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1. Introduction 

Biological effects of exposure to different doses of ionizing radiation (IR) range from death 

within two days in case of high doses (>30 Gy) to various types of diseases such as cancers 

(due to gene mutations) in case of long-term exposure to sub-lethal doses (8-30 Gy). Further, 

IR-induced mutations when transmitted to the progeny can cause various types of cancer. 

At molecular level, IR results in double-strand breaks in DNA leading to loss of genetic 

material and cell death. To address the damaging consequences of exposure to radiation, 

recent research in radiation biology is focused on biological responses to IR in organisms 

showing resistance to high doses of ionizing radiation. For example, Deinococcus radiodurans, 

a bacterium that can survive radiation doses as high as 5,000 Gray can be potentially used 

for remediation of waste sites mixed with radioactive materials. However, investigation of 

radiation response in a higher eukaryotic organism that is resistant to high doses of ionizing 

radiation is desirable to offer treatment regimens to individuals exposed to IR in events of 

nuclear accidents. We propose here that mealybug (Planococcus lilacinus, Insecta; Coccoidea; 

Hemiptera) is an ideal model organism for studying responses to high doses of ionizing 

radiation. Among different organisms whose sensitivity to IR investigated so far, mealybug 

has been shown to tolerate radiation doses as high as 1100 Gy. Following exposure to such 

high doses, this insect has an extraordinary ability to survive and produce fertile offspring. 

Cytogenetic analysis of the embryos produced by irradiated parents showed that a number 

of tiny fragments of irradiated chromosomes are capable of metaphase alignment and 

anaphase segregation, suggesting that the centromere property is distributed throughout 

each chromosome. Taken together, mealybug has very efficient DNA repair machinery that 

ensures proper healing of double strand breaks induced by ionizing radiation. Because of 

the central role of telomeres in chromosome end-healing, the nature, distribution and 

maintenance of telomeric repeats in the mealybug were recently studied. Telomeric repeat 

has been shown to occur interstitially as well as at the ends of the mealybug chromosomes 

and telomerase which maintains these repeats is constitutively active. At radiation doses 

higher than 100 Gy, telomerase activity decreases, suggesting that telomerase-independent 

mechanisms may play a role in maintenance of telomeres. Based on these studies we 
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propose that in the mealybug, features such as diffuse centromere, constitutive telomerase 

activity and interstitial telomeres are components of machinery that confers resistance to 

high doses of ionizing radiation.  

2. Biological effects of ionizing radiation 

Ionizing radiation (IR) is a stream of high energy particles (such as electrons, protons or ǂ-
particles) or any of the short wavelength electromagnetic radiation (such as X-rays, Ǆ-rays or 
ultraviolet rays) that is capable of removing an electron from an atom or a molecule in the 
substance through which it passes. The most common biological effect of IR is ejection of an 
electron from water molecule, resulting in the formation of highly reactive species: 

 2H2O → e−+H2O+H2O*H2O* → .OH+.HH2O++H2O → .OH+H3O+ (1) 

In the reaction above, the dot before a radical indicates unpaired electron and * indicates an 

excited species. These free radicals are highly reactive and can alter other molecules in the 

cell (Reactor Concepts Manual, NRC). DNA is one such important target which can also be 

directly ionized by IR. Cells experiencing IR-induced DNA damage respond in different 

ways, depending on the extent of damage. In cases where the extent of DNA damage is 

minimal, the cells successfully repair the damaged DNA and as a result, there is no 

recognizable biological effect. At the other extreme is when the damage is severe, leading to 

a failure in the cells’ ability to repair the DNA and as a result, the cells undergo 

programmed cell death or apoptosis so that a potential damage from the entire tissue is 

prevented. In the middle of these two extremes are detectable DNA mutations that occur 

when repair results in a non-lethal DNA mutation that can be transmitted to the daughter 

cells produced during successive cell divisions and these mutations may induce cancer 

subsequently. A fourth possible consequence of exposure to IR is when cells experience 

irreparable DNA damage leading to replication and transcriptional errors that predispose 

their daughter cells to premature aging and cancer (reviewed in Maynard et al., 2009).  

2.1 Acute and chronic exposure to ionizing radiation 

Similar to the effects at cellular level, the biological effect of IR at the organismal level is also 
dependent on the severity of the dose received and the duration of exposure. Acute 
radiation exposure is usually for a short period of time but involves high dose of exposure 
as in case of nuclear explosions (instantaneous flashes), exposures because of handling of 
highly radioactive resources, accidents in laboratories or manufacturing units and high 
medical doses that could be either intentional or accidental. It is relatively more difficult to 
determine the effects of chronic exposure to IR and the results have been conflicting. For 
instance, based on studies on an Indian population that is exposed naturally to thorium-
containing monazite mineral in sand (1.5-3.0 roentgen per year), Kochupillai et al. (1976) 
reported higher prevalence of abortions, mental retardation, Down syndrome, chromosomal 
and chromatid abnormalities. However in a separate study, no significant difference was 
observed between the high-level exposed population and control population (Cheriyan et 
al., 1999). In addition, a recent report on mitochondrial DNA sequence analysis revealed that 
there is an increased rate of mitochondrial DNA mutations in the ‘exposed population’ than 
in the control population (Forster et al., 2002). Clearly more detailed studies are required to 
be done to conclusively associate genomic effects of chronic exposure to IR. 
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Exposure to high doses of IR has been associated with leukemia and cancers of thyroid, 
breast, bladder, colon, liver, lung, esophagus, ovarian, multiple myeloma, and stomach. 
There have also been suggestions that ionizing radiation exposure may cause cancers of 
prostate, nasal cavity/sinuses, pharynx and larynx, and pancreas (ICRP, 1991).  
Because of difficulties in interpretation of consequences of chronic exposure to low doses of 
IR (below 0.01 Gy), researchers depended mainly on models of the process by which lower 
doses of radiation causes cancer. Data on effects of exposure to IR at low but higher than the 
normal background levels gave mixed results on carcinogenesis or transgenerational effects, 
but were consistent with estimates of risk based on atomic bomb survivors (Cardis et al., 
2005). These results suggest that there is a small increase in chances of developing cancers 
among individuals exposed to low levels of IR for extended periods of time. A collection of 
reports on consequences of chronic and acute exposures to IR led to the linear dose-response 
model that suggests an increase in the risk to develop cancer with any increase in dose, 
however small. Agencies such as Nuclear Regulatory commission, Environmental 
Protection Agency, National Academy of Sciences Committee lent support to the linear no-
threshold model. According to this model, IR from background levels natural and man-
made resources) can cause cancer in ~ 1% of the exposed population (BEIR VII report). 

2.2 DNA damage due to exposure to IR 

IR-induced DNA damages include single strand and double strand breaks that are repaired 
by different DNA repair machineries. Single-strand breaks are repaired by the same 
enzymes that mediate base-excision repair. These include DNA glycosylase, AP- 
endonuclease, DNA polymerase ǃ and DNA ligase. Here, damaged nucleotides are excised 
and repaired using undamaged sequence from the complementary strand. Double-strand 
breaks are particularly hazardous because they create ‘sticky’ chromosome ends that cause  
 

 

Fig. 1. IR-induced double strand breaks cause fusion-bridge-breakage-fusion cycles. IR 
induced double strand breaks in sister chromatids result in sticky ends that fuse and form 
anaphase bridges. Because of the force generated by spindle fibres, the sister chromatids in 
the bridge break unevenly leading to abnormal chromosomes at the end of cell division. One 
chromosome would have extra copies and the other would have lost a portion of the parent 
chromosome. Note that the daughter chromosomes also have sticky ends and participate in 
the fusion-bridge-breakage cycles again. These cycles result in complex genomic 
rearrangements. 
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fusion-bridge-breakage-fusion cycles (McClintock, 1938; reviewed in deLange, 2005; Fig.1) 

and lead to genomic rearrangements leading to cell death or transformation. DNA double-

strand breaks can be repaired by non-homologous end joining (NHEJ; Moore & Haber, 

1996), microhomology-mediated end joining (MMEJ; Liang et al., 1996) and homologous 

recombination (HR; Lundblad & Blackburn, 1993). In NHEJ, single strands of DNA ends 

showing microhomology are recognized and joined. If these overhangs are compatible, 

repair is usually accurate. A protein called Ku is essential for NHEJ. Other proteins such as 

DNA ligase IV, XRCC 4 participate in the process. MMEJ also depends on microhomology 

among the overhangs of the broken fragments of the chromosomes to be joined but these 

microhomologies are ‘revealed’ by chromosome end resection and therefore MMEJ usually 

results in deletion of the DNA sequences between microhomologies. In Homologous 

recombination, on the other hand uses the undamaged DNA sequence that is identical or 

highly related to the DNA sequence that has been damaged. Sister chromatids (after G2 

phase) or a homologous chromosome (in G1 phase) serve as templates for recombination-

mediated repair. Recombination-mediated repair uses the same machinery that is used in 

the process of meiotic recombination. Homologous recombination has been shown to be the 

process involved in the recovery from exposure to high doses of ionizing radiation in the 

radio-resistant bacterium Deinococcus radiodurans (see below).  

3. Telomeres and sensitivity to IR 

Unlike the genomes of bacteria which are circular with no ‘exposed ends’, eukaryote 

genome exists as linear chromosomal DNA molecules. This linearity also poses a problem in 

the completion of DNA replication, leaving a 20 nucleotide ‘unfinished gap’ in the lagging 

strand. Successive cell divisions lead to progressive shortening of the 3’ ends of the 

chromosome ends. These ends of eukaryotic chromosomes are therefore ‘exposed’ and 

vulnerable to exonucleolytic attack yielding sticky ends which in turn mediate genomic 

rearrangements described above. In order to prevent loss of genetic material, and genomic 

rearrangements and, completion of replication at the chromosome ends, the ends of 

eukaryotic chromosomes are organized as telomeres (reviewed in Blackburn, 1991). 

Telomeres are specialized structures of DNA and proteins that have been characterized in a 

number of organisms. The nature of telomere-associated DNA sequences and the proteins 

associated with the telomeres are described in the next section. Telomere shortening was 

shown to result in increased sensitivity to ionizing radiation (Haber 1998; Ahmed & 

Hodgkin 2000). There is increasing evidence that enzymes involved in DSB repair also have 

a role at telomeres. Telomeres were shown to act as storehouses for proteins involved in 

DNA DSB repair (Ku70, Ku80, Sir2, Sir3, Mre11-RAD50-NBS1 complex) (Zhu et al. 2000). 

These proteins are relocated from telomeres to the damaged sites induced by IR (Martin et 

al. 1999; Mills et al. 1999). Genetic studies in Caenorhabditis elegans, yeast, and mice have 

shown that telomere shortening results in increased sensitivity to IR although DSB repair is 

unaffected (Haber 1998; Ahmed & Hodgkin 2000; Goytisolo et al. 2000). These results 

suggest a relationship between telomere length and sensitivity to IR. 

3.1 Telomere structure  

In several eukaryotes, telomeres are composed of simple tandem repeats at the end with 

complex subtelomeric repeats occurring next to these repeats (Blackburn 1991; Villasante et 

www.intechopen.com



 
Mealybug as a Model for Studying Responses to High Doses of Ionizing Radiation 105 

al. 2008; Kojima et al. 2002). However, there are exceptions to this general rule. In Bombyx 

mori where the insect-specific pentameric TTAGG repeat was first discovered (Okazaki et 

al. 1993), the telomeric repeats are interrupted by non-long terminal repeat retrotransposons 

such as SART and TRAS (Fujiwara et al. 2005), HeT-A, TAHRE, and TART elements are 

found at the chromosome termini in Drosophila (Mason & Biessmann 1995; Biessmann et al. 

1992; Levis et al. 1993) and complex long tandem repeats in the chromosome termini of 

Chironomus (Lopez et al. 1996). Studies in various insect species have suggested that 

TTAGG repeat is an ancestral motif in Arthropoda and that the TTAGG repeats might have 

originated from the TTAGGG repeats, also found at vertebrate telomeres (Sahara et al. 1999; 

Frydrychova et al. 2004; Vitkova et al. 2005). In some organisms, telomeres form structures 

called telomere loops or T-loops containing double-stranded DNA and a 3’ single-stranded 

G-rich DNA overhang that is important for telomere maintenance (Fig. 2). The single-

stranded DNA forms a circle and then disrupts a part of the double-stranded DNA in the 

telomere for base pairing with the C-rich strand, forming a displacement loop or D-loop 

(Griffith et al. 1999). The T-loop is held together by shelterin complex containing TRF1, 

TRF2, and POT1 that recognize TTAGG repeats and another three proteins TIN2, TPP1, and 

RAP1 that interconnect the first three proteins (reviewed in deLange 2005). 

 

 

Fig. 2. Structure of telomeric DNA. The G-rich overhang (blue) forms a circle and then 
disrupts base pairing with the C-rich strand forming a displacement loop. The T-loop is held 
together by the sheltrin complex containing proteins such as TRF1 and TRF2. 

3.2 Telomere maintenance  

In almost all organisms containing simple tandem repeats, telomeres are maintained by 
telomerase, an enzyme with reverse transcriptase property by which it mediates 
chromosome end-healing (reviewed in Blackburn 1991). This enzyme is induced soon after 
cells are exposed to ionizing radiation (reviewed in Crompton 1997). In humans, the 
telomerase contains two units each of reverse transcriptase (TERT), telomerase RNA (TR or 
TERC), and dyskerin (DKC1) (Cohen et al. 2007). TERT folds with TERC and forms a mitten-
like structure that allows the enzyme to wrap around the chromosomes to extend the 
telomeric repeats. Using the telomerase RNA that is complementary to the telomeric repeat 
unit, the reverse transcriptase subunit synthesizes multiple telomeric repeats by continuous 
elongation and translocation steps to produce a long single stranded DNA containing 
telomeric repeats (Fig. 3).  
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Fig. 3. Mechanism of elongation of telomeric repeats by telomerase. The RNA component of 
the telomerase pairs with the DNA to be extended and serves as a template for the 
elongation step. After elongation, there is a translocation step that brings the TERC to pair 
with the newly synthesized repeat unit to enable elongation again. Alternating elongation 
and translocation steps allows addition of multiple telomeric repeats.  

In addition to telomerase-dependent mechanisms of chromosome end-healing, eukaryotic 
cells possess end-healing mechanisms that are telomerase-independent and are collectively 
called as alternative lengthening of telomeres (ALT). ALT, which was first demonstrated 
using telomerase-null yeast mutants, has been shown to be dependent on RAD52 that 
encodes a homologous recombination protein (Lundblad & Blackburn 1993). Such 
recombination-mediated chromosome end-healing mechanisms have also been 
demonstrated in human cells (Dunham et al. 2000). Additional studies have shown that in 
some cells lacking telomerase, there was a rapid increase as well as a decrease of telomeric 
repeats, suggesting that ALT may involve recombination at the telomeres (Murnane et al. 
1994; Bryan et al. 1995). Unequal telomeric sister chromatid exchange and homologous 
recombination involving a damaged chromosome and an intact homologous chromosome 
have been proposed as the two mechanisms for recombination-mediated ALT (reviewed in 
Cesare & Reddel 2010). Unequal sister chromatid exchange results in two daughter 
chromosomes: one with longer telomeric repeats and another with shorter repeats. 
Preferential segregation of the chromosome with the longer telomeric repeats during cell 
division is expected, extending the cellular lifespan of one of the two daughter cells. 
Whereas there is no sufficient evidence for this model yet, down-regulation of homologous 
recombination promoting proteins such as the MRN complex (Jiang et al. 2005) and the 
SMC5–6 complex (Potts & Yu 2007) has been shown to result in telomere shortening, 
lending support to the homologous recombination model of ALT. NHEJ of two broken 
chromosomes, which does not involve recombination, is another telomerase independent 
mechanism that can restore chromosome integrity. In support of the evolutionary 
conservation of NHEJ as a means to maintain telomere integrity, a number of proteins 
involved in double-strand break DNA repair have also been shown to be involved in 
telomere maintenance (reviewed in Slijepcevic & Al-Wahiby 2005). 
Several lines of evidence suggest that telomerase is absent in Drosophila species (reviewed in 
Pardue & DeBaryshe 1999). Telomerase activity is also not detectable in B. mori (Sasaki & 
Fujiwara 2000), a Lepidopteran insect, in which pentameric TTAGG repeats occur at the 
chromosome ends (Okazaki et al. 1993). Recent studies on cloning and expression analysis 
of the telomerase reverse transcriptase subunit from B. mori suggest that the reverse 
transcriptase gene is poorly transcribed and may be the reason for undetectable levels of its 
enzymatic activity (Osanai et al. 2006). It is however suggested that telomerase activity, even 
weak, is necessary for maintenance of telomeres in the domestic silk worm. In Drosophila, 
telomere length appears to be maintained by retrotransposition involving HeT-A, TAHRE, 
and TART elements (Biessmann et al. 1992). A role for proteins involved in doublestrand 
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break (DSB) repair in telomere maintenance has been suggested from findings in which 
inactivation of proteins such as Ku, ATM results in telomere shortening (Boulton & Jackson, 
1998; Hande et al. 2001). From the description above, it is evident that insects have evolved 
different mechanisms of maintenance of telomeres and telomerase-dependent mechanisms 
are not indispensible for maintenance of genomic integrity.  

4. Model organisms for studying response to ionizing radiation 

As noted above, exposure to a radiation dose of > 10 Gy (1000 rads) results in 95-100% death in 
humans within two days to two weeks of exposure depending on the radiation dose. Similar 
levels of exposure (> 12Gy) is also lethal in mice. From the limited information available in 
other mammals, we can consider that a radiation dose of 20-30 Gy can result in certain death in 
most mammals. In order to obtain insights into biological responses to IR and mechanisms 
that may confer resistance to exposure to radiation a variety of in vitro models using cell lines 
and different organisms showing resistance to high doses of IR have been sought. One 
example is Deinococcus radiodurans, an extremophilic bacterium that can survive exposures of 
IR up to 5000 Gy with no loss of viability (Murray, 1992). Analysis of D. radiodurans response 
to IR showed that there are 4-10 copies of the genome per cell in this bacterium.  
Following exposure to IR, the bacterium is able to repair the DNA in 12-24 hours by 
reconnecting some chromosome fragments by a process called single-stranded annealing 
followed by homologous recombination (In: Clark et al. 2009). As a result, the entire genome 
is restored. Indeed homologous recombination and micro-homology mediated DSB repair is 
also observed in eukaryotes. It is however desirable that a eukaryotic multicellular organism 
that shows increased resistance to ionizing radiation is identified to study mechanisms 
conferring radiation resistance or a better response to ionizing radiation. Table 1 shows the 
lethal doses of IR in different eukaryotes. It is evident from the table that insects show a 
much higher level of resistance to IR than mammals. Among the three insect species shown, 
Braconidae show highest resistance. However, the nature of response has not been 
investigated either genetically or cytogenetically. Although the lethal dose has not been 
determined, Planococcus citri seems to be as resistant as Braconidae. It may also be noted that 
the radiation doses investigated in case of this insect are much higher than Drosophila. 
 

Species  Lethal Dose (in Gy) Taxonomic group 
Homo sapiens 10 Mammals 
Mus musculus 12 Mammals 
Daenio rerio 40 Fish 
Drosophila melanogaster 640 Insects 
Planococcus citri 1200* Insects 
Braconidae  1800 Insects 
Caenorhabditis elegans 800* Worms 
Escherichia coli 60 Bacteria 
Deinococcus radiodurans 15000 Bacteria 
Thermococcus gammatolerans 30000 Archaebacteria 

Table 1. Minimum lethal dose of IR in different organisms. * denotes that at the indicated 
dosage, the organism survives and reproduces. Information on lethal dose (expected to be 
higher) is not known. 
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4.1 Mealybug as a model for studying responses to IR 

The mealybugs (Planococcus species) are lecanoid coccids (Coccoidea; Homoptera) whose 
high degree of resistance to ionizing radiation has been investigated at both the cytological 
and genetical levels (Chandra 1963a, b). After exposure to radiation doses as high as 1200 Gy 
(120,000 rads), male insects not only survive but mate and reproduce to produce viable 
progeny. Cytological examination of the progeny obtained from such paternal irradiation 
revealed very small chromosome fragments that appear to retain their individual 
chromosome identity such as replication, metaphase alignment, and anaphase segregation. 
No apparently significant loss of genetic material was observed. These results suggest that 
the mealybug genetic system possesses very efficient DNA repair machinery that ensures 
protection of the many tiny chromosome fragments produced by irradiation and prevents 
from fusing to one another via rapid healing of broken chromosome ends. Because of these 
extraordinary features we propose that mealybug is an attractive model system to study 
mechanisms underlying resistance to high doses of IR.  

4.2 Telomeric repeats, their distribution and telomerase activity in unirradiated and 
irradiated mealybugs 

Because telomeric repeat lengths are critical for double-strand DNA repair and shortening 
of telomeric repeats is associated with increased sensitivity to IR, in a recent study, we 
examined the nature and distribution of telomeric repeats in the mealybug Planococcus 
lilacinus (Mohan et al. 2011).  
In order to isolate telomeric sequences from the mealybug, a polymerase chain reaction was 
conducted on genomic DNA using insect telomeric repeat (TTAGG)-specific primers  
(Fig.4A.). The PCR products obtained were cloned and sequenced to analyze the telomeric  
 

 

Fig. 4. Amplification and detection of TTAGG telomeric repeats in the mealybug 
Planococcus lilacinus. (A) Amplification of TTAGG sequences using (TTAGG)5 and 
(CCTAA)5 oligos. (B) Hybridization of metaphase chromosomes to a cloned TTAGG repeat 
sequence. The probe was labeled with digoxygenin (DIG) -UTP and hybridized to the 
chromosomes. Hybridization signals were detected using DIG-signal amplification kit. (C) 
Primed in situ hybridization of mealybug chromosomes with (CCTAA)5 oligos. The oligos 
were hybridized to the chromosomes and an extension reaction was carried out with Taq 
DNA polymerase and DIG-labeling nucleotide mix. Signals were detected as in (B).  
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repeat-associated sequences. Two categories of sequences were identified: (1) Tandem 
repeats of TTAGG ranging from 100-200 repeats and (2) sequences containing 5 to 15 
TTAGG repeats at the ends with a highly similar low-copy unrelated repeats of 400-450 bp. 
The unrelated low copy number repeats are interrupted by a variable number of TTAGG 
repeats. This sequence analysis suggested that whereas TTAGG repeats primarily occur at 
the ends of mealybug chromosomes, some of the repeats occur interstitially and are 
associated with certain low-copy repeats. Consistent with these two possibilities, FISH 
(fluorescent in situ hybridization) with a cloned TTAGG sequence (containing 96 TTAGG 
repeats) mainly hybridizes to the ends of mealybug chromosomes (Fig.4B) whereas primed 
in situ hybridization (PRINS) with TTAGG-specific oligos shows labeling at interstitial 
locations of the chromosomes (Fig.4C). Taken together, these results reveal a unique 
distribution of the telomeric repeats in the mealybug chromosome - they are distributed  
both terminally and interstitially. Because of this distribution, the interstitial telomeric 
repeats in this insect belong to the type I category in which short direct telomeric repeats 
interrupt precisely repetitive elements. Estimation by slot blot hybridization of different 
amounts of genomic DNA with (TTAGG)5 probes suggest that the TTAGG repeats 
constitute ~0.03% of the mealybug genome (220 Mb; Mohan et al, 2002) and there are about 
1275 TTAGG repeating units per each chromosome end. From these data, it may be noted 
that there is no significant difference in the length of telomeric repeats in the mealybug and 
other eukaryotic species and that resistance to high doses of IR is not due to unusual 
telomeric repeat lengths in this insect. To study the distribution of telomeric sequences in 
mealybug cells after exposure to IR, a series of experiments were performed in which gravid 
females (carrying embryos) were exposed to different amounts of IR, ranging from 30 Gy to 
300 Gy. Whereas the number of chromosomes/fragments detectable under the microscope 
is relatively less at 30Gy (average number of fragments is about 14), at 300 Gy, the number 
of chromosome fragments is high and not estimable because of their tiny size. However at a 
radiation dose of 70 Gy, we were able to obtain an average chromosome/fragment number 
of 20 per metaphase, providing an adequate number of DSBs (about 10) per cell. This 
number of newly generated chromosome ends therefore provides a reasonable platform to 
study the distribution of TTAGG telomeric repeats in the context of IR and their terminal 
versus interstitial occurrence.  
Analysis of chromosome fragments recovered after two days of exposure to a radiation dose 
of 70Gy by FISH showed that many of the chromosome ends induced by IR are labeled with 
the (TTAGG)96 probe (Fig. 5A). Whereas in unirradiated chromosomes there are 20 labeled 
ends, in irradiated chromosomes with an average of 40 chromosome ends, 29 ends were 
labeled with the probe. It may be noted that at least some of the unlabeled chromosome 
ends may have extended TTAGG repeats but these repeats may not be long enough to be 
detectable by the FISH probe. Taken together, these results suggest that there is an efficient 
generation of TTAGG repeats at the recovered ends following IR.  
To gain more insights into the origin of the telomeric signals in irradiated chromosomes, 
PRINS was performed on them. As shown in Fig. 5B, more than 95% of the ends of the 
irradiated chromosomes were labeled by PRINS. When the results in Fig. 5A and 5B are 
taken together, it is recognizable that there is an overlap in the signals between FISH and 
PRINS at half of the ends of irradiated chromosomes. It is also recognizable that there is a 
decrease in the number of interstitial signals in the irradiated chromosomes. Taken together, 
these results suggest that there is an extension of TTAGG repeats near the interstitial 
telomeric repeats that occur close to the DSBs induced by IR. It may be noted that there are 
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no additional telomeric or centromeric probes available at present to further clarify on the 
involvement of interstitial telomeric repeats in the generation of FISH-detectable signals at 
the radiation-induced chromosome ends. 
 

 

Fig. 5. Distribution of TTAGG telomeric repeat sequences in irradiated mealybug 
chromosomes. The chromosomes/chromosome fragments were subjected to FISH (A) and 
PRINS (B) as described in Fig.4. 

4.3 Telomerase activity in unirradiated and irradiated mealybugs  

For identification of components of machinery that maintains telomeric repeats in the 

mealybug, cell extracts were prepared from unirradiated and irradiated insects and 

telomerase assays were performed using TTAGG oligonucleotides as templates (Fig.6A and 

6B). RNase-treated cell extracts were used as negative controls. As an internal size control, 

an end-labeled 30-bp oligonucleotide was used The results shown in Fig. 6A suggested that 

in both unirradiated and irradiated insects, cell extracts produced ladder-like extensions of 

the TTAGG oligonucleotides which is suggestive of telomerase activity both prior to and 

after irradiation. However, we observed approximately six times more telomerase activity in 

inirradiated insects than in the unirradiated insects. As one would expect for telomerase 

activity which is RNA-dependent, RNase-treated cell extracts did not produce detectable 

extensions. We also compared the levels of telomerase activity in insects exposed to different 

doses of ionizing radiation (30–300 Gy; Fig. 6B). Whereas there is an increase in the 

telomerase activity with an increase in the radiation dose up to 60 Gy, at higher levels there 

was a reduction in telomerase activity, and at 300 Gy, the telomerase activity approaches to 

the levels that are lower than that the unirradiated insects. Taken together, our results 

suggested that unlike in other organisms where telomerase activity ceases in adulthood, the 

mealybug telomerase is constitutively active. Such constitutive activity of telomerase was 

also reported in cockroaches, which are also radiation-resistant (Sasaki and Fujiwara 2000). 

It may be also noted that lower telomerase activity at doses >60 Gy highlights the possibility 

of occurrence of chromosome end-healing mechanisms that are telomerase-independent 

such as MMEJ-, NHEJ- and homologous recombination-mediated repairs (discussed in the 

section below).  
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Fig. 6. Telomerase activity in mealybugs exposed to different doses of IR. (A). Telomerase 
activity in insects irradiated with a dose of 70 Gy is six-times the activity in unirradiated 
insects. (B) Progressive increase of telomerase activity was observed till 60 Gy. Exposure to 
higher doses was associated with a decrease in the level of activity. 

5. Possible mechanisms of genomic stability in mealybugs exposed to high 
doses of ionizing radiation 

From the results described here and the collection of prior data on the behavior of mealybug 

chromosomes after exposure to high doses of ionizing radiation, we suggest that there is 

highly efficient protection of radiation-induced chromosome ends that prevent the onset of 

fusion-bridge-breakage-fusion cycles and this machinery is excellently complemented by the 

centromere property in the mealybug chromosomes. As mentioned in the section 4.1, 

radiation-induced chromosome fragments which are very tiny and small, are capable of 

metaphase alignment and anaphase segregation. These results suggest that the centromere 

property is distributed throughout the chromosomes, or in other words the centromere is 

‘diffuse’. An obvious advantage of possessing diffuse centromere property is that there 

would not be a significant loss of genetic material among the collection of the chromosome 

fragments in the irradiated cells. These cells would be by and large viable and unless 

radiation-induced double strand breaks disrupt haplo-insufficient genes that are crucial for 

development or survival. Therefore, the combination of rapid chromosome end healing and 

diffuse centromere offer a great advantage to the mealybug in successful survival and 

reproduction upon exposure to high doses of IR.  

What are the advantages in possessing constitutively active telomerase? As noted above, 

telomerase-mediated extension of telomeric repeats is one of the different mechanisms that 

operate in presumably all eukaryotes with the exception of Diptera. The existence of 

www.intechopen.com



 
Current Topics in Ionizing Radiation Research 112 

telomerase even before irradiation in mealybugs provides an opportunity to extend 

telomeric repeats whenever required for maintenance an optimal length of telomeric repeats 

(which is higher than the critical length) at newly broken ends of irradiated chromosomes. 

Such maintenance of optimal length creates a high probability to restore the original 

chromosome in the presence of a radiation-induced chromosome double-strand break. It 

may be noted that in cells containing critically short telomeres, the number of unprotected 

chromosome ends is higher and as a result restoration of the original chromosome is more 

unlikely and results in genomic instability. An additional advantage in efficient 

maintenance of optimal number of telomeric repeats is the availability of sufficient number 

of binding sites for the DSB repair proteins per cell. In this context, interstitial telomeric 

repeats when they occur at DSBs have the potential to serve as templates for formation of 

new repeats as part of protection of newly formed chromosome ends. An alternative 

mechanism is ‘exposure’ of the interstitial repeats akin to the MMEJ-mediated search for 

homology/micro homology by resection.  

As discussed in section 4.3, telomerase activity decreases at doses higher than 60 Gy and at 

300 Gy, the activity in irradiated insects is lesser than unirradiated insects. It is therefore 

clear the telomerase-dependent mechanism of end-healing may not be efficient at higher 

doses that mealybugs have been shown to survive. Therefore at these doses, chromosome 

end healing mechanisms that are telomerase-independent should be functional. These 

mechanisms are collectively called as alternative mechanisms of telomere maintenance 

(ALT). As mentioned previously, non-homologous end joining (NHEJ), microhomology-

mediated end joining (MMEJ) and homologous recombination-mediated DNA repair are the 

three mechanisms which enable telomere maintenance. NHEJ and MMEJ, as mentioned 

before require microhomology between the damaged ends to be joined whereas 

homologous recombination requires a sequence homology from a homologous chromosome 

or a sister chromatid. In this context, it is conceivable that repeat sequences associated with 

the interstitial TTAGG repeats may play a role in one or more of the ALT pathways.  

6. Conclusion 

In summary, constitutively active telomerase, diffuse centromere and the unusual 

distribution of telomeric repeats together constitute components of efficient DNA repair 

machinery in the mealybug. In particular, interstitial telomeric repeats appear to be 

attractive candidate sequences that may help in the acquisition of additional telomeric 

repeats at DSBs either through telomerase-dependent or independent mechanisms. Direct 

cloning and analysis of healed chromosome ends induced by radiation and their comparison 

with ‘intact’ unirradiated homologs should shed more light on the role of interstitial 

telomeric sequences.  

Future research on the isolation and analysis of telomerase encoding genes should provide 

important insights on regulation of telomerase and mechanisms underlying telomerase-

dependent maintenance of telomeric repeats. A comparison of the DNA regulatory elements 

and analysis of the primary amino acid sequence should reveal any differences from the 

telomerase enzymes described in other insects. As in case of other eukaryotes, alternative 

lengthening of telomeres also appears to play an important role in the response to exposure 

to IR. In this context, isolation and analysis of isolation of genes involved in ALT pathways, 

their expression patterns and localization in cells following irradiation should provide more 
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insights in the chromosome end-healing and DNA repair mechanisms in the mealybug. For 

a better understanding of the nature of biological response to IR, experiments such as 

mRNA expression profiling, protein profiling and protein modification profiling in insects 

before and after exposure to high doses of IR should provide more insights into the 

mechanisms conferring radiation resistance to the mealybug. 
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