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1. Introduction

Cognitive radio (CR) is a promising technique for future wireless communication systems.
In CR networks, dynamic spectrum access (DSA) of frequency is implemented to mitigate
spectrum scarcity. Specifically, a secondary (unlicensed) user may be allowed to access the
temporarily unused frequency bands granted to a primary (licensed) user. DSA has to be
implemented so that the quality of service (QoS) promised to the primary user must be
satisfied. The key point for this is the secondary user’s ability to detect the presence of the
primary user correctly. Therefore a quick and reliable spectrum occupancy decision based on
spectrum sensing becomes a critical issue irrespective of the architecture of the CR networks.

Several spectrum sensing methods exist in the literature. Energy detection has been
considered in (Digham et al., 2003; Sahai & Cabric, 2005; Tandra & Sahai, 2005), matched
filter detection in (Kay, 1993), cyclostationary feature detection in (Gardner, 1991). Recently,
eigenvalue based detection has been proposed in (Penna et al., 2009A;B; Penna & Garello,
2010; Wei & Tirkkonen, 2009; Zeng et al., 2008; Zeng & Liang, 2008). Each of these
techniques has its strengths and weaknesses. For example, matched filter detection and
cyclostationary feature detection require knowledge on the waveform of the primary user,
which is impractical for certain applications. Energy detection and eigenvalue based detection
are so-called blind detection methods which do not need any a priori information of the
signal. Eigenvalue based detection can be further divided into eigenvalue ratio based (ER)
detectors and largest eigenvalue based (LE) detectors. The ER detection circumvents the need
to know the noise power, since asymptotically its test statistics does not depend on the noise
power. Noise uncertainty (Tandra & Sahai, 2005) may has important consequences for detector
performance. For example, ER outperforms energy detector, when there is uncertainty of the
noise level. In the literature, performance analysis of the ER detector relies on the limiting
laws of the largest and the smallest eigenvalue distributions. These limiting laws are valid for
large numbers of sensors and samples and are not able to characterize detection performance
when the number of sensors and the sample size are small. On the other hand, exact
characterization of the ER detection requires knowledge of the condition number distribution
of finite dimensional covariance matrices, which is generically mathematically intractable. A
semi-analytical expression of the condition number distribution is presented in (Penna et al.,
2009A). This result becomes rather complicated to implement when the number of sensors and
the sample sizes are large. For the LE detector, asymptotical performance analysis based on
the Tracy-Widom distribution is proposed in (Zeng et al., 2008). There, the limiting law of the
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largest eigenvalue distribution is utilized to set a decision threshold, considering only the false
alarm probability. This result characterizes the LE detector performance in the asymptotical
region where the sample sizes and the number of cooperating sensors are huge. In (Kritchman
& Nadler, 2009) a more general problem of estimating the number of signals using the largest
eigenvalue is studied, where the estimation probability is obtained using the Tracy-Widom
distribution as well. Finally we note that the LE detector is similar to the energy detector in
that the test statistics are functions of the noise variance. Therefore the LE detector is pestered
by the noise uncertainty problem as well.

In this chapter, the analysis of eigenvalue detector is carried out in a setting where there is
only one primary user transmitting. The detection problem is a hypothesis test between two
possible hypotheses; either there is a primary user, or there is none. The covariance matrices
under these hypotheses can be formulated as central and non-central Wishart matrices,
respectively. Empirically we found that the largest eigenvalue calculated from the received
covariance matrix is an efficient quantity to discriminate between the two hypotheses, which
motivates the investigation of the LE detection.

The contribution of this chapter is two-fold. Firstly we derive the exact largest eigenvalue
distributions for central and non-central Wishart matrices. We modify the results on the
largest eigenvalue distributions from (Dighe et al., 2003; Kang & Alouini, 2003; Khatri, 1964)
in order to derive distribution functions suitable for performance analysis. As a result we
obtain exact characterizations for both the false alarm probability and the probability of
missed detection. Secondly, we investigate the detection performance in the asymptotical
region where both the number of sensors and the sample size are large. Specifically we
derive closed-form asymptotic largest eigenvalue distributions for central and non-central
Wishart matrices. These results are possible due to recent breakthrough in random matrix
theory. Moreover a simple closed-form formula for the receiver operating characteristics
(ROC) can also be derived. Besides gaining more insights into the detection performance,
the low complexity asymptotic results can be used for the implementation of the LE detector.

The accuracy of the asymptotic approximations is investigated by comparing to the exact
distributions through various realistic spectrum sensing scenarios. The results confirm the
usefulness of the asymptotic distributions in analyzing the detection performance in practice.
We also compare the detection performance of the LE detection with other well-known
detection schemes. It turns out that in the case of perfectly estimated noise power the LE
detector performs best among the detectors considered. In order to see the whole picture, we
extend the analysis to the case where the noise power is not perfectly known. With worst case
noise uncertainty, the LE detector performs worse than the ER detector, but is by far more
robust against noise uncertainty the energy detector.

The rest of this chapter is organized as follows. In Section 2, we formulate the primary
user detection problem in a multi-antenna spectrum sensing setting. We then motivate
the choice of largest eigenvalue as the test statistics. Section 3 is devoted to deriving the
exact as well as the asymptotical largest eigenvalue distributions. In Section 4, we first
study the impact of approximation accuracy of the asymptotic distributions on the detection
performance. We then compare the detection performance of the LE detector with that of other
detection methods. Lastly, we investigate the impact of the noise uncertainty on the detection
performance. Finally in Section 5 we conclude the main results of this chapter.
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2. Problem formulation

2.1 Signal model

Consider a primary signal detection problem with K collaborating sensors. These sensors may
be, for example, K receive antennas in one secondary terminal or K collaborating secondary
devices each with a single antenna, or any combination of these. We assume periodical
sensing, where each sensor periodically collects N samples during a sensing time. This
collaborative sensing scenario is more relevant if the K sensors are in one device, i.e. for
multi-antenna assisted spectrum sensing. For multiple collaborating devices, communication
to the fusion center by sensors of different locations becomes a problem even for a small
sample size N.

The received K × N data matrix Y is represented as

Y =

⎛
⎜⎜⎜⎝

y1,1 y1,2 . . . y1,N

y2,1 y2,2 . . . y2,N
...

...
. . .

...
yK,1 yK,2 . . . yK,N

⎞
⎟⎟⎟⎠ . (1)

Mathematically, the primary user detection problem is a hypothesis test between two
hypotheses. Hypothesis 0 (H0) denotes the absence of the primary user and hypothesis 1 (H1)
denotes the presence of the primary user. If we assume no fading in the temporal domain, i.e.
the channel stays constant during the sensing time, the two hypotheses can be represented as:

H0 : yk,n = nk,n (2)

H1 : yk,n =
P

∑
i=1

h
(i)
k s

(i)
n + nk,n, (3)

where k = 1, . . . , K and n = 1, . . . , N. Here nk,n is the complex Gaussian noise with zero mean

and variance σ2
cn, P denotes the number of simultaneously transmitting primary users. The

receive covariance matrix R is defined as R = YY
H , where H denotes the Hermitian conjugate

operator. Throughout this chapter, we make the following assumption.

Assumption: There is at most one primary user transmitting (P = 1), and its signal amplitude
is drawn independently from a Gaussian process for every sample.

Under hypothesis H0, the receive covariance matrix R follows the complex central Wishart
distribution, denoted as (Gupta, 2000) R ∼ WK

(
N, σ2

cnIK

)
, where IK denotes the identity

matrix of dimension K. Under hypothesis H1, by our assumption the covariance R follows
the complex non-central Wishart distribution, which is denoted as (Gupta, 2000)
R ∼ WK

(
N, σ2

cnIK , MMH
)

. Here MMH is the non-centrality parameter matrix with M =

h
(1)
k (s

(1)
n )T . The complex vectors h

(1)
k = [h

(1)
1 , h

(1)
2 , . . . , h

(1)
K ]′ and s

(1)
n = [s

(1)
1 , s

(1)
2 , . . . , s

(1)
N ]′ are

column vectors. From the assumption that there is one primary user, it follows that the matrix

M is rank one, because Rank (M) = Rank
(
MMH

)
= Rank

(
||s(1)||2h

(1)
k (h

(1)
k )H

)
= 1. In

other words, the Hermitian matrix MMH has only one non-zero eigenvalue, which we denote
by φ1.
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Strictly speaking the non-centrality parameter MM
H is not a constant matrix, since the norm

of the transmit signal ||s(1)||2 is still a random variable. However, the randomness in ||s(1)||2 is

diminishing very fast as the sample size N increases and ||s(1)||2/N can be well approximated
by the signal variance σ2

s for sufficiently large N. On the other hand, if we assume the primary

user’s signal s
(i)
n is of constant modulus, for example, MPSK modulation, the non-centrality

parameter matrix is a strictly constant matrix. We note that under H1 it is also possible to
model R as the so-called spike correlation model (Penna & Garello, 2010). Whilst the spike
correlation model is mathematically more tractable, it is formally valid only for Gaussian

signals. Finally, the average SNR under hypothesis H1 is defined as SNR =
σ2

s σ2
h

σ2
cn

. In practice,

σ2
s can be estimated by ||s(1)||2/N.

2.2 Test statistics

We want to discriminate between the two hypotheses based on the eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λK of the observed covariance matrix R. The fact that M is of rank one leads to
a major difference on the numerical value of the largest eigenvalue λ1, but the impact on
other eigenvalues is much smaller. This fact is firstly explored and studied in the statistics
literature, where it is known as Roy’s largest root test (Roy, 1953). No explicit expression for
its distribution is given in (Roy, 1953). To motivate this approach, in Table 1 we empirically
calculated the sample mean of the ordered eigenvalues of the covariance matrix R under both
hypotheses, where we set the parameters K = 4, N = 30, SNR = −5 dB and σ2

cn = 1. From
Table 1 we can see that the largest eigenvalue λ1 provides a most prominent candidate to
discriminate H0 from H1. Specifically in this case, the difference between the mean values
of the largest eigenvalues can be as large as 28.447, whereas the difference between the mean
values of the smallest eigenvalues is only 1.587.

K = 4, N = 30 λ1 λ2 λ3 λ4

H1(SNR = -5 dB) 73.215 38.385 27.523 18.820
H0 44.768 33.265 24.747 17.233

Table 1. Sample mean of the ordered eigenvalues under both hypotheses.

Using the received data matrix (1), several other sensing algorithms can be proposed. For
example, the test statistics TED of the energy detector relies on the norm of the data matrix, i.e.
||X||2F (Digham et al., 2003). The test statistics of the eigenvalue ratio based detector (Penna et
al., 2009A;B; Penna & Garello, 2010; Zeng & Liang, 2008) is defined as TER = λ1/λK, which is
the condition number of Wishart matrices.

For detection, a test variable is calculated, which is compared with its corresponding
precalculated decision threshold γ to decide the presence or absence of a primary user. If
T < γ the detector chooses H0, otherwise H1 is chosen. In order to calculate the decision
thresholds we need to know the distributions of the respective test statistics. For the energy
detector, the test statistics under H0 follows a central Chi-square distribution and under H1

it follows a non-central Chi-square distribution (Digham et al., 2003). For the ER detector,
asymptotical condition number distributions under both hypotheses are derived in (Penna
et al., 2009B; Penna & Garello, 2010; Zeng & Liang, 2008). Moreover under H0, the exact
condition number distribution can be calculated (Penna et al., 2009A). For the LE detector,
asymptotical method for computing the test statistics distribution under H0 is presented in
(Zeng et al., 2008). However, the resulting distribution can only be evaluated numerically. In
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the next section, we will derive exact largest eigenvalue distributions as well as closed-form
asymptotical largest eigenvalue distributions for both hypotheses.

3. The Test statistics distributions under both hypotheses

In order to analyze the detection performance of the LE detector we need to know the
distributions of the largest eigenvalue under both hypotheses. In this section, we first derive
the exact distributions of the largest eigenvalue by making use of finite dimensional results on
Wishart matrices. The exact distributions can be utilized to calculate detection performance
metrics, such as the false alarm probability, the missed detection probability or the decision
threshold. On the other hand, due to the complexity of the exact results, they are most
useful when the number of sensors and sample size are small. In order to characterize the
detection performance in the asymptotical region where both the number of sensors and
sample sizes are large, we derive asymptotic largest eigenvalue distributions under both
hypotheses. Specifically by exploring recent results in random matrix theory, we derive
analytical Gaussian approximations to the largest eigenvalue distributions of central and
non-central Wishart matrices. The derived closed-form asymptotical distributions provide
accurate approximations in realistic spectrum sensing scenarios. Due to the simplicity of the
asymptotic results, computation of various performance metrics of the LE detector can be
easily performed on-line.

3.1 Exact characterizations

For the signal model in the last section, computable closed-form expressions for the largest
eigenvalue distributions of central and non-central (non-central matrix M being rank one)
Wishart matrices can be derived from the results in (Kang & Alouini, 2003; Khatri, 1964).
Specifically, assuming independent and identically distributed (i.i.d) entries in the received
data matrices Y for both hypotheses, the matrix variate distribution of Y under H0 is

Y ∼ 1

πKN
(
σ2

cn

)KN
e−tr{YYH}/σ2

cn . (4)

The corresponding Wishart distribution R = YYH can be trivially derived from Theorem
3.2.2 in (Gupta, 2000) by placing σ2

cn in appropriate equations. Then the joint eigenvalue
distribution of the covariance matrix R is derived by using the result in (James, 1964). Finally,
following steps in (Khatri, 1964) the cumulative distribution function (CDF) of the largest
eigenvalue of the covariance matrix R, denoted by Fc(x |σ2

cn), is derived as

Fc

(
x |σ2

cn

)
=

det A
(
σ2

cn

)KN
∏

K
k=1 Γ(N − k + 1)Γ(K − k + 1)

(5)

where det(·) denotes the matrix determinant operator and Γ(·) is the Gamma function. The
i, j th entry of matrix A (K × K) is defined through the regularized incomplete Gamma

function γR(·, ·) as Ai,j = (σ2
cn)

N−K+i+j−1Γ(N − k + i + j − 1)γR

(
N − K + i + j − 1, x

σ2
cn

)
.

When σ2
cn = 1, the above result reduces to the result in(Khatri, 1964). By elementary

manipulations, Fc
(
x |σ2

cn

)
can be simplified to

Fc

(
x |σ2

cn

)
= |det Â|, (6)
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with Âi,j = (N−j+i−1
i−1 )γR(N + i − j, x

σ2
cn
).

Under H1, the matrix variate distribution of Y is

Y ∼ 1

πKN
(
σ2

cn

)KN
e−tr{(Y−M)(Y−M)H}/σ2

cn . (7)

The corresponding Wishart form distribution R = YYH can directly be obtained from
Theorem 3.5.1 in (Gupta, 2000) by placing σ2

cn in appropriate lines. The corresponding joint
eigenvalue distribution of the covariance matrix R is derived from (James, 1964). When
matrix M is rank one, the CDF of the largest eigenvalue of the covariance matrix R, denoted
Fnc(x |σ2

cn), can be calculated by following the derivations in (Kang & Alouini, 2003) as

Fnc

(
x |σ2

cn

)
=

(
∏

K−1
k=1 Γ(N − k)Γ(K − k)

)−1
det B

e
φ1
σ2

cn
(
σ2

cn

)(KN−2K+2)
φK−1

1 Γ(N − K + 1)

(8)

where elements in the first column of B are Bi,1 =
∫ x

0 βN−i e
− β

σ2
cn 0F1

(
N − K + 1;

φ1 β
σ4

cn

)
dβ and

in the second to Kth column
Bi,j = (σ2

cn)
N+K−i−j+1Γ(N + K − i − j + 1)γR

(
N + K − i − j + 1, x

σ2
cn

)
, j = 2, . . . , N. Here,

0F1(·; ·) is the hypergeometric function of Bessel type. Recall that φ1 is the only non-zero
eigenvalue of the Hermitian matrix MMH . When σ2

cn = 1, the result above reduces to the
result in (Kang & Alouini, 2003). After some manipulations, Fnc

(
x |σ2

cn

)
can be simplified to

Fnc

(
x |σ2

cn

)
= |det B̂|, (9)

with elements in the first column B̂i,1 = Γ(K)
(N−K)Γ(N−i)

∫ x/σ2
cn

0 βN−i e−β
0F1

(
N − K + 1;

φ1β
σ2

cn

)
dβ

and in the other K − 1 columns B̂i,j = (N−i+j−2
j−1 )γR(N − i + j − 1, x

σ2
cn
), j = 2, . . . , N.

Based on distribution of the test statistics under H0, for a given threshold γ, the false alarm
probability can be calculated as

Pfa(γ) = 1 − Fc

(
γ |σ2

cn

)
. (10)

Similarly, for a given SNR and threshold, the missed detection probability can be obtained by
using the distribution under H1 as

Pm(γ) = Fnc

(
γ |σ2

cn

)
. (11)

Equivalently, for a target false alarm probability or missed detection probability the resulting
threshold can be calculated by numerically inverting (10) or (11).

Assuming a worst case SNR, a performance bound can be obtained by the analysis above. This
worst case SNR value can, for example, be set based on the receiver sensitivity of the primary
system of interest (Ruttik et al., 2009). Notice that the actual detection performance could be
better or worse depending on the validity of the assumed worst case SNR value. When taking
into account the test statistics distributions under both hypotheses, the decision threshold can
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be obtained by the Neyman-Pearson criterion (Kay, 1993) or by minimizing a weighted sum
of the false alarm probability and the missed detection probability (Wei & Tirkkonen, 2009).
Once we obtain the decision threshold the detection procedure is as follows. Firstly, the K
cooperative sensors form the K × N received data matrix Y as in (1). Secondly, the largest
eigenvalue λ1 of the covariance matrix R = YY

H is calculated. Finally, we make a decision;
if λ1 is larger than the threshold γ it is decided that the primary user is present and if λ1 is
smaller than γ it is decided that the primary user is absent.

3.2 Asymptotical characterizations

Although the previous derived results could capture the detection performance exactly, the
computation complexity increases rapidly as the number of sensors and sample sizes increase.
To circumvent this numerical burden and gain more insights into this detection problem, we
derive asymptotic Gaussian approximations to the largest eigenvalue distributions under both
hypotheses. As a consequence, simple closed-form results for the false alarm and missed
detection probabilities are possible. In addition, a closed-form expression for the receiver
operating characteristics is derived as well.

For the largest eigenvalue λ1 of covariance matrix R under H0, it is known that (Johansson,

2000) there exists proper centering sequence, a1(K, N) = (
√

K +
√

N)2, and scaling sequence

b1(K, N) = (
√

K +
√

N)(
√

1
K +

√
1
N )1/3, such that the distribution of the random variable

Λ1 =
λ1 − σ2

cna1(K, N)

σ2
cnb1(K, N)

, (12)

converges to the Tracy-Widom distribution of order two (Tracy & Widom, 1996), denoted as

FTW2. The convergence occurs when K → ∞, N → ∞ and K
N → c ∈ (0, 1). This asymptotical

result provides us an approximation to the largest eigenvalue distribution for a given matrix
size K and N. Namely, the CDF for the largest eigenvalue of a covariance matrix with N
degrees of freedom can be approximated by a linear transform of the Tracy-Widom variable
as

Fc

(
x |σ2

cn

)
≈ FTW2

(
x − σ2

cna1(K, N)

σ2
cnb1(K, N)

)
. (13)

The distribution function of the Tracy-Widom distribution of order two can be represented as

FTW2(x) = exp

{
−

∫ ∞

x
(s − x)q2(s)ds

}
, (14)

where q(s) is the solution to the Painlevé II differential equation q′′(s) = sq(s) + 2q3(s) with
boundary condition q(s) ∼ Ai(s) (s → ∞), where Ai(s) is the Airy function. Numerically it
is possible to compute the value of FTW2(x) for a given x by using software packages such
as (Dieng, 2006; Perry et al., 2009). This facilitates efficient calculations of the approximative
CDF in (13). However, equation (13) is not a closed-form approximation, since it depends
on the numerical solution of (14). On the other hand, it is shown in (Anderson, 1963)
that the largest eigenvalue distribution converges to a Gaussian distribution when N goes
to infinity for any fixed K. Although this asymptotic result gives only a loose bound for
finite-dimensional expressions, it motivates us to adopt the Gaussian approximation to the
largest eigenvalue distribution. In order to obtain a closed-form Gaussian approximation we
need to calculate the first two moments of λ1, which is a non-trivial problem from the exact
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distribution (6). However the asymptotic moments of λ1 via the Tracy-Widom distribution
are readily obtained. From (12), the first moment of λ1 is

E[λ1] = σ2
cn(a1(K, N) + b1(K, N)E[Λ1]), (15)

where E[·] donates the expected value. The second moment of λ1 is

V[λ1] =
(
σ2

cnb1(K, N)
)2

V[Λ1], (16)

where V[·] denotes the variance. Since the distribution of Λ1 converge to FTW2 as K → ∞,

N → ∞ and K
N → c ∈ (0, 1), the mean and variance of Λ1 also converges to the ones of

the Tracy-Widom variable; E[Λ1] → E[xTW2] = −1.7711, V[Λ1] → V[xTW2] = 0.8132. These
numerical values are obtained by using (Dieng, 2006). A closed-form Gaussian approximation
is obtained by fitting these two moments to the corresponding Gaussian moments. Note
that by matching higher moments of the Tracy-Widow distribution to higher moments of
other distributions, for example, the generalized lambda distribution (Karian & Dudewicz,
2000), we expect to achieve more accurate approximations. Finally, the largest eigenvalue
distribution is approximated by a Gaussian distribution N (μ1, σ2

1 ) with mean μ1 and variance

σ2
1 given by μ1 = σ2

cn(a1(K, N) + b1(K, N)E[xTW2]) and σ2
1 =

(
σ2

cnb1(K, N)
)2

V[xTW2]
respectively. Thus the approximative CDF of λ1 under H0 is

Gc

(
x |σ2

cn

)
= Φ

(
x − μ1

σ1

)
, (17)

where Φ(·) is the CDF of a standard Gaussian random variable. Note that both μ1 and σ2
1 are

simple functions of the matrix dimensions and noise variance only. Thus the computational
complexity is negligible compared with the exact distribution (6). More importantly, by
using this closed-form approximation the reliance on numerical calculations from the software
package (Dieng, 2006; Perry et al., 2009) is removed.

Under H1, the covariance matrix R follows the complex noncentral Wishart distribution.
Simple and accurate closed-form approximation for its largest eigenvalue distribution is not
available. The first order expansion of λ1 proposed in (Jin et al., 2008) is unable to capture
the detection performance since its accuracy can not be guaranteed except for a threshold
around zero. In the following we propose a two-step Gaussian approximation for the λ1

distribution under H1. The first step is to establish the relationship between non-central and
central Wishart matrices. The results in (Tan & Gupta, 1983) showed that a non-central Wishart
matrix R distributed as R ∼ WK

(
N, σ2

cnIK, MM
H
)

, can be well approximated by a correlated
central Wishart matrix distributed as R ∼ WK (N, ΣK) , where the effective correlation
matrix ΣK is given by ΣK = σ2

cnIK + MM
H/N. Since the effective correlation matrix is an

identity matrix plus a rank one matrix, the eigenvalues of ΣK, denoted by ξi, can be easily
determined as ξ1 = σ2

cn + φ1/N, ξ2 = ξ3 . . . = ξK = σ2
cn. The second step is to approximate

the largest eigenvalue distribution of a correlated central Wishart matrix by its asymptotic
distribution. The results in (Baik & Silverstein, 2005) prove that the largest eigenvalue of a
correlated central Wishart matrix converges to a Gaussian distribution N (μ2, σ2

2 ) with mean

μ2 = Nξ1

(
1 + K/N

ξ1−1

)
, and variance σ2

2 = Nξ2
1

(
1 − K/N

(ξ1−1)2

)
. The convergence occurs when

K → ∞, N → ∞, K
N → c ∈ (0, 1), and in addition ξ1 must satisfy (Baik & Silverstein,

2005), ξ1 > 1+
√

K/N. Thus the approximative CDF of λ1 under H1, denoted by Gnc
(
x |σ2

cn

)
,
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is represented as

Gnc

(
x |σ2

cn

)
= Φ

(
x − μ2

σ2

)
. (18)

Based on the approximative distribution of the test statistics under H0 (17), for a given
threshold γ, the false alarm probability can be approximated by

Pfa(γ) ≈ 1 − Φ

(
γ − μ1

σ1

)
. (19)

Equivalently, for a required false alarm probability the decision threshold can be
approximated by γ ≈ μ1 + σ1Φ−1(1 − Pfa), where Φ−1(·) is the inverse of a Gaussian CDF.
For a given SNR and threshold, the missed detection probability can be obtained by using the
approximative distribution under H1 (18) as

Pm(γ) ≈ Φ

(
γ − μ2

σ2

)
. (20)

Similarly for a required missed detection probability and SNR, the approximative decision
threshold is γ ≈ μ2 + σ2Φ−1(Pm). Finally, by inserting this approximative threshold into (19)
we obtain a closed-form approximative receiver operating characteristics for the LE detector

Pm ≈ Φ

(
σ1Φ−1(1 − Pfa) + μ1 − μ2

σ2

)
. (21)

Note that a closed-form ROC expression is not possible by using exact distributions (10)
and (11). In the next section we will compare the asymptotic results with the exact
distributions in terms of various detection performance metrics.

3.3 A note on computational complexity

The computational complexity discussed here refers to the on-line implementation complexity
for the LE detector. If the implementation is based on look-up tables, the computational
complexity is negligible when using the approximative distributions. As one can see from (17)
and (18), only a 1D table (percentiles of a standard Gaussian CDF) is needed, which is
applicable to any K, N and σ2

cn. It can be seen from (6) and (9) that the look-up table
implementation using the exact distributions is more demanding. Under H0 for each
combination of K and N, a 1D table is needed, which is valid for any σ2

cn. Moreover, under H1,
for each combination of K and N, a 2D table is needed, which is valid for any σ2

cn. The reason

being that the first column of B̂ is a function of two variables.

Since K and N may be subject to frequent changes in practice, the implementation may rely on
realtime computations of the distributions instead of tabulations. In this case the operational
complexity when using the exact distribution, which is mainly determined by the number of
multiplications, can be shown to be upper bounded by O(2n3) for both H0 and H1 (Borwein
& Borwein, 1987), where n is the number of digits needed to represent N, K, σ2

cn and the
threshold γ. However, the bit-complexity may prevent the use of the exact results. Each
multiplication needs to be done with a large n, which is particularly true for H1. For example
when K = 4, N = 100 and σ2

cn = 1, by inspecting the distributions (6) and (9), it can be verified
that the number of digits n equals 13 and 30 bits for H0 and H1, respectively.

11Exact and Asymptotic Analysis of Largest Eigenvalue Based Spectrum Sensing
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4. Detection performance

In this section, several aspects regarding the detection performance are addressed. Firstly
we will show the accuracy of the derived asymptotic results in characterizing the detection
performance. Then we will compare the performance of the largest eigenvalue based detection
to other detection methods, such as the eigenvalue ratio based detection (Penna et al., 2009B;
Penna & Garello, 2010) and the energy detection. Finally we will discuss the robustness of the
LE detector under noise uncertainty.

4.1 Exact versus asymptotic

The exact characterization versus the asymptotic approximation is basically a trade-off
between accuracy and complexity. Here the accuracy means the degree of control in
determining the performance metrics, especially the decision threshold. The complexity
refers to the computational complexity in calculating various performance metrics from
the test statistics distributions. When using the exact distributions (6) and (9), the
false alarm probability and the missed detection probability can be determined exactly,
thus we have complete control over the decision threshold. However the computational
complexity in this case is non-trivial, since the exact distributions (6) and (9) involve matrix
determinants with special function as entries. On the other hand, the asymptotic test statistics
distributions (17) and (18) provide a trade-off between accuracy and complexity. Since
both the approximative false alarm probability (19) and the approximative missed detection
probability (20) are Gaussian distributions, the computational complexity in characterizing
the detection performance is negligible. In Figure 1, we plot the false alarm probability as a
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Fig. 1. False alarm probability as a function of threshold: exact v.s asymptotic.

function of the decision threshold for various K and N. The exact curves and the asymptotic
curves are obtained from (10) and (19) respectively. We can see from this figure that the
asymptotic approximation matches well with the exact characterization in all the parameter
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settings considered. Note that the considered parameter values (K, N) are realistic in practical
spectrum sensing scenarios. The number of samples N can be huge due to the high sample
rate. For example, in Digital Television (DTV) signal detection problem studied in (Tawil,
2006), 100 thousand samples corresponds to only 4.65 ms sensing time. The number of receive
antennas K can be safely chosen to be less or equal to eight, since nowadays it is possible to
have a device with eight antennas. In Figure 2 and Figure 3, we show the missed detection
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Fig. 2. Missed detection probability as a function of threshold: exact v.s asymptotic.

probability as a function of the decision threshold when SNR equals −5 dB and −10 dB
respectively. The (K, N) pairs considered here are the same as in the previous figure. The exact
Pm plots are obtained by using (11) and the approximative Pm plots are obtained from (20).
It can be observed from these two figures that the approximation to the missed detection
probability (20) is close to the exact result for different (K, N) pairs and SNR values.

4.2 Performance comparison

In general the detection performance is a function of sensing parameters, i.e., the sample
size, the number of sensors and the SNR. We can compare the performances by looking
at the detection probability for a fixed false alarm probability. Alternatively, the detection
performance can be seen from the receiver operating characteristics curve. The ROC curve
shows the achieved probability of missed detection as a function of the target false alarm
probability. Thus the ROC curve illustrates the overall detection performance for a given
detector.

In this subsection, we will compare the LE detector with the classical energy detector (Digham
et al., 2003) and the recently proposed eigenvalue ratio (condition number) based detector
(Penna et al., 2009A;B; Penna & Garello, 2010) by means of the ROC curves. Specifically, we
show how the different sensing parameters (number of sensors, sample size and SNR) affect
the detection performance. Here we investigate the case when the noise variance is known

13Exact and Asymptotic Analysis of Largest Eigenvalue Based Spectrum Sensing
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Fig. 3. Missed detection probability as a function of threshold: exact v.s asymptotic.

exactly. The case when there is uncertainty about the noise variance estimates is studied in
the next subsection.

The cooperative energy detector will collaborate in the same way as the LE detector in that
the decision statistics is a function of the collaboratively formed the received data matrix Y (1).
In the case of the energy detector the test statistics is the norm of received data matrix Y, for
example, the Frobenius norm ||Y||2F. The decision rule is to choose H0 when ||Y||2F ≤ γ and

choose H1 when ||Y||2F > γ. Under H0, the test statistics ||Y||2F follows the central Chi-square
distribution with 2KN degrees of freedom (Digham et al., 2003; Proakis, 2001). Under H1, the
test statistics follows the non-central Chi-square distribution with 2KN degree of freedom. In
addition to the LE detector, another possible eigenvalue based detector is the eigenvalue ratio
based detector. With the test statistics is TER = λ1/λK . Asymptotic approximations of TER

distribution under both hypotheses are studied in (Penna et al., 2009B; Penna & Garello, 2010)
and the exact distribution of TER under H0 is studied in (Penna et al., 2009A). It can be shown
that the test statistics of the ER detector does not depend on noise variance asymptotically.
Therefore the ER detector is immune to the noise uncertainty problem.

Without loss of generality, we set variance of the complex noise to 1 (σ2
cn = 1). In the

following figures, we will compare the detection performance of LE detector with that of
the energy detector and the ER detector. In Figure 4, we consider a case where the number
of sensors (receive antennas) is 4 , the sample size is 600 per sensor and the SNR is −10 dB.
For LE detector, the exact ROC curve is obtained from (10) and (11) while the approximative
ROC is drawn by using (21). For the ER detector, the ROC curve is obtained by simulation.
From this figure we can see that the LE detector uniformly outperforms both the energy
detector and the ER detector since its probability of missed detection is lower for all false
alarm probabilities. Moreover we observe that the asymptotic approximative ROC represents
the detection performance rather accurately. In Figure 5, we consider a different sensing
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Fig. 4. Receiver operating characteristics: K = 4, N = 600, SNR = −10 dB.
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Fig. 5. Receiver operating characteristics: K = 8, N = 1200, SNR = −15 dB.

parameter setting where the number of sensor is 8 with 1200 samples per sensor and SNR
−15 dB. In this setting, we again observe that the LE detector performs best among the
detectors considered and the loss in characterizing the performance by the approximate ROC
is tolerable.
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The superior performance of the LE detector over the energy detector can be understood
as follows. For cooperative energy detection, the test statistics ||Y||2F, by definition, equals

||Y||2F = tr{YYH} = tr{R} = ∑
K
i=1 λi, where λi is the ith eigenvalue of the received

covariance matrix R. Therefore, the test statistics of the energy detector blindly sums up all
the K eigenvalues from the covariance matrix R. On the other hand, for the LE detection
the test statistics only involves λ1. In other words, the LE detector will intentionally pick
up only the largest eigenvalue as decision statistics. This is an optimal statistical test when
there is only one primary user present (matrix M being rank one) (Roy, 1953). Recall
also the implication from Table 1 that blindly adding more eigenvalues as test statistics is
unnecessary. When summing all eigenvalues one obtains a more heavy-tailed distribution
than the largest eigenvalue distribution. This-heavy tailed distribution will lead to worse
detection performance of the energy detector, which is the main motivation behind the LE
detector.

4.3 Noise uncertainty analysis

In the analysis done so far we assume the noise variance is known exactly. This is an
ideal scenario considering that in any practical system modeling of noise uncertainty is
unavoidable. It is especially true for detection problems in CR networks, where robustness
to noise uncertainty is a fundamental performance metric (Tandra & Sahai, 2005; 2008).
Uncertainty in noise variance may arise due to noise estimation error in the receiver or noise
variations during the sensing time or interference caused by other primary users. Note that
noise uncertainty analysis may be generalized to incorporate interference uncertainty as well
(Zeng et al., 2009).

We consider a situation where there is uncertainty about the noise variance. Let μ be the value
in dB of the noise uncertainty. Then the noise power will fall in the interval Ω = [σ2

cn/ρ, ρσ2
cn],

where ρ = 10μ/10. Naturally, as the uncertainty μ increases the interval that the noise power
could fall into will be larger. We would like to see the worst case of performance degradation
due to this uncertainty. Thus we need to check all the possible noise power from the interval
Ω such that the PDFs under both hypotheses will overlap most. As a result of which, we
have the worst case performance for a given uncertainty level μ. Due to the monotonic tails
of the largest eigenvalue distributions (6), (9) the noise variance under H0 is now ρσ2

cn and the
corresponding distribution becomes

Fc

(
x |ρσ2

cn

)
= |det Â|, (22)

with Âi,j = (N−j+i−1
i−1 )γR(N + i − j, x

ρσ2
cn
). Similarly, in order to obtain worst case performance,

the noise variance under H1 has to be σ2
cn/ρ. The resulting distribution becomes

Fnc

(
x |σ2

cn

ρ

)
= |det B̂|, (23)

with elements in the first column B̂i,1 =
Γ(K)

(N−K)Γ(N−i)

∫ ρx/σ2
cn

0 βN−i e−β
0F1

(
N − K + 1;

ρφ1β
σ2

cn

)
dβ

and in the other K − 1 columns B̂i,j = (N−i+j−2
j−1 )γR(N − i + j − 1,

ρx
σ2

cn
), j = 2, . . . , N. Notice

that in the case of no noise uncertainty (ρ → 1), the distributions (22) and (23) become (6) and
(9) respectively. One example to illustrate the effect of noise uncertainty on the LE detector is
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Fig. 6. Impact of worst case noise uncertainty: K = 4, N = 100, SNR = −5 dB, μ = 0.5 dB.

presented in Figure 6, where K = 4, N = 100, SNR = −5 dB. We choose the noise variance
σ2

cn = 1 for the case of no noise uncertainty and the uncertainty level μ = 0.5 dB when
considering noise uncertainty. Therefore in the worst case scenario the noise variance is 1.122
under H0 and is 0.891 under H1. In Figure 6 we plot the PDFs of the test statistics with and
without noise uncertainty. We observe that for the case of noise uncertainty, we indeed obtain
the worst case of distributions where the curves overlap most. Intuitively, this corresponds to
the situation that the two hypotheses are most difficult to distinguish when noise uncertainty
exists.

Similarly, for a given uncertainty level μ the worst case approximative test statistics
distribution under H0 is

Gc

(
x |ρσ2

cn

)
, (24)

and under H1 is

Gnc

(
x |σ2

cn

ρ

)
. (25)

In the following figures we will first show the impact of the noise uncertainty on both the false
alarm probability and the missed detection probability of the LE detector. In the meanwhile
we will illustrate the accuracy of the approximative test statistics distributions under noise
uncertainty. Then we will compare the detection performance of the LE detector with that
of the energy detector and the ER detector in the case of noise uncertainty. In Figure 7, we
show the false alarm probability of the LE detector as a function of the decision threshold
for various (K, N) pairs under noise uncertainty. We assume to have 0.4 dB uncertainty in
the noise variance. The exact curves and the asymptotic curves are obtained by using (22)
and (24) respectively. Comparing this figure with Figure 1 we see that in the case of noise
uncertainty the false alarm probability will increase for any given threshold and any (K, N)
pairs considered. We can also observe from this figure that the asymptotic approximation
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Fig. 7. False alarm probability under noise uncertainty, μ = 0.4 dB: exact v.s asymptotic.

matches well with the exact characterization under noise uncertainty. In Figure 8 and
Figure 9, we plot the missed detection probability as a function of the decision threshold
when SNR equals −5 dB and −10 dB with 0.4 dB uncertainty in the noise variance. The
exact Pm plots are obtained by using (23) and the approximative Pm plots are obtained
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Fig. 8. Missed detection probability under noise uncertainty, μ = 0.4 dB: exact v.s asymptotic.
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Fig. 9. Missed detection probability under noise uncertainty, μ = 0.4 dB: exact v.s asymptotic.

from (25). By comparing these two figures with Figure 2 and Figure 3 respectively, it can
be observed that in the case of noise uncertainty the missed detection probability will also
increase for any given threshold and any (K, N) pairs considered. Therefore, we indeed obtain
the worst case performance due to noise uncertainty where both the false alarm and missed
detection probabilities increase for any given threshold. It can be also observed from these
two figures that the asymptotic distribution of the missed detection probability provides a
useful approximation for finite size (K, N) pairs. In Figure 10 we compare the impact of noise
uncertainty of the LE detector with that of the energy detector and the ER detector by means
of the ROC plot. The sensing parameters here are the same as in Figure 4 except that there
is now 0.2 dB uncertainty in the noise variance. By comparing this figure with Figure 4, we
can see that the ER detector performs better than the LE detector and the energy detector
in the case of noise uncertainty. The reason is that the test statistics of the ER detector is
not a function of the noise variance, thus its performance will not degrade regardless of the
degree of noise uncertainty. On the other hand, the test statistics of both the LE detector and
the energy detector depend on the noise variance, thus their detection performances rely on
accurate estimation of the noise variance. However, we can observe that the performance
degradation is much more severe for the energy detector than that of the LE detector. At
μ = 0.2 dB the detection performance of the LE detector and the ER detector are on the same
level comparable, but the detection performance of the energy detection becomes too poor to
be useful. We also observe that the implementation complexity and accuracy tradeoff reflected
by the exact and approximate ROCs is affordable in practice. Finally, in Figure 11 we consider
the same sensing parameter setting as in Figure 5 with the exception that we now have 0.2 dB
uncertainty in the noise variance. By comparing this figure with Figure 5, we again observe
that the impact of noise uncertainty on the ER detector is negligible. However, the energy
detector fails in this case with the false alarm probability and the missed detection probability
approaching 1. Although the LE detector still works in the case, the performance degradation
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Fig. 10. Receiver operating characteristics under noise uncertainty: K = 4, N = 600,
SNR = −10 dB, μ = 0.2 dB.
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Fig. 11. Receiver operating characteristics under noise uncertainty: K = 8, N = 1200,
SNR = −15 dB, μ = 0.2 dB.

is non-trivial. We can see also that in this case the approximate ROC is able to capture the
detection performance almost exactly.
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5. Conclusion

In this chapter, we perform both non-asymptotic and asymptotic analysis on the performance
of the largest eigenvalue based detection. Analytical formulae have been derived for various
performance metrics in realistic spectrum sensing scenarios. It has been shown that the LE
detector is more efficient than the energy detector and the ER detector in terms of sample size,
number of sensors and SNR requirement. Our analytical framework has also been applied to
investigate the detection performance in the presence of noise uncertainty, where we conclude
that the superiors performance of the LE detector relies on the accurate estimation on the
noise power. From implementation perspective, we studied the computational complexity
and accuracy tradeoff which is resolved by the derived tight approximate ROC.
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The fast user growth in wireless communications has created significant demands for new wireless services in
both the licensed and unlicensed frequency spectra. Since many spectra are not fully utilized most of the time,
cognitive radio, as a form of spectrum reuse, can be an effective means to significantly boost communications
resources. Since its introduction in late last century, cognitive radio has attracted wide attention from
academics to industry. Despite the efforts from the research community, there are still many issues of applying
it in practice. This books is an attempt to cover some of the open issues across the area and introduce some
insight to many of the problems. It contains thirteen chapters written by experts across the globe covering
topics including spectrum sensing fundamental, cooperative sensing, spectrum management, and interaction
among users.
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