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1. Introduction 

Batch and continuous systems are of multivariable in nature. A multivariable system is 

one in which one input not only affects its own outputs but also one or more other 

outputs in the plant. Multivariable processes are difficult to control due to the presence of 

the interactions. Increase in complexity and interactions between inputs and outputs yield 

degraded process behavior. Such processes are found in process industries as they arise 

from the design of plants that are subject to rigid product quality specifications, are more 

energy efficient, have more material integration, and have better environmental 

performance. Most of the unit operations in process industry require control over product 

rate and quality by adjusting one/more inputs to the process; thus making multivariable 

systems. For example, chemical reactors, distillation column, heat exchanger, fermenters 

are typical multivariable processes in industry. In case of chemical reactor, the output 

variables are product composition and temperature of reaction mass. The input variables 

are reactant or feed flow rate and energy added to the system by heating/ cooling 

through jackets. Product composition can be controlled by manipulating feed rate 

whereas rate of reaction (thereby temperature) can be controlled by changing addition/ 

removal rate of energy. But, while controlling product composition, temperature is 

affected; similarly, while controlling temperature of reaction mass, the composition gets 

affected, thus, exhibiting interactions between input and output variables. Distillation is 

widely used for separating components from mixture in refineries. Composition of top 

and bottom products are controlled by adjusting energy input to the column. A common 

scheme is to use reflux flow to control top product composition whilst heat input is used 

to control bottom product composition. However, changes in reflux also affect bottom 

product composition and component fractions in the top product stream are also affected 

by changes in heat input. Hence, loop interactions occur in composition control of 

distillation column. Thus, unless proper precautions are taken in terms of control system 

design, loop interactions can cause performance degradation and instability. Control 

system design needs availability of linear models for the multivariable system. 

The basic and minimum process model for multivariable system is considered here as 2x2 
system. The outputs of the loops are given by 
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where yi are system outputs and ui are the system inputs, G is system transfer functions. 

Eqn (1) can be expressed as Py G u where 
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In order to achieve desired quality, specified output characteristics at the cost of spending 
optimum inputs one needs to design a controller and run the plant under closed loop so that 
optimal production of product under safe operation. The first thing we need is to select 
input-output pairs, i.e., which output should be controlled by which input? This needs 
knowledge in control structure selection or interaction analysis. In the next section, a brief 
state of art on interaction analysis is presented. 
Relative gain array (RGA) (Bristol 1966) is the most discussed method for analyzing 

interactions and it is based on steady state gain information of MIMO processes. Control 

loops should have input-output pairs which give positive relative gains that have values 

which are as close as unity as possible. It is dependent on process models, independent of 

scaling of inputs and outputs and can include all ways of pairing in a single matrix. 

Niederlinski index (NI) is a useful tool to analyse interactions and stability of the control 

loop pairings determined using process gain matrix. NI is found by the following formula, 
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 where each element of GP is rational and is openloop stable. The values of 

NI need to be positive. A negative value of NI will imply that the system is un-stable. Ni is 

used to check if the system (more than 2x2) is unstable or not. NI will detect instability 

introduced by closing the other control loops. Generally, NI is not used for systems with 

time delays. Any loop pairing is unacceptable if it leads to a control system configuration for 

which the NI is negative. But both RGA & NI do not provide dynamic information on the 

process transients. They do not give information on change in in/op pairing for instances 

when there is a sudden load disturbance. Singular value decomposition (SVD) is a useful 

tool to determine whether a system will be prone to control loop interactions resulting in 

sensitivity problems that rises from model mismatch in process gains. SVD considers 

directional changes in the disturbances. SVD is applied to steady state gain matrix that is 

decomposed into product of three matrices,  
TS U V  where U is matrix of normalized eigen vectors of T

PGG ,  is diagonal matrix of 

eigenvalues and V is matrix of normalized eigenvectors of T
P PG G The condition number 

(CN) is defined as ratio between maximum and minimum eigenvalues. Generally if the CN 
< 50 then the system is not prone to sensitivity problems (a small error in process gain will 
not cause a large error in the controller’s reactions). The greater the CN value, the harder it 
is for the system in question to be decoupled. An ideal system would have a CN number of 
one, where each control variable controls a single distinct output variable. CN value tells us 
how easy it is to decouple a system. Though SVD has good geometric interpretation in terms 
of selection of measurement and pairing of variables, SVD depends on input-output scaling. 
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Moreover, with weak interactions and with large dimensional systems they induce to go for 
more criteria for selection of pairs. Morari resiliency index (MRI) is also used to select in/out 

pairs.  ( )PMRI G j  where  is eigenvalue. The MRI is the minimum singular value (g) 

of the plant transfer function matrix G(iw). The set of  manipulated variables that gives the 
largest minimum singular value over the frequency range of interest is the best. The MRI is a 
measure of the inherent ability of the process (control structure) to handle disturbances, 
model plant mismatches, changes in operating conditions, etc. The larger the value of MRI, the 
more resilient the control structure. Dynamic Relative Gain Array (DRGA) is defined to extend 
the RGA notion to non-zero frequencies. The RGA provides only limited knowledge about 
when to use multivariable controllers and gives no indication of how to choose multivariable 
controller structures. A somewhat different approach for investigating channel interaction was 
therefore employed by Conley and Salgado (2000) and Salgado and Conley (2004) when 
considering observability and controllability gramians in so called Participation Matrices (PM). 
In a similar approach Wittenmark and Salgado (2002) introduced the Hankel Interaction Index 
Array (HIIA). These gramian based interaction measures seem to overcome most of the 
disadvantages of the RGA. One key property of these is that the whole frequency range is 
taken into account in one single measure. Furthermore, these measures seem to give 
appropriate suggestions for controller structures selection. The use of the system H2 norm as a 
base for an interaction measure has been proposed by Birk and Medvedev (2003) as an 
alternative to the HIIA. But, dynamic simulation is a powerful tool to be used to test the 
viability of a control scheme during various process disturbances. Controllers for MIMO 
systems can be of either multiloop (controllers are designed only for diagonal elements of 
process TF) or multivariable (controllers are designed for all the elements of the MIMO TF). 
Multiloop control scheme has an edge over multivariable as the former can work even if a 
single loop fails. In presence of interactions between input/output, the process need to be 
decoupled and then multiloop controllers can be designed. When interaction effects produce a 
significant deterioration in control system performance, decoupling control should be 
considered. One of the most powerful and simplest ways of reducing or eliminating 
interaction is by altering manipulated and / or controlled variables. Improvement of closed-
loop performance needs proper tuning of controller parameters that requires process model 
structure and estimation of respective parameters. There are many methods to select 
input/output pairs or to design control structures, design control strategy (either PID or IMC 
or predictive or heuristics etc.) and tuning of controller parameters in literature. But because of 
hazy pictures on above selections, till today, it is difficult to choose correct pairs, carryout 
interaction analysis and choose tuning rules. Thus the aim of this chapter is to bring out a clear 
picture of identifying process parameters and designing controller for MIMO systems. The rest 
of the chapter is carried out as follows: section 2 discusses identification methods of 
multivariable systems. Interaction analysis is explained in section 3. Control structure selection 
and determination of input/output pairs are given in section 4. Tuning of controllers is 
presented in section 5. Stability analysis for multivariable systems is provided in section 6. At 
the end, conclusion is drawn. 

2. System identification  

Most of the chemical and bio-chemical processes are multivariable in nature, having more 
than one input and outputs. Estimation of process parameters is a key element in 
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multivariable controller design. Thus, as better performance is achieved by model based 
tuning algorithms, estimation of model structures are necessary from either open-loop or 
closed-loop data. This is due to the fact that tuning rules are based on model structures & 
parameters. As their exist advantages and disadvantages in both of these identification 
strategies, for example, open-loop responses may show unstable behavior with certain 
inputs, whereas, closed-loop strategy needs more excitation to yield observable response. 
Here we use mostly used methods of identification for multivariable systems. Least square 
method (Tungnait 1998) is an old but reliable technique that was in use to estimate 
multivariable parameters of open-loop systems. But, MIMO systems with interactions may 
not yield satisfactory transfer function estimates with these techniques. Overschee and Moor 
(1994) proposed subspace method of identification that mostly applies to identification of 
multivariable state space models. This method involves more computational time. Practical 
industrial plants are easy to identify in closed-loop using relay feedback method (Astrom 
and Hagguland 1984) and Yu (1999) explains advances in autotuning using sequential 
identification. System identification is the method of estimating parameters from system’s 
input/output data using numerical techniques: 

2.1 Transfer function identification 

Model structures and parameters of transfer function are constructed from observed plant 
input output data. Transfer function models are developed using three schemes: (a) Least 
square (b) subspace and (c) sequential identification method. These approximations made 
out through each of the methods carry errors that propagate to controller tuning and in turn 
deteriorates the overall performance. 

2.1.1 Least-squares method 

Least-squares method, used to reduce the mean square error, is very simple and more 
numerically stable and can be used to identify the unknown parameters of the 2x2 MIMO 
transfer function model from the input (u) and output (y) data. Though any type of forcing 
function (step, pulses or a sequence of positive and negative pulses) can be used, a very 
popular sequence of inputs, “Pseudo-random binary sequence” (PRBS) is made use of in the 
present work. 
Let us consider a process with continuous transfer function 
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The pulse transfer function of this process with a zero-order hold is 
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where k
s

Dn
T

 ; Ts=sampling period; 
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The discrete transfer function has three parameters that need to be identified: dead time (D) 
contained in nk, and other two parameters of the model (kp and ) contained in b1, and a1. 
The discrete output can be represented in the following form: 

 1 1 2 2 1 1 2 2.... ....n n n nb n nb n n na n nay b u b u b u a y a y a y                (2.3) 

where ny  is the predicted value of the current output of the process. For a FOPDT process, 

equation (2.3) can be written as 

      1 11 1y k a y k b u k      (2.4) 

which can be written in matrix form as 

 y e     (2.5) 

where 
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The parameters a1 and b1 are calculated using  

   1
T T y      (2.6) 

where   is the parameter vector   is state matrix and y is outputs. 

2.2 State-space model 
In the state space form the relationship between the input, noise and output signals are 
written as a system of first-order differential or difference equations using auxillary state 
vectors. Transfer function in laplace domain is converted to state space form using a 
sampling period of 0.1s 

2.2.1 Subspace method 
The beginning of the 1990s witnesses the birth of a new type of linear system identification 
algorithms, called subspace method. Subspace identification methods are indeed attractive 
since a state-space realization can be directly estimated from input/output data without 
nonlinear optimization. Furthermore, these techniques are characterized by the use of robust 
numerical tools such as RQ factorization and the singular values decomposition (SVD). 
Interesting from numerical point of view, the batch subspace model identification (SMI) 
algorithms are not usable for online implementation because of the SVD computational 
complexity. Indeed, in many online identification scenarios, it is important to update the 
model as time goes on with a reduced computational cost. 
Linear subspace identification methods are concerned with systems and models of the form 

 1k k k kx Ax Bu w      (2.7) 
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 k k k ky Cx Du v     (2.8) 

with 

   p T T
q q pqT

p

w Q S
E w v

v S R
               

  (2.9) 

The vectors 1mx
ku R  and 1lx

ky R  are the measurements at time instant k of, respectively, 

the m inputs and l outputs of the process. The vector xk is the state vector of the process at 

discrete time instant k, 1lx
kv R  and 1nx

kw R  are unobserved vector signals, vk is called 

the measurement noise and wk is called the process noise. It is assumed that they are zero 

mean, stationary white noise vector sequences and uncorrelated with the inputs uk. 
nxnA R  is the system matrix, nxmB R  is the input matrix, lxnC R  is the output matrix 

while lxmD R  is the direct feed-through matrix. The matrices nxnQ R , nxlS R and 
lxlR R are the covariance matrices of the noise sequences wk and vk. 

In subspace identification it is typically assumed that the number of available data points 
goes to infinity, and that the data is ergodic. The main problem of identification is arranged 
as follows: 
Given a large number of measurements of the input uk and the output yk generated by the 
unknown system described by equations (2.7)-(2.9). The task is to determine the order n of 
the unknown system, the system matrices A, B, C, D up to within a similarity 
transformation and an estimate of the matrices Q, S and R. 
Subspace identification algorithms always consist of two steps: 
Step 1: Make a weighted projection of certain subspace generated from the data, to find an 

estimate of the extended observability matrix, i  and/or an estimate iX


of the state 

sequence iX of the unknown system 

Step 2: Retrieve the system matrices (A, B, C, D and Q, S, R) and from either this extended 

observability matrix ( i ) or the estimated states. 
 

 

Fig. 1. Flow chart of subspace algorithm. 
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All the above identification methods involve more computations and many offline methods. 
These difficulties can be avoided easily by using another method of estimation technique, 
namely, relay feedback method as explained below: 

2.3 Sequential identification 

Based on the concept of sequential auto tuning (Shen & Yu, 1994) method each controller is 

designed in sequence. Let’s consider a 2-by-2 MIMO system with a known pairing   1 1y u  

and  2 2y u  under decentralized PI control (Figure 1). Initially, an ideal / biased relay is 

placed between 1y  and 1u , while loop 2 is on manual (Figure 2a). Following the relay-

feedback test, a controller can be designed from the ultimate gain and ultimate frequency. 

The next step is to perform relay-feedback test between 2y  and 2u  while loop 1 is on 

automatic (Figure 2b). A controller can also be designed for loop 2 following the relay-

feedback test. Once the controller on the loop 2 is put on automatic, another relay-feedback 

experiment is performed between 1y  and 1u , (Figure 2c). Generally, a new set of tuning 

constants is found for the controller in loop 1. This procedure is repeated until the controller 

parameters converge. Typically, the controller parameters converge in 3 - 4 relay-feedback 

tests for 2 x 2 systems. 
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Fig. 2. Sequential method of tuning for 2x2 multivariable system. Steps are: (a) followed by 
(b) and followed by (c). 

In order to proceed with sequential identification, it is necessary to derive closed-loop 

transfer functions for the above mentioned schemes. The following notations will be used 

for 2-by- 2 MIMO system: 
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Thus, when perturbation is introduced in the second input u2, transfer functions for the 
input u2(s) are 
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By applying the above identification method to the 2nd loop (by collecting output y2 for the 

change in input u1), we can obtain models for Gp12,CL(s) and Gp22,CL(s). Then, we have 

           21
2 21, 1 1

22 21

p
p CL

p c

g s
y G s u s u s

g s G s
      (2.13) 

                   21 2 12
1 11, 1 11 1

22 21

p c p
p CL p

p c

g s G s g s
y s G s u s g s u s

g s G s

        (2.14) 

R1  

(c)

G11

G21

G12

G22

Y1

Y2 

u1

u2

Contro

Relay 

R2

www.intechopen.com



 
Identification and Control of Multivariable Systems – Role of Relay Feedback 

 

113 

From the identified step response models of Gp12,CL(s) and Gp22,CL(s), we can obtain their 
frequency response data and, by fitting them, we can get approximate low order models. 
Time domain modeling is obtained using equations (2.15) and (2.16) for 2x2 and 3x3 MIMO 
process with FOPDT models using relay feedback test as: 
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  (2.16) 

2.4 Process dynamics of example under study  

Wood and Berry (1973) (WB) reported a column for methanol-water separation with transfer 
function as given below 
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 (2.17) 

The compositions of top (xD) and bottom (xB) products expressed in wt% of methanol are 

controlled variables. The reflux (L) and the reboiler (V) steam flow rates are the manipulated 

inputs are expressed in lb/min. time constants are in minutes. Feed flow rate is disturbance. 

Here the input variables are liquid (L) and vapour (V) flow rates (where as feed (F) flow rate 

is the load); outputs are distillate (xD) and bottom (xB) compositions. This plant given by 

Eq.(2.15) is considered as actual or real plant-model in present work. 

On applying least square algorithms to individual transfer function elements of an 
unknown 2x2 MIMO process (WB column) the estimated transfer function is obtained as 
shown in Table 1.The output (y) and input data (to original WB plant transfer function) are 
used to form matrix. The parameters a1 and b1 were calculated using Eq.(2.6). 
On applying subspace algorithms to an unknown 2x2 MIMO process (WB column) the 
following steps are followed 
Step 1: From the transfer function matrix State space representation matrices are calculated. 
Step 2: A, B, C and D matrices are simulate to get output data for a random input signal. 
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Step 3: From the output and input data Henkel matrix are formed and LQ decomposition 
method is used to spilt the matrix 
Step 4: Then Singular value decomposition method is used to estimate A, B, C and D 
matrices. 
Step 5: From estimated matrices the transfer function were found. 
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Fig. 3. Comparison of responses between actual (solid) and identified (Sequential 
identification, dashed line) models of WB column 

Mostly, the purpose of identification of transfer functions is to design controller for the 

system in order to achieve desired performance. Three methods of identifications (two in 

openloop mode and the other in closed-loop mode) are used to identify the two-input-two-

output process, WB column. Least square and subspace methods have been used to identify 

the process in openloop and sequential identification technique is used to estimate the 

process in closedloop. 
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The identified models and actual plant model are compared (Table-2.1). It is found that 
subspace identification method gives better result/  
 

ACTUAL WB 

COLUMN 
ESTIMATED TRANSFER FUNCTION 
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Table 2.1. Actual and estimated multivariable transfer functions using different methods 

After identifying the model structures and estimating process parameters of the models, 
next work is to select a suitable control strategy for the process. 

3. Different control strategies 

MIMO systems came into use in chemical industries as the processes were redesigned to 
improve efficiency. Multivariable control involves the objective of maintaining several 
controlled variables at independent set points. Interaction between inputs and output 
cause a manipulated variable to affect more than one controlled variable. The various 
control schemes studied here are the decentralized, centralized and decoupled systems. In 
decentralized structure, diagonal controllers are used. Hence they result in systems 
having n controllers. The centralized control systems have n x n controllers. In decoupled 
systems the process interactions are decoupled before they can actually reach and affect 
the processes. 

3.1 Centralized structure 

Centralized control scheme is a full multivariable controller where the controller matrix is 

not a diagonal one. The decentralized control scheme is preferred over the centralized 

control scheme mainly because the control system has only n controlling n output variables, 

and the operator can easily understand the control loops. However, the design methods of 

such decentralized controllers require first pairing of input-output variables, and tuning of 

controllers requires trial and error steps. The centralized control system requires n x n 

controllers for controlling n output variables using n manipulated variables. But if we are 

calculating the control action using a computer, then this problem of requiring n x n 

controllers does not exist. The advantage of the centralized controller is easy to tune even 

with the knowledge of the steady state gain matrix alone, multivariable PI controllers can be 

easily designed. 

For the centralized structure, Internal model control-proportional integral tuning is adopted, 

based on  studies on the studies and recommendations of Reddy et al (1997) on the design of 

centralized PI controllers for a Multi-stage flash desalination plant using Davison, 

Maciejowski and Tanttu-Lieslehto methods.  

The IMC-PID tuning relations are used in tuning the controller. For a first order system of 

the form  1

Ds
pk e

s

 , the PI controller settings are as follows: 
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 c
p

k
k


   (3.1) 

 i    (3.2) 

where  max 1 /0.7 ,0.2D   

These tuning relations are derived by comparing IMC control with the conventional PID 
controller and solving to determine the proportional gain and integral time. 

3.2 Decentralized structure 

In spite of developments of advanced controller synthesis for multivariable controllers, 
decentralized controller remain popular in industries because of the following: 
1. Decentralized controllers are easy to implement. 
2. They are easy for operators to understand. 
3. The operators can easily retune the controllers to take into account the change in 

process conditions. 
4. Some manipulated variables may fail. Tolerances to such failures are more easily 

incorporated into the design of decentralized controllers than full controllers. 
5. The control system can be bought gradually into service during process start up and 

taken gradually out of service during shut down. 
The design of a decentralized control system consists of two main steps: 
Step 1 is control structure selection and step 2 is the design of a SISO controller for each 
loop. 
In decentralized control of multivariable systems, the system is decomposed into a number 
of subsystems and individual controllers are designed for each subsystem.  
For tuning the controller, Biggest Log Modulus Tuning (BLT) method (Lubed 1986) is used, 
which is an extension of the Multivariable Nyquist Criterion and gives a satisfactory 
response. A detuning factor F (typical values are said to vary between 2 and 5) is chosen so 
that closed-loop log modulus, Lcmmax >= 2n, 

 20log
1

cm

w
L

w
    (3.3) 

  1 det p cw I G G      (3.4) 

where Gc is an n x n diagonal matrix of PI controller transfer functions, Gp is an n x n matrix 
containing the process transfer functions relating the n controlled variables to n 
manipulated variables. 
Now the PI controller parameters are given as, 

 ciZ N
ci

k
k

F
   (3.5) 

 Ii IiZ NF      (3.6)     

where ciZ Nk   and IiZ N   are Zeigler-Nichols tuning parameters which are calculated from 

the system perturbed in closed loop by a relay of amplitude h, reaches a limit cycle whose 
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amplitude a and period of oscillation P, are correlated with the ultimate gain (ku) and 
frequency (wu) by the following relationships: 

 
4

u

h
k

a   (3.7) 

 
2

u
uP

    (3.8) 

Detuning factor F determines the stability of each loop. The larger the value of F, more 
stable the system is but set point and load responses are sluggish. This method yields 
settings that give a reasonable compromise between stability and performance in 
multivariable systems. 
The decentralized scheme is more advantageous in the fact that the system remains stable 
even when one controller goes down and is easier to tune because of the less number of 
tuning parameters. But however pairing (interaction) analysis  needs to be done as n! 
pairings between input/output are possible. 

3.3 Decoupled structure 

This structure has additional elements called decouplers to compensate for the interaction 
phenomenon. When Relative gain Array shows strong interaction then a decoupler is 
designed. But however decouplers are designed only for orders less than 3 as the design 
procedure becomes more complex as order increases. 
The BLT (Luyben 1986) procedure of tuning the decentralized structure follows the 
generalized way for all n x n systems as mentioned above. The centralized controllers are 
tuned using the IMC-PI tuning relations which are appropriately selected for first order and 
second order systems. 
The decoupled structure adopts the various methods like partial, static and dynamic 
decoupling to procedure the best results. The design equations for a general decoupler for n 
x n systems are conveniently summarized using matrix notations defined as follows: 

11
11 1 11 1

22
1 1

( ) ... 0
( ) ( ) ( ) ( )

; ; ... ( ) ...
( ) ( ) ( ) ( )

0 ... ( )

n n

n nn n nn
nn

H s
G s G s D s D s

G D H H s
G s G s D s D s

H s

                   
 

Transfer function matrix; Decoupler matrix; Diagonal matrix of decoupler 

1

...

n

u

u

u

      
 ;                                      

1

...

n

M

M

M

      
;                                          

1

...

n

C

C

C

      
           

  Manipulated variable (new)         Manipulated variable (old)                          Output 
For a decoupled multivariable system, output can be written as 

 C GM   (3.9) 

 M Du  (3.10) 
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The equation (3.10) becomes, 

 C GDu    (3.11) 

The equation (3.11) becomes, 

 C Hu    (3.12) 

where, 

  GD H   (3.13) 

or  

 1D G H   (3.14) 

which defines the decoupler 
For a 2 x 2 system, equations are derived for decouplers, taking that loop and the other 
interacting loops into account. 

3.4 Examples 
3.4.1 Centralized controller 

A first order plus dead time process with 1pk  , 1p   and 0.25pD   is chosen for 

simulation study. The controller is designed with a first order filter with 1.4286  , 0.7ck   

and 1I  . Closed loop responses with the present controller are obtained. The results are 

shown below: 
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Fig. 4. Closed-loop response of example -processes using PID controller 

www.intechopen.com



 
Identification and Control of Multivariable Systems – Role of Relay Feedback 

 

119 

3.4.2 Decentralized controller 

The wood and berry distillation column process whose transfer function 

 

3

7 3

12.8 18.9

16.7 1 21 1

6.6 19.4

10.9 1 14.4 1

s s

s s

e e

s s

e e

s s

 

 

        
  

is chosen for simulation study. The controller is designed using BLT method with F=2.55, 

1 0.375ck  , 1 8.29I   (loop 1 controller settings) and 2 0.075ck   , 2 23.6I  (loop 2 

controller settings). With these settings, the closed loop responses are obtained and are 
shown below. 
 

 

Fig. 5. Closed-loop response with BLT tuning for WB -Column using PID controller (solid 
line is loop 1 response and dashed line is loop 2 response) 

3.4.3 Decoupled PID controller 

The Wood and Berry binary distillation column is a multivariable system that has been 
studied extensively. The process has transfer function 

 

3

7 3

12.8 18.9

16.7 1 21 1

6.6 19.4

10.9 1 14.4 1

s s

s s

e e

s s

e e

s s

 

 

        
. (3.15) 

The decoupler is given by  
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            22 121

21 22

0 01
0

0 0det 0

g g
D G

g gG
         (3.16) 

 1 19.4 18.91
0

6.6 12.8123.58
D G          

0.15698 0.15293

0.0534 0.1035
D

      

The transfer function of the statistically decoupled system is given by  

 Q GD  or  1 0Q GG  (3.17) 

3

7 3

12.8 18.9
0.15698 0.1529316.7 1 21 1
0.0534 0.10356.6 19.4

10.9 1 14.4 1

s s

s s

e e

s sQ
e e

s s

 

 

             
 

4. Input-output pairing 

Many control systems are multivariable in nature. In such systems, each manipulated 
variable (input signal) may affect several controlled variables (output signals) causing 
interaction between the input/output loops. Due to these interactions, the system becomes 
more complex as well as the control of multivariable systems is typically much more 
difficult compared to the single-input single-output case. 

4.1 The Relative Gain Array analysis 

The RGA is a matrix of numbers. The i jth element in the array is called ij . It is the ratio of 

the steady-state gain between the ith controlled variable and the jth manipulated variable 
when all other manipulated variables are constant, divided by the steady-state gain between 
the same two variables when all other controlled variables are constant. 

 k

k

i

j m
ij

i

j y

y
m

y
m


       

  (4.1) 

For example, suppose we have a 2 X 2 system with the steady-state gains pijk  

 1 11 1 12 2p py k m k m   (4.2) 

2 21 1 22 2p py k m k m   

For this system, the gain between y1 and m1 when m2 constant is 
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2

1
11

1
p

m

y
k

m
      

The gain between y1 and m1 when y2 is constant (y2 = 0) is found from solving the equations 

1 11 1 12 2p py k m k m   

21 1 22 20 p pk m k m   

21 1
1 11 1 12

22

p
p p

p

k m
y k m k

k
       

 
11 22 12 21

1 1
22

p p p p

p

k k k k
y m

k

       (4.3) 

 
2

11 22 12 211

1 22

p p p p

y p

k k k ky
m k

             (4.4) 

Therefore the term 11  in RGA is  

 11
12 21

11 22

1

1
p p

p p

k k

k k

 


   (4.5) 

Example: Calculate 11  element of RGA for the wood and berry column 

12.8 18.9

6.6 19.4pk
      

11
12 21

11 22

1 1
2.01

( 18.9)(6.6)
11

(12.8)( 19.4)
p p

p p

k k

k k

    
 

4.2 Singular Value Decomposition 

SVD is a numerical algorithm developed to minimize computational errors involving large 
matrix operations. The singular value decomposition of matrix K results in three component 
matrices as follows: 

 Tk U V    (4.6) 

where K is an n x m matrix. U is an n x n orthonormal matrix, the columns of which are 
called the ‘left singular vectors’. V is an m x m orthonormal matrix, the columns of which 

are called the ‘right singular vectors’.   is an n x m diagonal matrix of scalars called the 

“singular values” 
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SVD is designed to determine the rank and the condition of a matrix and to show 
geometrically the strengths and weaknesses of a set of equations so that the errors during 
computation can be avoided. 

4.2.1 Example 

Consider a very simple mixing example, a multivariable process whose gain matrix is as 
follows: 

0.7778 0.3889

1.0000 1.0000
k

       

which decomposes to 

0.2758 0.9612

0.9612 0.2758
U

      

0.8091 0.5877
0.8091

0.5877 1.0000
V

      

1.4531 0

0 0.8029

       

At this point these singular values and vectors are merely numbers; however, consider the 

relationship between these values and an experimental procedure that could be applied to 

measure the steady-state process characteristics. 

4.3 Niederlinski index 

A fairly useful stability analysis method is the Niederlinski index. It can eliminate 

unworkable pairings of variables at an early stage in the design. The controller settings need 

not be known, but it applies only when integral action is used in all the loops. It utilizes only 

the steady state gains of the process transfer function matrix. The method is necessary but 

not the sufficient condition for stability of a closed loop system with integral action. If the 

index is negative, the system will be unstable for any controller settings. If the index is 

positive, the system may or may not be stable. Further analysis is necessary. 

 
1

Niederlinski index NI
p

N
j pjj

Det k

k
        (4.7)  

where,  kp is a matrix of steady state gains from the process openloop transfer function 
             kpjj is the diagonal elements in steady state gain matrix 
Example: Calculate the Niederlinski index for the wood and berry column: 

12.8 18.9

6.6 19.4pk
      
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       1

12.8 19.4 18.9 6.6
NI 0.498

12.8 19.4

p

N
j pjj

Det k

k
          (4.8) 

Since NI is positive, the closed loop system with the specified pairing may be stable.  

4.4 Gramian based interaction measures 

In 2004, Salgado and Conley investigated the channel interaction by considering 
controllability and observability gramians so called participation matrix. Similarly, 
Wittenmark and Salgado (2002) introduced Hankel Interaction Index array. These gramian 
measures namely HIIA, PM overcome the disadvantages of RGA. One key property of these 
is that the whole frequency range is taken into account in one single measure. Interaction 
measures recommend the input-output pairings that result in the largest sum when adding 
the corresponding elements in the measure. HIIA and PM give appropriate suggestions for 
decentralized multivariable controller. 
The controllability Gramian, P, defined for stable time-invariant systems as 

 
0

TA T AP e BB e d       (4.9) 

If P has full rank, the system is state controllable. 
A stable system will be state observable if the observability Gramian, Q, defined as 

 
0

TA T AQ e CC e d       (4.10) 

If Q has full rank, the system is state observable 
These Gramians can be obtained by solving the following continuous time Lyapunov 
equations: 

 
0

0

T T

T T

AP PA BB

A Q QA C C

  
      (4.11) 

Hankel singular values with controllability and observability gramians P and Q is given by 

 ( )i
H i                       1,2,.......i n   (4.12)                      

The Hankel norm of the system with the transfer function G is 

  (1)
maxHH

G PQ     (4.13) 

Hankel interaction index array 

The normalized version is the HIIA given by 

   ij
H

H ij
kl kl H

G

G
     (4.14) 
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Participation matrix 

Hankel norm is the largest singular values. For elementary SISO subsystems with several 

HSVs it can be argued that a more relevant way of quantifying the interaction is to take into 

account all of the HSVs, atleast if there are several HSVs that are of magnitudes close to 

maximum HSV. 

Each element in PM is defined by  

     j i

ij

tr P Q

tr PQ
    (4.15) 

 j itr P Q  is the sum of squared HSVs of the subsystems with input and output. 

 tr PQ  equals the sum of all  j itr P Q  

Gramian based interaction measures are calculated and these values for benchmark 2-by-2 
MIMO process is given in table 4.1. 
 

2X2 MIMO 
PROCESS 

HIIA PM 

WB 
0.2218    0.3276 
0.1144    0.3362 

0.1741    0.3796 
0.463 0.4000 

Table 4.1. HIIA and PM for benchmark 2-by-2 MIMO process 

5. Tuning of controller 

Consider a process with transfer function  
1

pD s
p

p
p

k e
G s

s


  . This transfer function has two 

parts. One invertible: pG   and the other containing non-invertible part pG  (time delay or 

right half plane zero that gives non-minimum phase behaviour). The IMC controller can be 

expressed as: 
1IMC

c
p

G
G   where 

1

p
p

p

k
G

s    and pD s
pG e

  . 

Let us consider the desired closed loop response as    1 1

pD s
pGy e

R s s 
     which can be 

equated to complimentary sensitive function as
1

true
c p

true
c p

G Gy

R G G
  . Thus the true controller 

can be expressed as: 

  
1

11

IMC
ptrue c

c
IMC p

c
d

GG
G

y s GG
R




       
  (5.1) 
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The right hand side of this equation can be written or rearranged to 

  
1

1 p

ptrue
c D s

G
G

s e

       (5.2) 

In fact, the standard form of a PID controller can be given as 

 
 true

c

f s
G

s
   Or  

       1

1 1
true

c

s f s s
G

s s s s

 
 
    where D     (5.3) 

This true controller can be expanded near the vicinity of s=0 using Laurent series as 

               2
' ''1 1

... 0 0 0 ...
1 1 2!

j
true

c j
j

s
G s c s s

s s s s
   




                   (5.4) 

By comparing the coefficients of s in equation (5.4) with the standard PID controller, we get 
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where  
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  (5.6) 

The method described in earlier section is applied to some standard transfer functions and 

the comprehensive results are presented in Table 5.1 and selection of  is given in Table 5.2. 

Detailed analysis on synthesis of PID tuning rules can be seen in Panda (2008 & 2009). 

Example 5.1: The wood and berry binary distillation column is a multivariable system that 

has been studied extensively. The process has transfer function  
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7 3
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16.7 1 21 1

6.6 19.4
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e e
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        
.  (5.7) 

The closed loop response is given in Figure 5.1. 
Example 5.2: The transfer function of multiproduct plant distillation column for the 

separation of binary mixture of ethanol-water (Ogunnaike-Ray (OR) column) is given by 

www.intechopen.com



 
Introduction to PID Controllers – Theory, Tuning and Application to Frontier Areas 

 

126 

 

2.6 3.5

1 3 3 1.2

2

3 9.2 9.4

0.66 0.61 0.0049
    

6.7 1 8.64 1 9.06 1

2.36 2.3 0.01
       

5 1 5 1 7.09 1

34.68 46.2 0.87(11.61 1)
  

8.15 1 10.9 1 (3.89 1)(18.8 1)

s s s

s s s

s s s

e e e

s s s
y

e e e
y

s s s
y

e e s e

s s s s

  

  

  

                   
   

1

2

3

u

u

u

              

  (5.8) 

The closed loop response is given in Figure 5.2. 
 

 

Table 5.1. Analytical expressions for PID controller parameters for standard transfer 
functions 

 

 FOPDT SOPDT IPDT 

PI  max 1.7 ,0.2p pD    max 0.25 ,0.2p pD   =DP10 

PID  max 0.25 ,0.2p pD    max 0.25 ,0.2p pD   =DP10 

Table 5.2.   selection rule 

6. Stability analysis 

6.1 INA and DNA methods 

Rosenbrock extended the nyquist stability and design concepts to MIMO systems containing  
significant interaction. The methods are known as the inverse and direct Nyquist array (INA 
and DNA) methods. As an extension from the SISO nyquist stability and design concepts, 
these methods use frequency response approach. These techniques are used because of their 
simplicity, high stability, and low noise sensitivity. In actual applications, there will be a 
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region of uncertainty for interaction, as the process transfer function can be different from 
what was used in the controller design (due to modeling errors and process variations). 
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Fig. 5.1. Closed-loop responses (a: Loop-1 and b: Loop-2) to setpoint changes of example 
(5.1) -processes using PID controller 
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6.2 Nyquist Stability Theorem 

Suppose that  G s  is an n x n system with a decentralized control system 

      1 ,....., nC s diag c s c s  and that the matrix,    1 G s C s , is column diagonally 

dominant on the nyquist contour, i.e. 

        1 ll l l lg s c s R s c s   (6.1) 

where  

    
1, 1

n

l kl
k k

R s g s
 

   (6.2) 

for 1,2,........,l n  and for all s on the Nyquist contour 
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Fig. 5.2. Closed-loop responses (a: loop-1; b: loop-2 and c: loop-3) to setpoint changes of 
example 5.2 -processes using PID controller 
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6.3 INA design methodology 

The following is the design procedure for the INA technique: 

1. Obtain  G s  and calculate its inverse,  G s


. 

2. Select an appropriate frequency range; usually 0 c   , where c is the frequency 

above which the response is certain to become and remain negligible. 

3. Obtain the inverse nyquist array, which is the 2m nyquist diagrams of the elements of 

 G s


. 

4. Design compensators, which transform the non dominant  G s


 to a diagonally 

dominant. 
5. To verify dominance, calculate the appropriate gershgorin circles for the diagonal 

elements of the INA at various frequencies. The size of the gershgorin circles 
measures the importance of off-diagonal (interacting) elements relative to diagonal 
elements.  

6. The INA and gershgorin bands provide the amount of gain that may be applied to each 
of the loops without violating the stability requirement. 

6.4 Example 

Johansson and Koivo designed a multivariable controller for a boiler subsystem where the 
boiler was a 1.6MW water boiler using solid fuel. Significant interaction was present 
between the loops in the subsystem, which consisted of the boiler underpressure and flue 
gas oxygen content as outputs with damper position and motor speed of the secondary 

blower as associated inputs. The output vector is  1 2
T

y y y where y1 is the normalized 

boiler underpressure and y2 is the percentage flue gas oxygen content. The input vector is 

 1 2
T

u u u where u1 is the damper position (%) and u2 is secondary blower speed (rpm). 

The dynamics of the subsystem were determined from step response experiments. First 
order plus dead time responses were obtained, which produced the transfer function 
matrix: 

    
2

10

1

(10 1) 10 1

0
(60 1)

s

s

e

s s
G s

e

s


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         
 (6.3) 

The response of the flue gas oxygen content to step change in damper position was very 

slow and small in amplitude; therefore g21(s) was taken as zero. However, the secondary 

blower speed, u2, affects both outputs. 

The inverse of G can be written immediately as: 

 
2 12
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e s e s
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Consider the g11 element, first replace s with jw which produces: 

 2 (10 1)se s  = 2 (10 1)je j    (6.5) 

Using Euler’s relation, 

 2 (10 1) (10 sin 2 cos2 ) ( 10 cos2 sin 2 )je j j               (6.6) 

Consider w=0, g11(0)=-1 
To compute the radius, g12(w) is calculated as: 

   12 (cos12 60 sin 12 ) (60 cos sin 12 )g j            

Recall that the magnitude of a complex number is the square root of the sum of real part 
squared and the imaginary part squared. Therefore, g12(0) =1 
A constant pre-compensator was designed to obtain dominance. This was 

 
1 1

0 1
k

      (6.7) 

7. Conclusion 

Thus in this chapter, it was found that least square and subspace methods have been used to 

identify process in open loop and sequential identification technique is used to estimate the 

process in closed loop. And the decentralized controllers are tuned using BLT method 

results in a stable controller. Finally, all the interaction tools are discussed as well the 

stability of the MIMO processes. The IMC-PID tuning rule suggested in this article yields 

fast and robust responses. 

The following step-by-step procedure may be employed to solve a multi-variable control 

problem: 

1. Choose an appropriate pairings of controlled and manipulated variables, by interaction 

analysis. 

2. If interaction is modest, one may consider SISO controllers for the multi-variable 

system. 

3. If interaction is significant, it may be possible to use decouplers to reduce interaction in 

conjunction with PID-type controllers. 

4. An alternative to steps 2 and 3 is to use a full multi-variable control technique that 

inherently compensates for interactions. 

Based on the concept of sequential identification-design, an approach for the automatic 
tuning of multivariable systems is discussed. Several system identification methods like 
subspace identification, least squares, relay feedback methods are used to determine 
dynamic parameters of a specific model structure from plant data (real time). 
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