Another aspect to consider is that packets cannot flow freely in the closed network, because

the sum of packets attended in the servers that represent the traffic monitoring system never

exceeds the maximum number of processors available. Therefore, we have to assure that, at

any time, the maximum number of packets in the upper queues of Fig 3 is not greater than p

(the number of processors).

Considering an arrival rate of λ packets per second, the traffic analysis system will be able to

keep pace with a part of that traffic, defined as q⋅λ. Remaining traffic ((1-q)⋅λ) will be lost

because the platform is not capable of dealing with all the packets. Captured traffic, q⋅λ,

goes through the system and basic treatment stages. Nevertheless, all traffic will not be

subject of further analysis because of features of the modelled system. For example, a system

in charge of calculating QoS parameters of all connections that arrive to a server will discard

the packets with other destination address or monitoring systems which use sampling

techniques will discard a percentage of packets or intrusion detection will apply further

detection techniques only to suspicious packets. Therefore, qa coefficient has been defined to

represent the rate of captured packets liable of being further analysed (analysis stage) than

treated only (treatment stage). Thus, qa⋅q⋅λ of the initial flow will go through the analysis

stage.

3.2 Simplifications of the model

The model presented in Fig. 3 is very general, but if we observe it, some simplifications are

possible. Simplifications allow us to group different service rates to identify parameters that

may be analysed easily. Among the possible simplifications, we highlight two: one related

to CPU consumption and another one, to the equivalent traffic monitoring system.

3.2.1 Model of CPU consumption

This simplification proposes to group all the kernel consumptions in a simple queue,

whereas user processes consumptions are represented in a multi-queue. It considers that

kernel services are hardly parallelizable.

www.intechopen.com

Modelling a Network Traffic Probe Over a Multiprocessor Architecture

311

 γ
µU

µU

p

λ

W = N

 µK

Fig. 4. Model of CPU consumption.

The equivalent service rates can be calculated as follows.

 a

K pk Kk Ak Tk Kk

q1 1 1 1 1
= + = + +

μ μ μ μ μ μ
 (1)

 a

U pu Au Tu

q1 1 1
= = +

µ µ µ µ
 (2)

3.2.2 Model of the equivalent traffic monitoring system

The main feasible simplification preserving the identity of the system is to replace the whole

system with an equivalent multi-server queue applying the Norton equivalence [Chandy et

al., 1975]. The Norton theorem establishes that in networks with solution in product form,

any subnetwork can be replaced by a queue with a state-dependent service capacity. Our

theoretical model has exponential service rates in all stages, so applying the Norton

equivalence, the new equivalent queue will have a state-dependent service capacity

μeq(n,qa).

The simple queue μS of the Fig. 5 represents non-parallelizable processes of the system and

the multiple queue μM represents parallelizable ones.

Fig. 5. Traffic monitoring system that Norton equivalence is applied to.

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

312

This model adapts perfectly to Ksensor, because we identify a non-parallelizable process
that corresponds with the packet capture and parallelizable processes that are related to
analysis. Both μS and μM (in packets per second) can be measured in the laboratory.

4. Analytical study of the model

This section presents the analytical study of the model. It can be directly addressed by
analytical calculation, assuming Poisson arrivals and exponential service times. Perhaps the
greatest difficulty lies in determining the abstractions that are necessary to adapt the model
to the actual characteristics of the traffic monitoring system. Likewise, we propose a method
of calculation based on mean value analysis which allows us to solve systems with more
elements, where the analytical solution may be more complex to develop.

4.1 Equations of the general model

Viewing the simplifications that have been developed, we might observe that, in the study
of this model, a topology is repeated at different levels of abstraction. This topology
corresponds with a closed network model with two queues in series; first, a simple one, and
second, another one with multiple servers, as shown in Fig. 6. This structure usually occurs
in every processing stage. Processing at Kernel level is usually not parallelizable, and
therefore, the model is represented as a simple queue. On the other hand, the user
processing is usually parallelizable and it is represented by a multiple queue with p servers,
being p the number of processor of the platform. The appearance of this topology allows us
to define a simple model that we can solve analytically.

 µeq(n) µ

µ
p

λ

W = N

Fig. 6. Closed queue network simplified for the general model.

In order to get the total throughput of the system, first, we calculate the state probabilities
for the network, putting N packets in circulation through the closed network, but assuming
that the upper multiple queue can have at most p packets being served and the rest waiting
in the queue. We also assume that the service capacity in every state of the multiple queue is
not proportional to the number of packets. Thus, we will consider μi as the service capacity
for the state i. The state diagram for this topology is presented in Fig. 7. In this model we are
representing the state i of the multiple queue. N packets are flowing through the closed
network and we refer to the state i when there are i packets in the multiple queue and the
rest, N-i, in the simple queue. The probability of that state is represented as pi. Finally, the

simple queue with rate λ is the packet injection queue.

www.intechopen.com

Modelling a Network Traffic Probe Over a Multiprocessor Architecture

313

0 1 p-1 p p+1 N-1 N
… …

そ

た1

そ

た2

そ

たp-1

そ

たp

そ

たp

そ

たp

そ

たp

そ

たp

Fig. 7. State diagram for the multiple queue.

It is possible to deduce the balance equations from the diagram of states and,

subsequently, the expression of the probability of any state i as a function of the

probability of zero state p0:

0 1 1

1 2 2
i i 1

i

p 1 p p

p p

p p
i 1, ,p p p

p p

−

−

⋅ λ = ⋅µ  ⋅ λ = ⋅µ λ 
∀ =   = ⋅ 

µ  ⋅ λ = ⋅ µ 
  (3)

i terms

i

i 0 0i
i i 1 1

j
j 1

p p p
−

=

λ λ λ λ = ⋅ ⋅ = ⋅
µ µ µ

µ∏



 (4)

From this equation, we deduce pp, the probability of the state p:

p

p 0p

j
j 1

p p

=

λ = ⋅

µ∏
 (5)

For the states with i>p, their probabilities can be expressed as:

p p 1 p

p 1 p 2 p
i i 1

p

N 1 N p

p p

p p
i p 1, ,N p p

p p

+

+ +
−

−

 ⋅ λ = ⋅µ  
⋅ λ = ⋅µ λ 

∀ = +   = ⋅ 
µ  ⋅ λ = ⋅µ 




 (6)

(i-p) terms
i p

i p P
p p p p

p p p

− λ λ λ λ = ⋅ ⋅ = ⋅ µ µ µ µ 


 (7)

From this equation we can also derive the expression of the probability pN, which is
interesting because it indicates the probability of having all the packets in the multiple
queue and there is none in the simple queue. This probability defines the blocking
probability (PB) of the simple queue.

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

314

N

N B 0p
N p
p j

j 1

p P p
−

=

λ
= = ⋅

µ ⋅ µ∏
 (8)

Applying the normalization condition (the sum of all probabilities must be equal to 1), we
can obtain the general expression for p0 and, then, we get every state probabilities.

pN N

i 0 i i
i 0 i 1 i p 1

p 1 p p p
= = = +

= = + +   (9)

p p i pi N

0 0 0i p i p
i 1 i p 1 p

j j
j 1 j 1

1 p p p
−

−
= = +

= =

λ λ λ
= + + ⋅

µµ∏ µ∏
  (10)

1

p p i pi N

0 i p i p
i 1 i p 1 p

j j
j 1 j 1

p 1

−

−

−
= = +

= =

  
λ λ λ  = + + ⋅ µµ∏ µ∏  

  (11)

Considering equations (8) and (11), we have the following blocking probability pN.

N

N p
p

N
p pp i pN

pi
j j i p

i 1 i p 1j 1 j i p

p

−

−

−
= = += =

λ
µ

=    λ  µ + λ ⋅ µ + λ ⋅  µ   ∏ ∏

 (12)

PN is the probability of having N packets in the multiple queue (traffic analysis system

queue) of Fig. 6 , so there is not any packet in the injection queue. This situation describes

the loss of the system. In order to calculate the throughput γ of the system, (13) is used.

 ()N1 Pγ = λ ⋅ − (13)

Taking into account these expressions, which are valid for the general case, we can develop

the equations of the model for some particular cases that will be detailed below: the

calculation of the equivalence for the traffic monitoring system and the solution for the

closed network with incoming traffic load.

4.2 Calculation of the equivalence for the traffic monitoring system

In general, multiprocessor platforms that implement traffic monitoring systems have certain

limitations to parallelize some parts of the processing they do. In particular, Kernel services

are not usually parallelizable. This means that, despite having a multiprocessor architecture

with p processors that can work in parallel, some services will be performed sequentially

and we will lose some of the potential of the platform. For all this, in order to calculate the

www.intechopen.com

Modelling a Network Traffic Probe Over a Multiprocessor Architecture

315

Norton equivalence for a traffic monitoring system, one must begin with a model that

contains a simple queue and a multi-server queue. This is a particular case of the general

model studied before.

N ≤ p
µK

µU

 p

Fig. 8. Equivalence for the traffic monitoring system.

The simple queue with service rate μK models non-parallelizable Kernel services, whereas

the multiple queue with p servers and service rate μU models the system capacity to

parallelize certain services. The particularity of this model with regard to the general model

is that, at most, only p packets can circulate on the closed network maximum. We are

interested in solving this model to work out the equivalent service rate of the traffic

monitoring system for every state in the network.

… 0 1 2

µ K µ K
µ K

µ U 2 µ U N µ U

N

Fig. 9. State diagram for the traffic monitoring system equivalence.

The state diagram makes sense for values of N that are less or equal to the highest number

of processors. The service rate of the traffic monitoring system will be different for every

value of N and, given that some services are not parallelizable, in general, it does not follow

a linear evolution. Following a similar approach to the general case, we can calculate the

probability of the highest state, pN, which is useful to estimate the effective service rate of

the equivalence.

0 K 1 U

1 K 2 U K
i i 1

U

i 1 K i U

p p

p p 2
p p

i

p p i

−

−

⋅ µ = ⋅ µ ⋅ µ = ⋅ µ µ = ⋅
⋅ µ⋅ µ = ⋅ ⋅µ 


 (14)

()

2 i
K K K

i i 1 i 2 02 i
U U U

p p p p
i i i 1 i!

− −

µ µ µ
= ⋅ = ⋅ = = ⋅

⋅µ µ ⋅ ⋅ − µ ⋅
 (15)

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

316

After considering the normalization condition, we can determine the expression for pN:

i iN N N
K

0 i 0 0 0i
i 1 i 1 i 1U

p p 1 p p p 1
i!i!= = =

 µ ρ
+ = = + ⋅ = ⋅ +  µ ⋅     (16)

 0 iN

i 1

1
p

1
i!=

 =  ρ
+    (17)

N N N
K

N N i iN NiN
U

i 1 i 0i 1

1
p

N! N! N!
N!1

i! i!i! = ==

µ ρ ρ
= ⋅ = = µ ⋅ ⋅ρ ⋅ρρ

++      (18)

Thus, taking into account that the throughput of the closed network is the equivalent service
rate, we have the following expression:

 ()eq K n(n) 1 pµ = µ ⋅ − (19)

n

/ K
eq K in

U

i 0

(n) 1
n!

i!=

  
ρ µ µ = µ ⋅ − ρ =  µ⋅ρ    (20)

Note that this case is really a particular case of the general case where λ= μK and μi=i⋅μU.

4.3 Solution for the closed network model with incoming traffic

The previously explained Norton equivalence takes into consideration the internal problems of
the traffic monitoring system related to the non-parallelizable tasks. Now we will complete the
model adding the traffic injection queue to the equivalent system calculated before.

µeq

µeq

p

µeq(n,qa)

n ≤ p

λ

N

Fig. 10. General model with incoming traffic.

The entire system under traffic load is modelled as a closed network with an upper multiple
queue, which is the Norton equivalent queue of the traffic analysis system, and a lower

simple queue, simulating the injection of network traffic with rate λ. In this closed network,

www.intechopen.com

Modelling a Network Traffic Probe Over a Multiprocessor Architecture

317

a finite number N of packets circulate. In general, this number N is greater than p, the
number of available processors.

The analytical solution of this model is similar to that proposed for the general model taking
into account that the service rates μ1, μ2..., μp will correspond with the calculation of the

Norton equivalent model µeq(n, qa) with values of n from 1 to p. This model allows us to
calculate the theoretical throughput of the traffic monitoring system for different loads of
network traffic.

 ()N1 pγ = λ ⋅ − (21)

The value of N will allow us to estimate the system losses. There will be losses when the N
packets of the closed network are located in the upper queue. At that time, the traffic
injection queue will be empty and, therefore, it will simulate the blocking of the incoming
traffic. That will be less likely, the higher the value of N is.

4.4 Mean value analysis

Apart from the analytic solution explained above, we have also considered an iterative
method based on the mean value analysis (MVA), in order to simplify the calculations even
more. This theorem states that ‘when one customer in an N-customer closed system arrives
at a service facility he/she observes the rest of the system to be in the equilibrium state for a
system with N−1 customers’ [Reiser&Lavengerg, 1980]. The application of this theorem to
our case requires taking into account the dependencies between some states and others in a
complex state diagram, where the state transitions can be also performed with different
probabilities, because there are state dependent service rates.

4.4.1 Probability flows between adjacent states

The mean value analysis is based on the iterative dependency between the probability of a
certain state with regard to the probabilities of the closest states. The state transitions will
not be possible between any two states, they can only occur between adjacent states.

 ()p(i, j) f p(i 1, j),p(i, j 1)= − − (22)

It is necessary to do a balance of probability flows between states considering the service
rates that are dependent on the state of each queue.

µ

µ

 p µi

µeq=µj

i
 j

Fig. 11. General model for the closed queue network.

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

318

To begin with, we consider the general model for the closed queue network. We call queue i
to the simple queue of the model. We assume that this simple queue is in state i and its

service rate is µi. Likewise, we call queue j to the multi-server queue which is in state j with a

state dependent equivalent service rate µj. A fixed number of packets (N) are circulating in
the closed network, so that there is a dependence between the state i and j.

p(0,0)

p(0,1) p(1,0)

μi μj

p(0,2) p(1,1)

μ i μj

p(0,3) p(1,2)

μ i μj

p(2,0)

μ i μ j

p(2,1)

μ i μ j

p(3,0)

μ i μ j

i

j

p(i,j)

p(0,4) p(1,3)

μi μj

p(2,2)

μi μj

p(3,1)

μi μj

p(4,0)

μi

μj

States without
blocking

Fig. 12. Probability flows between adjacent states with two processors.

Fig.12 shows the dependencies of the probability of a given state with regard to the closer
states in the previous stage with one packet less.

4.4.2 Iterative calculation method

Little’s law [Little, 1961] can help us to interpret the relationship between the state
probabilities at different stages of the closed queue network.

 ()
()E n

E T =
γ

 (23)

This formula is applied to any queue system that is in equilibrium in which there are users

who enter the system, consume time to be attended and then leave. In the formula, γ can be
understood as the throughput of the system, E(T) as the average time spent in the system
and E (n) as the average number of users.

The iterative method applied to the closed queue network is based on solving certain
interesting statistics of the network at every stage, using the data obtained in the previous
stage. You go from one stage with N packets to the next with N+1 packets, adding one
packet to the closed queue network once the system is in stable condition. Knowing the state
probability distribution in stage N, we can calculate the average number of users on each
server.

www.intechopen.com

Modelling a Network Traffic Probe Over a Multiprocessor Architecture

319

N

i N
i 1

E(n) i p (i,N i)
=

= ⋅ −
N

j N
j 1

E(n) j p (N j, j)
=

= ⋅ − (24)

We can calculate every state probability in the stage N as the ratio of the average stay time
in this state, tN(i,j) and the total time for that stage TTN. The total time TTN can be calculated
as the sum of all the partial times tN(i, j) of each state at that stage.

 ()
()N

N
TOTAL,N

t i, j
p i, j

T
= (25)

 ()
N

TOTAL,N N
i 0

T t i,N i
=

= − (26)

If we consider Reiser’s theorem [Reiser, 1981], it is possible to set a relation between the state
probabilities of a certain state with regard to the ones which are adjacent in the previous
stage. In particular, in equilibrium, when we have N packets, the state probability

distribution is equal to the distribution at the moment of a new packet arrival at the closed
network. In the state diagram of our model, in general, every state depends on two states of
the previous stage. We will have the following probability flows:

Transition (i-1,j) → (i,j) a new packet arrives at queue i

 '
N N 1p (i, j) p (i 1, j)−= − (27)

Transition (i,j-1) → (i,j) a new packet arrives at queue j

 ''
N N 1p (i, j) p (i, j 1)−= − (28)

Knowing the iterative relations of the probabilities between different stages and basing on
Little's formula, we can calculate the average stay time tN(i, j) in the system in a given state,
accumulating the average time in queue i, tin(i, j) and the average time in queue j, tjn(i, j).

 () () ()ji
N N Nt i, j t i, j t i, j= + (29)

Applying Little’s law:

()
()

()
()

()
()

'i
N N 1Ni

N
i i i

p i, j i p i 1, j iE i
t (i, j)

i i i
−⋅ − ⋅

= = =
µ µ µ

 (30)

()
()

()
()

()
()

j ''
j N N 1N
N

j j j

E j p i, j j p i, j 1 j
t (i, j)

j j j

−⋅ − ⋅
= = =

µ µ µ
 (31)

Considering the probability distribution of the previous stage:

() ()

N 1 N 1
N

i j

p (i 1, j) i p (i, j 1) j
t (i, j)

i j
− −− ⋅ − ⋅

= +
µ µ

 (32)

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

320

Taking into account that, for a given state (i, j), the average stay time of a packet in the queues i
and j is given by ti and tj respectively, we can express the probability of that state as:

()i

i

i

i
τ =

µ

()j
j

j

j
τ =

µ
 (33)

() ()

N 1 N 1
N

i j

p (i 1, j) i p (i, j 1) j
t (i, j)

i j
− −− ⋅ − ⋅

= +
µ µ

 (34)

 jN i
N N 1 N 1

TN TN TN

t (i, j)
p (i, j) p (i 1, j) p (i, j 1)

T T T
− −

ττ
= = − ⋅ + − ⋅ (35)

Eq. 35 allows us to calculate a certain state probability of the stage with N packets, having

the probabilities of the adjacent states in the stage N. Using this equation, we can iteratively

calculate the state probability distribution for every stage.

4.4.3 Adjusting losses depending on N

The losses of the traffic monitoring system can be measured assessing the blocking

probability of the injection queue. If we consider the general model with an incoming traffic

of λ, we can calculate (Eq. 21) the volume of traffic processed by the traffic monitoring

system (γ) and also the caused losses (δ).

 ()()1 p 0,Nγ = λ ⋅ − (36)

 ()0,p Nδ λ γ λ= − = ⋅ (37)

If we look at the evolution of the blocking probability of the injection queue with increasing

number of packets N in the closed network, we can see how that probability stage is

reduced in each stage. The same conclusion can be derived from Eq. 18.

Fig. 13. Evolution of probability flows as a function of N.

www.intechopen.com

Modelling a Network Traffic Probe Over a Multiprocessor Architecture

321

A parameter that can be difficult to assess is N, the number of packets that are circulating in

the closed network. In general, this parameter depends on specific features of the platform,

such as the number of available processors and the ability of the Kernel to accept packets in

transit regardless of whether they have processors available at that time.

One conclusion to be drawn from the model, is that it is possible to estimate the value of the

parameter N by adjusting the losses that the model has with regard to those which actually

occur in a traffic monitoring system.

5. Model validation

This section presents the validation tests to verify the correctness of our analytical model.

The aim is to compare theoretical results with those obtained by direct measurement in a

real traffic monitoring system, in particular, in the Ksensor prototype developed by NQaS

which is integrated into a testing architecture. It is also worth mentioning that, prior to

obtaining the theoretical performance results, it is necessary to introduce some input

parameters for the model. These initial necessary values will also be extracted from

experimental measurements in Ksensor and the testing platform, making use of an

appropriate methodology. With all this, we report experimental and analysis results of the

traffic monitoring system in terms of two key measures, which are the mean throughput

and the CPU utilization. These measures are plotted against incoming packet arrival rate.

Finally, we discuss the results obtained.

5.1 Test setup

In this section, we describe the hardware and software setup that we use for our evaluation.

Our hardware setup (see Fig. 14) consists of four computers: one for traffic generation

(injector), a second one for capturing and analysing the traffic (sensor or Ksensor), a third

one for packet reception (receiver) and the last one for managing, configuring and launching

the tests (manager). All they are physically connected to the same Gigabit Ethernet switch.

Management

network

Capturing network

SYST RPS

STRT DUPLXSPEEDUTIL

MODE

Catalyst 2950SERIES3

4

5

6

7

8

9

10

1

2

11

12

13

14

15

16

19

20

21

22

23

24

25

26

17

18

27

28

29

30

31

32

35

36

37

38

39

40

41

42

33

34

43

44

45

46

47

48

2

1

Switch management

Capturing network

Management network

Manager Injector Sensor Receiver

Fig. 14. Hardware setup for validation tests.

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

322

However, two virtual networks are distinguished: the first one is the capturing network that
connects the elements that play some role during the tests; the second one is the
management network which contains the elements that are responsible for the management
tasks that can be needed before or after doing tests. The use of two separate networks is
necessary, so that the information exchange between the management elements does not
interfere with the test results.

The basic idea is to overwhelm Ksensor (sensor) with high traffic generated from the
injector. Despite the fact that we do not have 10 Gigabit Ethernet hardware for our tests
available, we can achieve our goal of studying the behaviour of the traffic capturing and
analysis software at high rates. In addition, we can compare the results with the analytical
model and also identify the possible bottlenecks of all analysed systems.

Regarding software, we use a testing architecture [Beaumont et al., 2005] designed by NQaS
that allows the automation of tasks like configuration, running and gathering results related
to validation tests. The manager, the injector and the sensor that appear in Fig. 14 are part of
this testing architecture. They have installed the necessary software to perform the functions
of manager, agent, daemon or formatter as we will explain in the next subsection. On the
other hand, the receiver is simply the destination of the traffic entered into the network by
the injector and it does not have any other purpose.

5.2 Architecture to automatically test a traffic capturing and analysis system

As mentioned previously, in this section, we use a testing architecture for experimental
performance measures and, also, to estimate the values of certain input parameters required
for the analytical model. It is, therefore, advisable to explain, albeit briefly, the main
elements of this platform.

Fig. 15. Logical elements of the testing architecture used in validation tests.

The testing architecture consists of four types of logical elements as Fig. 15 shows. Each of
them implements a perfectly defined function:

• Manager is the interface with the user. This element, in the infrastructure shown in Fig.
14, is located on the machine with the same name. It is in charge of managing the rest of
the logical elements (agents, daemons and formatters) according to the configuration
received from the administrator. After introducing the test setup, it is distributed from
the manager to the other elements and the test is launched when the manager sends the
start command. At the end of every test, the manager receives and stores the results
obtained by the rest of the elements.

www.intechopen.com

Modelling a Network Traffic Probe Over a Multiprocessor Architecture

323

• Agents are responsible for attending manager’s requests and acting on different
devices. Agents are always listening and they have to start and stop the daemons, as
well as to collect the performance results. During a test in the infrastructure, one agent
is executed in the injector and another one, in the sensor.

• Daemons are in charge of acting on the different physical elements which are involved
in each test. Its function can be very variable. For example, the injection of network
traffic according to the desired parameterization, the configuration of the capturing
buffers, the execution of control programs in the sensor, the acquisition of information
or some element’s statics, etc. Depending on the relationship with the agent two
different types of daemons can be distinguished: master and slave. Master daemons
have got some intelligence. The agent will start them but they will indicate when their
work has finished. On the other hand, slave daemons do not determine the end of its
execution. In each test, to do all the tasks, as many daemons as necessary are executed
in the injector and in the sensor.

• Formatters are the programs which select and translate the information stored by the
manager to more appropriate formats for its representation. They are executed in the
machine called manager, at the end of every test.

5.3 Experimental estimation for certain parameters of the model

In section 3, we have defined an analytical model which functionally responds to a traffic
monitoring system. In order to perform an assessment of the model, first we need some
values for certain input parameters. We are referring to some service rates that appear in the
model based on closed queue networks and are necessary to obtain theoretical performance
results. Then we can compare these analytical results with those obtained in the laboratory.

In general, we talk about μ service rates, but, in this subsection, it is easier to talk about
mean service times. For this reason, we use the nomenclature based on average processing
time in which an average time tij can be expressed as the inverse of its service rate 1/μ ij.

We want to adapt the theoretical model to Ksensor, a real network traffic probe. The best
approach is to consider the model of the equivalent traffic monitoring system (see Fig.5)
where we distinguish a non-parallelizable process and a parallelizable one. In Ksensor, this
separation corresponds with the packet capturing process and the analysis process.

The packet capturing process is not parallelizable because the softIRQ is responsible for the
capture and it only runs in one CPU. Fig. 16 shows experimental measurements about
average packet capturing times. They have been obtained running tests with Ksensor under
different conditions: variable packet injection rate in packets per second and traffic analysis
load in number of cycles (null, 1K, 5K or 25K). The inverse of the average softIRQ times
shown in Fig. 16 will be the service rate μs that appears in the model.

On the other hand, the analysis process is parallelizable in Ksensor. In the same way that
softIRQ times have been obtained, we experimentally get average analysis processing times
that are shown in Fig. 17. The inverse of the average times shown in Fig.17 will be the
service rate μM that appears in the multi-queue of the model. It is necessary to comment that,
in Fig. 16, the average softIRQ times are not constant. This is because neither all the injected
packets are captured by the system, nor all the captured packets are analysed and this
causes different computational flow balances.

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

324

The values μs and μM, derived from these experimental measurements, will be taken to the
performance evaluation of the model that will be explained later. In addition to the two
parameters mentioned, there is another one which is qa, but it is always qa=1 in our test
configuration.

800

1000

1200

1400

1600

1800

2000

5
0
1
8
9
,2
4
7
2
5

1
0
0
8
7
2
,4
3
0
4

1
5
1
3
0
1
,8
7
8
3

2
0
3
7
5
5
,5
7
0
2

2
5
5
9
3
9
,2
3
4

3
1
1
9
0
6
,2
1
7
2

3
5
6
4
2
7
,0
2
9
3

4
1
5
7
6
6
,8
1
3

4
5
3
5
5
3
,6
4
0
2

5
2
5
1
1
1
,5
9
3
2

5
8
6
5
8
6
,2
4
5
3

6
2
3
2
3
2
,9
9
0
8

6
6
4
7
7
9
,0
5
7
9

7
1
2
2
5
8
,5
7
9
2

7
6
7
0
0
4
,5
7
4
3

8
3
0
4
8
9
,8
9
1
8

9
0
5
8
8
1
,1
0
1
8

9
9
6
3
7
8
,8
7
1
1

1
1
0
6
9
3
7
,9
6
5

1
2
4
5
1
0
4
,3
2
4

1
4
8
7
9
7
7
,7
9
6

n
a

n
o

se
co

n
d

s

packets per second

Average softIRQ time per captured packet

null

1K

5K

25K

Fig. 16. Average softIRQ per captured packet.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

5
0
1
8
9
,2
4
7
2
5

1
0
0
8
7
2
,4
3
0
4

1
5
1
3
0
1
,8
7
8
3

2
0
3
7
5
5
,5
7
0
2

2
5
5
9
3
9
,2
3
4

3
1
1
9
0
6
,2
1
7
2

3
5
6
4
2
7
,0
2
9
3

4
1
5
7
6
6
,8
1
3

4
5
3
5
5
3
,6
4
0
2

5
2
5
1
1
1
,5
9
3
2

5
8
6
5
8
6
,2
4
5
3

6
2
3
2
3
2
,9
9
0
8

6
6
4
7
7
9
,0
5
7
9

7
1
2
2
5
8
,5
7
9
2

7
6
7
0
0
4
,5
7
4
3

8
3
0
4
8
9
,8
9
1
8

9
0
5
8
8
1
,1
0
1
8

9
9
6
3
7
8
,8
7
1
1

1
1
0
6
9
3
7
,9
6
5

1
2
4
5
1
0
4
,3
2
4

1
4
8
7
9
7
7
,7
9
6

n
a

n
o

se
co

n
d

s

packets per second

Analysis time per packet

null

1K

5K

25K

Fig. 17. Analysis time per packet.

5.4 Performance measurements - Evaluation and discussion

The analytical model has been tested with Ksensor under different conditions: packet
injection rate (packets per second) varies between 0 and 1.5 million, packet length is 64-1500
bytes and traffic analysis load (at present we simulate QoS algorithm processing times, from
0 to 25000 cycles). The number of processors has been 2 in every test.

www.intechopen.com

Modelling a Network Traffic Probe Over a Multiprocessor Architecture

325

Fig. 18. Theoretical and experimental throughputs without analysis load.

0

100000

200000

300000

400000

500000

5
0
1
8
7

1
0
0
8
7
2

1
5
1
3
0
1

2
0
3
7
5
5

2
5
5
9
3
9

3
1
1
9
0
6

3
5
6
4
2
7

4
1
5
7
6
7

4
5
3
5
5
4

5
2
5
1
1
2

5
8
6
5
8
6

6
2
3
2
3
3

6
6
4
7
7
9

7
1
2
2
5
9

7
6
7
0
0
5

8
3
0
4
9
0

9
0
5
8
8
1

9
9
6
3
7
9

1
1
0
6
9
3
8

1
2
4
5
1
0
4

1
4
8
7
9
7
8

p
a

ck
e

ts
 p

e
r

se
co

n
d

packets per second

Throughput (1K)

LAB

N=1

N=2

N=3

N=8

N=16

N=40

Fig. 19. Theoretical and experimental throughputs with 1Kcycle analysis load.

0

50000

100000

150000

200000

5
0
1
8
7

1
0
0
8
7
2

1
5
1
3
0
1

2
0
3
7
5
5

2
5
5
9
3
9

3
1
1
9
0
6

3
5
6
4
2
7

4
1
5
7
6
7

4
5
3
5
5
4

5
2
5
1
1
2

5
8
6
5
8
6

6
2
3
2
3
3

6
6
4
7
7
9

7
1
2
2
5
9

7
6
7
0
0
5

8
3
0
4
9
0

9
0
5
8
8
1

9
9
6
3
7
9

1
1
0
6
9
3
8

1
2
4
5
1
0
4

1
4
8
7
9
7
8

p
a

ck
e

ts
 p

e
r

se
co

n
d

packets per second

Throughput (5K)

LAB

N=1

N=2

N=3

N=8

N=16

N=40

Fig. 20. Theoretical and experimental throughputs with 5Kcycle analysis load.

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

326

0

10000

20000

30000

40000

50000

5
0
1
8
7

1
0
0
8
7
2

1
5
1
3
0
1

2
0
3
7
5
5

2
5
5
9
3
9

3
1
1
9
0
6

3
5
6
4
2
7

4
1
5
7
6
7

4
5
3
5
5
4

5
2
5
1
1
2

5
8
6
5
8
6

6
2
3
2
3
3

6
6
4
7
7
9

7
1
2
2
5
9

7
6
7
0
0
5

8
3
0
4
9
0

9
0
5
8
8
1

9
9
6
3
7
9

1
1
0
6
9
3
8

1
2
4
5
1
0
4

1
4
8
7
9
7
8

p
a

ck
e

ts
 p

e
r

se
co

n
d

packets per second

Throughput (25k)

LAB

N=1

N=2

N=3

N=8

N=16

N=40

Fig. 21. Theoretical and experimental throughputs with 25Kcycle analysis load.

Fig. 18, Fig. 19, Fig. 20 and Fig. 21 show the comparison between the theoretical model’s

throughput for different values of N and the real probe’s throughput measured

experimentally (marked as LAB in the graph). 64 byte-length packets have been used in the

lab test and its corresponding service rates in the theoretical calculation. The service rates

has been calculated according to the method explained in subsection 5.3.

In all the cases, the throughput grows until a maximum is reached (saturation point). We

also observe in these graphs that, with increasing N, the theoretical throughput is close to

the real one. It shows, therefore, that the analytical model fits the real system.

6. Conclusion

In this chapter we have presented an analytical model that represents a multiprocessor

traffic monitoring system. This model analyses and quantifies the system performance and it

can be useful to improve aspects related to hardware and software design. Even, the model

can be extended to more complex cases which have not been treated in the laboratory.

Thus, the major contribution of this chapter is the development of a theoretical model based

on a closed queuing network that allows to study the behaviour of a multiprocessor

network probe. A series of simplifications and adaptations is proposed for the closed

network, in order to fit it better to the real system. We obtain the model’s analytic solution

and we also propose a recurrent calculation method based on the mean value analysis. The

model has been validated comparing theoretical results with experimental measures. In the

validation process we have made use of a testing architecture that not only has measured

the performance, it has also provided values for some necessary input parameters of the

mathematical model. Moreover, the architecture helps to setup tests faster as well as to

collect and plot results easier. Ksensor, a real probe, is part of the testing architecture and,

therefore, it is directly involved in the validation process. As has been seen in the validation

section, Ksensor’s throughput is acceptably calculated by the model proposed in this

chapter. The conclusions obtained have been satisfactory with regard to the behaviour of the

model.

www.intechopen.com

Modelling a Network Traffic Probe Over a Multiprocessor Architecture

327

This paper has also come in useful to explain the main aspects of Ksensor, a multithreaded

kernel-level probe developed by NQaS research group. It is remarkable that this system

introduces performance improving design proposals into traffic analysis systems for passive

QoS monitoring.

As a future work, we suggest two main lines: the first one is related to Ksensor and it is
about a new hardware-centered approach whose objective is to embed our proposals onto
programmable network devices like FPGAs. The second research line aims at completing
and adapting the model to the real system in a more accurate way. We are already making
progress on new mathematical scenarios which can represent, in detail, aspects such as
packet capturing process, congestion avoidance mechanisms between capturing and
analysis stages, specific analysis algorithms applied in QoS monitoring and packet
filtering.

Finally, it is worth mentioning that the test setup, which has been used to validate the

model, will be improved acquiring network hardware at 10 Gbps and installing Ksensor

over a server with more than two processors. The model will be tested under these new

conditions and we hope to obtain satisfactory results, too.

Thus, further work is necessary to analyse this type of systems with a higher precision,

compare their results, in certain conditions, better and prevent us from developing high-cost

prototypes.

7. References

Altman, E.; Avratchenkov,K. & Barakat, C.. (2000). A stochastic model for TCP/IP with
stationary random losses. ACM SIGCOMM 2000.

Barakat, C.; Thiran, P.; Iannaccone, G.; Diot, C. & Owezarski, P. (2002). A flow-based model
for Internet backbone traffic, Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurement, 2002.

Beaumont, A.; Fajardo, J.; Ibarrola, E. & Perfecto, C. (2005). Arquitectura de red para la
automatización de pruebas. VI Jornadas de Ingeniería Telemática., Vigo, Spain.

Benvenuti, C. (2006). Understanding Linux Network Internals, O’ Reilly Media.
Biswas, A.; Sinha, P. (2006). Efficient real-time Linux interface for PCI devices: A study on

hardening a Network Intrusion Detection System. SANE 2006, Delft, The
Netherlands.

Cardigliano, A. (2011). Towards wire-speed network monitoring using Virtual Machines.
Master Thesis, University of Pisa, Italy.

Chandy, K.M.; Herzog, U. & Woo, L.S. (1975). Parametric Analysis of Queueing Networks
Learning Techniques, IBM J. Research and Development, vol. 19, no. 1, pp. 43-49,
January 1975.

Cleary, J.; Donnelly, S.; Graham, I.; McGregor, A. & Pearson, M. (2000). Design principles for
accurate passive measurement. Passive and Active Measurement. PAM 2000,
Hamilton, New Zealand.

Deri, L. (2004). Improving Passive Packet Capture: Beyond Device Polling. SANE 2004,
Amsterdam, The Netherlands.

Deri, L. (2005). nCap: Wire-speed Packet Capture and Transmission. E2EMON 2005, Nice,
France.

www.intechopen.com

Telecommunications Networks – Current Status and Future Trends

328

Fiems, D. (2004). Analysis of discrete-time queueing systems with vacations. PhD Thesis,
Ghent University, Belgium.

Fusco, F. & Deri, L. (2010). High Speed Network Traffic Analysis with Commodity Multi-
core Systems. Internet Measurement Conference 2010, Melbourne, Australia.

Intel-CSA. (2002). Communication Streaming Architecture: Reducing the PCI Network
Bottleneck.

Kobayashi, H. (1978). Modeling and Analysis: An Introduction to System Performance Evaluation
Methodology, Ed. Wiley-Interscience, ISBN 0-201-14457-3.

Lee, T. (1989). M M/G/1/N queue with vacation time and limited service discipline.
Performance Evaluation, vol. 9, no. 3, pp. 181-190.

Lemoine, E.; Pham, C. & Lefèvre, L. (2003). Packet classification in the NIC for improved
SMP-based Internet servers. ICN’04, Guadeloupe, French Caribbean.

Little, J. D. C. (1961). A proof of the queueing formula: L=λ⋅W, Operations Research, vol. 9, no.
3, pp. 383-386, 1961.

Mogul, J.C. & Ramakrishnan, K.K. (1996). Eliminating Receive Livelock in an Interrupt-
driven Kernel. USENIX 1996 Annual Technical Conference, San Diego, California.

Muñoz, A.; Ferro, A.; Liberal, F. & López, J. (2007). A Kernel-Level Monitor over
Multiprocessor Architectures for High-Performance Network Analysis with
Commodity Hardware. SensorComm 2007, Valencia, Spain.

Reiser, M. (1981). Mean value analysis and convolution method for queue-dependent
servers in closed queueing networks, Performance Evaluation, vol. 1, no. 1, pp. 7-18,
January 1981.

Reiser, M. & Lavengerg, S.S. (1980). Mean Value Analysis of Closed Multichain Queueing
Networks, Journal of the ACM, vol. 27, no. 2, pp. 313-322, April 1980.

Salah, K. (2006). Two analytical models for evaluating performance of Gigabit Ethernet hosts
with finite buffer. AEU - International Journal of Electronics and Communications, vol.
60, no. 8, pp. 545-556.

Salah, K.; El-Badawi, K. & Haidari, F. (2007). Performance analysis and comparison of
interrupt-handling schemes in gigabit networks. Computer Communications, vol. 30,
no. 17, pp. 3425-3441.

Schneider, F. (2007). Packet Capturing with Contemporary Hardware in 10 Gigabit Ethernet
Environments. Passive and Active Measurement. PAM 2007, Louvain-la-Neuve,
Belgium.

Takagi, H. (1991). Queueing Analysis, A Foundation of Performance Evaluation Volume 1:
Vacation and Priority Systems (Part 1), North-Holland, Amsterdam, The Netherlands.

Takagi, H. (1994). M/G/1/N Queues with Server Vacations and Exhaustive Service.
Operations Research, pp. 926-939.

Varenni, G.; Baldi, M.; Degioanni, L. & Risso, F. (2003). Optimizing Packet Capture on
Symmetric Multiprocessing Machines. 15th Symposium on Computer Architecture and
High Performance Computing, Sao Paulo, Brazil.

Wang, P. & Liu, Z. (2004). Operating system support for high performance networking, a
survey. The Journal of China Universities of Posts and Telecommunications, vol. 11, no.
3, pp. 32-42.

Wu, W; Crawford, M. & Bowden, M. (2007). The performance analysis of linux networking -
Packet receiving. Computer Communications, vol. 30, no. 5, pp. 1044-1057.

Zhu, H.; Liu, T.; Zhou, C. & Chang, G. (2006). Research and Implementation of Zero-Copy
Technology Based on Device Driver in Linux. IMSCCS'06.

www.intechopen.com

Telecommunications Networks - Current Status and Future Trends
Edited by Dr. Jesús Ortiz

ISBN 978-953-51-0341-7
Hard cover, 446 pages
Publisher InTech
Published online 30, March, 2012
Published in print edition March, 2012

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

This book guides readers through the basics of rapidly emerging networks to more advanced concepts and
future expectations of Telecommunications Networks. It identifies and examines the most pressing research
issues in Telecommunications and it contains chapters written by leading researchers, academics and industry
professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent
publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems,
modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is
organized into six sections: New Generation Networks, Quality of Services, Sensor Networks,
Telecommunications, Traffic Engineering and Routing.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Luis Zabala, Armando Ferro, Alberto Pineda and Alejandro Muñoz (2012). Modelling a Network Traffic Probe
Over a Multiprocessor Architecture, Telecommunications Networks - Current Status and Future Trends, Dr.
Jesús Ortiz (Ed.), ISBN: 978-953-51-0341-7, InTech, Available from:
http://www.intechopen.com/books/telecommunications-networks-current-status-and-future-trends/modelling-a-
network-traffic-probe-over-a-multiprocessor-architecture

© 2012 The Author(s). Licensee IntechOpen. This is an open access article
distributed under the terms of the Creative Commons Attribution 3.0
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0

