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1. Introduction  

Arithmetic operation such as addition, multiplication, division and inversion are widely used in 
data communication systems, coding and cryptography particularly public key cryptography.  

Since 1976, when the principles of public key cryptography were introduced (by Whitfield 
Diffie and Martin Hellman) (Diffie & Hellman 1976), RSA was the most well-known public 
key cryptographic system. Rivest, Shamir and Adleman (RSA) algorithm composes a public 
key considered sufficiently long enough to be recognized as secure. The security of RSA is 
based on difficulty of factoring large numbers to its prime components. For many years, 
RSA was the leading method for industrial encryption. RSA cryptographic algorithm 
includes addition, squaring and multiplication operations. Addition and squaring are two 
simple operations over finite fields; hence, the most important arithmetic operation for RSA 
based cryptographic systems is multiplication.  

With the advances of computer computational power, RSA is becoming more and more 
vulnerable. In 1985, Victor S. Miller (Miller 1985) and Neal Koblitz (Koblitz 1987) proposed 
Elliptic Curve Cryptography (ECC), independently. ECC offer higher security in compare 
with RSA.  

The security of ECC relies on the difficulty of solving Elliptic Curve Discrete Logarithm 
Problem or ECDLP.  So far not any efficient method has been offered to solve ECDLP and its 
complexity is higher than factoring large numbers to its prime components (where the security 
of RSA relies on that). Hence, ECC can offer higher security with smaller key size and designers 
can use it to save storage space, consumed power in the circuit and increase the bandwidth.  

Elliptic Curve Cryptographic algorithm includes addition, squaring, multiplication and 
division (or inversion). Many research and studies have been done on multiplication. 
However, division and inversion research are becoming more relevant to cryptographic 
systems. In the terms of implementation area, complexity and executing time; division (or 
inversion) is the most costly operation in public key cryptography. For many years 
hardware implementations of division or inversion were an ambitious goal. However, 
recent advances in technology of ASIC circuits and the ability to provide high capacity 
FPGAs, let circuit designers to achieve this goal.  

In this chapter we study two main classes of proposed algorithms for division (and 
inversion). The first class of dividers is based on Fermat’s little theorem. This class of 
dividers also called as multiplicative based dividers. In the next chapter we introduce the 
principles of these algorithms and the proposed methods to improve their efficiency. 
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Chapter three is about the other class of dividers, called Euclidian based dividers. We 
review the principles and all proposed algorithms based on Euclidian algorithm.      

2. Dividers based on Fermat’s little theorem  

The most simple and primary dividers were based on Fermat’s little theorem. These kinds of 
dividers are also known as multiplicative based dividers, because in these algorithms, 
division is performed by sequence of multiplication operations (and squaring). Squaring in 
finite fields are simple operations, which are usually perform in a simple clock cycle. 
However multiplication is more complicated operation and in terms of time and 
implementation area is more costly. 

Based on Fermat’s little theorem, if 鶏 is a prime number for any integer 欠, we can write: 欠椎 ≡ 欠	岫兼剣穴	鶏岻 
Dividing two side to 欠, we get  欠牒貸怠 ≡ な	岫兼剣穴	鶏岻    or    欠 × 欠牒貸態 ≡ な	岫兼剣穴	鶏岻 
Hence we can conclude the inversion of any integer 欠 over 罫繋岫鶏岻 is 欠牒貸態. 

Example.1: For example inversion of 4 over 罫繋岫ば岻 is ね貸怠 ≡ ね泰 ≡ に	岫兼剣穴	ば岻. に × ね ≡ ぱ ≡ な	岫兼剣穴	ば岻 
Expanding this technique to 罫繋岫に陳岻, we can write 欠態尿貸怠 = 欠 × 欠態尿貸態 = な	岫剣懸結堅	罫繋岫に陳岻岻. 
Hence, 欠貸怠 = 欠態尿貸態, in which 欠 ∈ 罫繋岫に陳岻. 
To compute 欠態尿貸態, the most primary method is “square and multiplication” algorithm. In 

square and multiplication algorithm instead of に陳 − ぬ multiplications, we calculate 欠態尿貸態, 
with at most 兼 − な squaring and 兼 − に multiplications.  

 

Alg.1:  Square and Multiplication Algorithm 

Input 欠 ∈ 罫繋岫に陳岻 
Output 畦 = 欠態尿貸態 

1. b=に陳 − に 
2. 畦 = 欠	
3. while 決 ≠ な 

3.1.         if (b is even) 
3.1.1.                 決 = 決/に 
3.1.2.                 畦 = 畦 × 畦 

3.2.        else 
3.2.1.                  決 = 決 − な 
3.2.2.                  畦 = 畦 × 欠 

4. Return 畦 
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To better understand of square and multiplication algorithms, we review the following 
equations. As we know, we can decompose に陳貸態 in the following form. に陳 − に = に岫に陳貸怠 − な岻 = に岫に陳貸怠 − に + な岻 = に岫な + に岫に陳貸態 − な岻岻 ⋮ = に岫な + に岫な + に岫な+. . 岻岻岻 
Hence, we can use the above equations to decompose 欠態尿貸態 to: 欠態尿貸態 = 欠態岫態尿貼迭貸怠岻 = 岫欠岫態尿貼迭貸怠岻岻態 = 岫欠岫態尿貼迭貸態袋怠岻岻態 = 岫欠 × 欠岫態尿貼迭貸態岻岻態 岫欠 × 欠態岫態尿貼鉄貸怠岻岻態 = 岫欠 × 岫欠岫態尿貼鉄貸怠岻岻態岻態 ⋮ = 岫欠岫欠岫…欠岫欠欠態岻態…岻態岻態岻態 

The square and multiplication algorithm use the same principle to calculate 欠態尿貸態.  

2.1 Itoh and Tsujii algorithm 

Itoh and Tsujii (Itoh & Tsujii 1988) offered a more efficient algorithm over normal basis; 
however it is applicable over polynomial and other basis. Their algorithm was based on 
multiplication which can be applied on some values of 兼. In their algorithm, they reduced 
the number of multiplications, significantly. Many efforts have been done to improve Itoh 
and Tsujii algorithm and make it more general for all values of 兼 (Guajardo & C. Paar 2002; 
Henrıquez, et. al. 2007). Here we review the general form of this algorithm. 

To describe Itoh and Tsujii algorithm, we introduce a new term, called addition chain.  

Definition addition chain: Addition chain for an integer value such as 兼 − な, is a series of 
integers with 建 elements such that, 憲待 = な and 憲痛 = 兼 − な, and 憲沈 = 憲賃沈 + 憲珍沈. 
Where 倦件 and 倹件 are two integer values between ど and 件. 
Example.2: If 兼 = なひぬ, then the addition chain could be  

1, 2, 3, 6, 12, 24, 48, 96, 192 

In this addition chain for all elements of sequence we have  憲沈 = 憲沈貸怠 + 憲沈貸怠 except for 憲態, 
which 憲態 = 憲怠 + 憲待. 憲待 憲怠 憲態 憲戴 憲替 

 憲待 + 憲待 憲怠 + 憲待 憲態 + 憲態 憲戴 + 憲戴 な に ぬ は なに 
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 憲泰 憲滞 憲胎 憲腿 憲替 + 憲替 憲泰 + 憲泰 憲滞 + 憲滞 憲胎 + 憲胎 にね ねぱ ひは なひに 

Let’s define a function  紅賃岫欠岻 = 欠態入貸怠, which 欠 ∈ 罫繋岫に陳岻. We know that  紅陳岫欠岻 = 欠態尿貸怠 =欠貸怠. The other characteristic of this function is enlisted as follow: 紅珍袋賃 = 紅賃態乳 × 紅珍 紅態賃 = 紅賃態入袋怠 or  紅賃態入 × 紅賃 

Hence, to compute 欠貸怠, we should use the equations above and using addition chaining to 

achieve  紅陳岫欠岻 = 欠態尿貸怠. 

Example.3: for 兼 = なひぬ, and above addition chain, we can write the following calculations 憲待 = な  紅怠 = 欠態迭貸怠憲怠 = に  紅態 = 岫紅怠岻態鉄貸怠 = 欠態鉄貸怠 憲態 = ぬ  紅戴 = 岫紅態岻態迭貸怠 × 紅怠憲戴 = は  紅滞 = 岫紅戴岻態典 × 紅戴憲戴 = なに  紅怠態 = 岫紅滞岻態展 × 紅滞憲戴 = にね  紅態替 = 岫紅怠態岻態迭鉄 × 紅怠態憲替 = ねぱ  紅替腿 = 岫紅態替岻態鉄填 × 紅態替憲替 = ひは  紅苔滞 = 岫紅替腿岻態填添 × 紅替腿憲替 = なひに  紅怠苔態 = 岫紅苔滞岻態纏展 × 紅苔滞
It has been shown that the maximum number of multiplication in this method is 建 and 

the required number of square operation is 兼 − な. The size of addition chain or 建 is 

estimated as 局健剣訣態岫兼 − な岻曲 + 茎激岫兼 − な岻 + な, where 茎激岫兼 − な岻 is the hamming weight of 兼 − な. 

For more information and more details, the readers may refer to (Guajardo & C. Paar 2002; 

Henrıquez, et. al. 2007). 

Itoh and Tsujii algorithm is presented in Alg.2. 

After calculating inversion, division simply becomes a multiplication operation. 

The advantage of Fermat’s little theorem based inversion algorithm is that, it can be 

implemented just by using multiplication and square arithmetic operators. This eliminates 

the need to add any extra components, such as dividers. When ECC was proposed, the 

www.intechopen.com



 
Division and Inversion Over Finite Fields 121 

dividers were not as advanced as they are now; hence, multiplicative based dividers were 

the best candidates for hardware implementation of ECC, particularly over FPGAs. Also it is 

possible to use these dividers for reconfigurable cryptosystems, which are designed to 

perform both RSA and ECC algorithms. Since the sizes of these cryptosystems are becoming 

larger, dropping a big component such as divider is a huge saving on implemented area for 

designers. The main drawback of the cipher cores without dividers is the longer 

computational time.  

Alg.2:  Itoh and Tsujii Algorithm to compute inversion 

Input 欠 ∈ 罫繋岫に陳岻 
Output 欠貸怠 

1. 紅通待岫欠岻 = 欠 
2. For 件 = な to 建 do 

2.1.        紅通沈岫欠岻 = 盤紅通賃沈岫欠岻匪態祢乳日 × 紅通珍沈岫欠岻 
3. Return 紅通痛態 岫欠岻 

3. Euclidian based dividers 

Euclid’s algorithm is an old algorithm to calculate the greatest common divider (GCD) of 

two integers. The basic principle of Euclid’s algorithm is that, the greatest common divider 

of 欠 and 決, 罫系経岫欠, 決岻, is equal to the greatest common divider of 欠 and 欠 ± 決 or in other 

word 罫系経岫欠, 決岻 = 罫系経岫欠, 欠 ± 決岻 = 罫系経岫欠 ± 決, 決岻. 
Example.4: 罫系経岫なぱ,ぬど岻 = は,	 罫系経岫なぱ,ぬど岻 =	罫系経岫ぬど − なぱ,なぱ岻 = 	罫系経岫なに,なぱ岻 =		罫系経岫なぱ − なに,なに岻 = 	罫系経岫は,なに岻 =		罫系経岫なに − は,は岻 = 罫系経岫は,は岻 = は	
We can apply the above principle more than once and rewrite this theorem as  罫系経岫欠, 決岻 =罫系経岫欠, 券 × 欠 ± 兼 × 決岻 = 罫系経岫券́ × 欠 ± 兼́ × 決, 決岻.  
Example.5:  GCD(90,525)=15 罫系経岫ひど,のにの − の × ひど岻 = 罫系経岫ひど,のにの − ねのど岻 = 罫系経岫ひど,ばの岻 = 罫系経岫ばの,ひど − ばの岻 = 罫系経岫ばの,なの岻 = 罫系経岫なの,ばの − ぬ × なの岻 = 罫系経岫なの,ど岻 = なの 

To reduce the calculation time, we can offer the Alg.3. 
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Alg.3:  Euclidian algorithm to calculate Greatest Common Divider (GCD) 

Input 欠, 決 

Output 罫系経岫欠, 決岻 
1. While (決 ≠ ど)  

1.1.       建 = 決 
1.2.       決 = 欠	兼剣穴	決 
1.3.       欠	 = 	建 

2. Return (欠) 

The above algorithm can be made more compact using a recursive approach. Alg. 4 presents 

the recursive and more compact version of Alg. 3.  

Alg.4:  Euclidian algorithm to calculate Greatest Common Divider 
(Recursive Approach)  

Input 欠, 決 

Output 罫系経岫欠, 決岻 
1. if (決 = ど)  

1.1.      Return (欠) 
2. else 

2.1.       Return (罫系経岫欠, 欠 兼剣穴 決岻) 
We provide  a useful theorem below which will be used this section, to make the Euclidian 

algorithm more general for our purpose. 

Theorem: let’s assume 決 = 欠 × 圏 + 堅. Then 罫系経岫欠, 決岻 = 	罫系経岫欠, 堅岻 罫系経岫欠, 決岻 = 	罫系経岫欠, 決 − 欠 × 圏岻 
 	= 	罫系経岫欠, 堅岻 

The simple proof for this theorem is by applying Euclid’s theorem (罫系経岫欠, 決岻 = 	罫系経岫欠, 決 −欠岻) for 圏 times, to give the same relationship.  

In order to use Euclid’s theorem for division or inversion, assume two values such as 欠 and 決. We have already seen how to compute 穴 = 罫系経岫欠, 決岻. We know that there are two 

variables,  捲 and 検, which satisfies the following equation 欠 × 捲 + 決 × 検 = 穴 

If we can design an algorithm which accepts 欠 and 決, and produces 捲 and 検; we can use that 

algorithm to find inversion. Assume 鶏 is a prime value and 欠 is an integer where ど < 欠 <鶏 − な. We know 懸 = 罫系経岫欠, 鶏岻 = な. Hence, applying the above algorithm, we can find  捲 

and 検 which 欠 × 捲 + 鶏 × 検 = な. 
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If we use that algorithm over the finite field, 罫繋岫鶏岻, we can calculate the inverse of 欠 which 

is 捲 (i.e. 欠貸怠 = 捲). Using the algorithm above, it gives us 捲 and 検 such that it satisfy the 

equation: 欠 × 捲 + 鶏 × 検 = な. Over the finite field, 罫繋岫鶏岻, 鶏 × 検 = ど. Then 欠 × 捲 + 鶏 × 検 = な 

over 罫繋岫鶏岻 could be simplified to 欠 × 捲 = な. Then 捲 is the inversion of 欠 over 罫繋岫鶏岻. 
Let’s 罫系経岫欠沈 , 決沈岻 = 穴. We know there are two integer values, 捲沈 and 検沈 such that (where one 

of the values is smaller than zero): 欠沈 × 捲沈 + 決沈 × 検沈 = 穴. 

Based on Euclid’s theorem, we can write  罫系経岫欠沈 , 決沈 − 欠沈圏沈岻 = 穴. Hence, the equation above 

can be rewritten as:  欠沈 × 捲沈袋怠 + 岫決沈 − 欠沈圏沈岻 × 検沈袋怠 = 穴. 

By rearranging this equation, we can write: 欠沈 × 捲沈袋怠 − 欠沈圏沈 × 検沈袋怠 + 決沈 × 検沈袋怠 = 欠沈 × 岫捲沈袋怠 − 圏沈 × 検沈袋怠岻 + 決沈 × 検沈袋怠 = 穴 

Then we can conclude: 

捲沈 = 捲沈袋怠 − 圏沈 × 検沈袋怠 検沈 = 検沈袋怠. 
(1) 

Similarly, for	罫系経岫欠沈 − 決沈圏沈 , 決沈岻 = 穴, we can write the same equations and conclude  

検沈 = 検沈袋怠 − 圏沈 × 捲沈袋怠 捲沈 = 捲沈袋怠. 
(2) 

If we perform the Euclidian algorithm to calculate 穴, at the final step or loop 罫系経岫欠津, 決津岻 =罫系経岫欠津, 欠津圏津岻 = 欠津 = 穴. The above relationship for this step will be  欠津 × 捲津 + 決津 × 検津 = 欠津 × 捲津 + 欠津圏津 × 検津 = 欠津 = 穴 

So 捲津 = な and 検津 = ど.  

Example.6: Let’s 欠 = ぬば and 決 = なば 

 ぬば捲待 + なば検待 = な 岫ぬば − に × なば岻捲待 + なば検待 = な         圏待 = に 

 ぬ捲怠 + なば検怠 = な ぬ捲怠 + 岫なば − の × ぬ岻検怠 = な               圏怠 = の 
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ぬ捲態 + に検態 = な 岫ぬ − な × に岻捲態 + に検態 = な         圏態 = な 捲戴 + に検戴 = な 捲戴 + 岫に − に × な岻検戴 = な               圏戴 = に 捲替 = な 

Using (1) and (2) for the above relation in backward (start from 捲替, 検替 and 圏戴), we can 

calculate 捲待 and 検待. 検戴 = 検替 = ど             捲戴 = 捲替 − 圏戴検替 = な 捲態 = 捲戴 = な             検態 = 検戴 − 圏態捲戴 = −な 検怠 = 検態 = −な          捲怠 = 捲態 − 圏怠検態 = は 捲待 = 捲怠 = は             検待 = 検怠 − 圏待捲怠 = −なぬ 

Then finally: ぬば × は + なば × 岫−なぬ岻 = な 

Hence, one way of finding 捲 and 検 is to execute Euclidian algorithm. Then calculate  捲沈 and 検沈 based on the equations above. Alg.5 is based on this idea. 

Alg.5:  Algorithm of Finding  捲 and 検 

Input: 欠, 決			岫決 半 欠岻 
Output: 罫系経岫欠, 決岻, 捲, 検 

1. 検怠 = な	
2. 検態 = ど	
3. 捲怠 = な	
4. 捲態 = ど	
5. While (欠 ≠ な)  

5.1.      圏 = 崘長銚嵌 ; 	堅 = 決 − 圏欠; 	捲 = 捲態 − 圏捲怠; 	検 = 検態 − 圏検怠; 
5.2.       決 = 欠; 	欠 = 堅;	捲態 = 捲怠; 	捲怠 = 捲;	検態 = 検怠; 	検怠 = 検; 

6. 穴 = 決;	
7. 捲 = 捲態;		
8. 検 = 検態;
9.  Return (穴, 捲, 検) 

In order to get better impression about the role of 捲怠, 捲態, 検怠 and 検態 in Alg.5 (and Alg.6) we 

recommend to extend the last two equations of example.6 (i.e. 検待 and 捲待) and rewrite them 

with 圏沈, 検替 and 捲替.  

All the substitutions at step 5.1 and 5.2 of Alg.5 should be executed at the same time. 
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We can simplify this algorithm for 欠 and 鶏 (where ど 判 欠 < 鶏, and 鶏 is a prime number) to 
calculate 欠貸怠 over 罫繋岫鶏岻 (Alg.6).  

 
 

Alg.6:  Algorithm of Computing Inversion Over 罫繋岫鶏岻  
Input: 鶏, 欠 ∈ 罫繋岫鶏岻 
Output: 欠貸怠 

1. 検怠 = な	
2. 検態 = ど	
3. While (欠 ≠ な)  

3.1.      圏 = 崘牒銚嵌 
3.2.       欠 = 鶏 − 圏欠; 	鶏 = 欠;	検態 = 検怠;	検怠 = 検態 − 圏検怠 

4.  Return (検怠) 

All the operations on Alg.6 are performs over 罫繋岫鶏岻. All the substitutions at step 3.2 of 
Alg.6 should be done simultaneously. 

In the algorithm above, we should perform a division at each loop (step 3.1.). To avoid 
division, we can assume if 鶏 半 欠 then 圏 =1 and if 鶏 < 欠 then 圏 = ど or swap 欠 and 鶏 and 検怠 
and 検態 values. Then we can compute 罫系経岫欠, 決 − 欠岻, instead of computing 罫系経岫欠, 決岻 =罫系経岫欠, 決 − 欠圏岻. This technique increases the number of iterations. 

Modifying the above algorithms for polynomial basis, we have Alg.7. All operations in 
Alg.7 should be done over 罫繋岫に陳岻. In Alg.7, 鶏 represents the irreducible polynomial of 罫繋岫に陳岻. 

 
 

Alg.7:  Algorithm of Computing Inversion Over 罫繋岫に陳岻  
Input: 欠 ∈ 罫繋岫に陳岻 
Output: 欠貸怠 

1. 検怠 = な	
2. 検態 = ど	
3. While (欠 ≠ な)  

3.1.       欠 = 鶏 + 欠; 	鶏 = 欠;	検態 = 検怠;	検怠 = 検態 + 検怠 
4.  Return (検怠) 
 

 

Example.7: let’s assume we want to calculate な/ば over 罫繋岫なば岻 
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検怠 = な							検に = ど							欠 = ば							鶏 = なば 検怠 = −な							検に = な							欠 = など							鶏 = ば 検怠 = な							検に = −な							欠 = ば							鶏 = など 検怠 = −に							検に = な							欠 = ぬ							鶏 = ば 検怠 = ぬ							検に = −に							欠 = ね								鶏 = ぬ 検怠 = −に							検に = ぬ							欠 = ぬ								鶏 = ね 検怠 = の							検に = −に							欠 = な								鶏 = ぬ 

Then  ば貸怠 = の over 罫繋岫なば岻. 
The reviewed algorithm, so far, calculates inversion. After an inversion is calculated, simply 
multiply 検怠 to create a division. In (Takagi 1998), N. Takagi offered an algorithm which 
directly calculates division.  

This algorithm is based on two concepts:  

(1) If 欠 is even and 鶏 is odd, then 罫系経岫欠, 鶏岻 = 罫系経岫欠/に, 鶏岻;  
(2) If both 欠 and 鶏 are odd, then  罫系経岫欠, 鶏岻 = 罫系経岫岫欠 − 鶏岻/に, 欠岻 	=罫系経岫銚貸牒態 , 鶏岻; Where in the proposed algorithm, we choose the minimum 

of 欠 and 鶏 (i.e. 罫系経岫欠, 鶏岻 = 罫系経岫岫欠 − 鶏岻/に,min	{欠, 鶏}岻). 
The proposed algorithm over 罫繋岫鶏岻 is presented as Alg.8. In Alg.8, 決待 represents the least 
significant bit (LSB) of 決. Also all operation are performed over 罫繋岫鶏岻. 
 

 

Alg.8:  Algorithm of Computing Division Over 罫繋岫鶏岻  
Input: 鶏, 欠 ∈ 罫繋岫鶏岻, 決 ∈ 罫繋岫鶏岻 
Output:  欠 決斑  

1. 懸 = ど	
2. While (決 > ど)  

2.1.      While (決待 = ど) 
2.1.1. 決 = 決/に	; 	欠 = 欠/に	;	

2.2.       If (決 半 鶏)	
2.2.1. 決 = 決 − 鶏; 	欠 = 欠 − 懸;	

2.3.       else  
2.3.1. 決 = 鶏 − 決; 	鶏 = 決; 
2.3.2. 欠 = 懸 − 欠; 	懸 = 欠; 

3.  Return (懸) 
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algorithm will finish at most after に兼 − な iterations, where に陳貸怠 < 鶏 < に陳. 

 

Alg.9:  Algorithm of Computing Division Over 罫繋岫に陳岻  
Input: 鶏岫捲岻, 欠 ∈ 罫繋岫に陳岻, 決 ∈ 罫繋岫に陳岻 
Output:  欠 決斑  

1. 懸 = ど;	
2. While 岫岫欠 ≠ ど岻	欠券穴	岫鶏 ≠ な岻岻 

2.1.    If (決待 = な) 
2.1.1.       If (決 半 鶏)	

2.1.1.1. 決 = 決 + 鶏; 	欠 = 欠 + 懸;	
2.1.2.       else  

2.1.2.1. 決 = 鶏 + 決; 	鶏 = 決; 
2.1.2.2. 欠 = 懸 + 欠; 	懸 = 欠; 

2.2.    決 = 決/に;	
2.3.    欠 = 欠/に; 

3.  Return (懸) 

To extend this algorithm to be applicable over 罫繋岫に陳岻, the following changes should be 
applied; Assume 鶏岫捲岻 as irreducible polynomial (It is known that 鶏待 is always 1) and 
substitute 鶏岫捲岻 with 鶏. The degrees of the most significant nonzero bit of 決岫捲岻 and 鶏岫捲岻 will 
distinguish which variable is larger (in step 2.2). Hence, the algorithm will be as Alg.9.  

 

 

Alg.10:  Modified Algorithm of Computing Division Over 罫繋岫に陳岻  
Input: 鶏岫捲岻, 欠 ∈ 罫繋岫に陳岻, 決 ∈ 罫繋岫に陳岻 
Output:  欠 決斑  

1. 懸 = ど;	
2. While 岫岫欠 ≠ ど岻	欠券穴	岫鶏 ≠ な岻岻 

2.1.    If (決待 = な) 
2.1.1. If 岫絞 < ど岻 

2.1.1.1. 決 = 決 + 鶏; 鶏 = 決;	
2.1.1.2. 欠 = 欠 + 懸; 懸 = 欠;	
2.1.1.3. 絞 = −絞;	

2.1.2.       else  
2.1.2.1. 決 = 鶏 + 決; 
2.1.2.2. 欠 = 懸 + 欠; 

2.2.    決 = 決/に;	
2.3.    欠 = 欠/に; 
2.4.    絞 = 絞 − な; 

3.  Return (懸) 
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This algorithm, takes at most に兼 − な iterations to finish. Checking the degree of 決 and 鶏, is a 
costly operation in hardware implementation. In (Brent & Kung 1983), Brent and Kung 
reduced this complexity by adopting a new idea. They used a new variable, 絞, to represent 
the difference of upper bounds of degree 決 and 鶏岫捲岻. In (Brent & Kung 1983) they use this 
method to calculate the Greatest Common Divisor of two variables. However this method 
can be used to calculate division. 

At the initialization step, 絞 should be equal to −な. Then the above algorithm has to be 
changed as Alg.10. 

Example.8: Let’s 欠 = ななどな, 決 = どななな and the irreducible polynomial is 鶏岫捲岻 = 捲替 + 捲 + な. 絞 = −な			決 = どななな			鶏 = な	どどなな			欠 = ななどな			懸 = ど 絞 = ど						決 = などなど			鶏 = ど	どななな			欠 = なななな			懸 = ななどな 絞 = −な			決 = どなどな			鶏 = ど	どななな			欠 = なななど			懸 = ななどな 絞 = ど						決 = どどどな			鶏 = ど	どなどな			欠 = などどど			懸 = なななど 絞 = −な			決 = どどなど			鶏 = ど	どなどな			欠 = どどなな			懸 = なななど 絞 = −に			決 = どどどな			鶏 = ど	どなどな			欠 = などどど			懸 = なななど 絞 = −な			決 = どどなど			鶏 = ど	どどどな			欠 = どどなな			懸 = などどど 

The final step to improve the algorithm above is applied within the loop. Hardware 

implementation of “拳ℎ件健結” statement is difficult. This is because the number of iterations is 

an unknown variable, making it inappropriate for cryptographic cores and particularly 

systolic implementations. We know that this algorithm takes at most に兼 − な iterations. 

Hence, instead of a “拳ℎ件健結” loop, we implement a “血剣堅” loop. This modification can be done 

by a simple change in Alg.10. In step.2, instead of “While 岫岫欠 ≠ ど岻	欠券穴	岫鶏 ≠ な岻岻” we should 

write “For 件 = な	to	に兼 − な”. 

So far we have presented very general forms of divider algorithms. We reviewed all the 

proposed algorithms because each one has a unique characteristic that makes it more 

efficient for a specific design of a core. Many research papers have been done to improve the 

above algorithms and make them more efficient for hardware implementations. For 

example, in (Wu, Shieh & Hwang 2001), the designers proposed a new algorithm. In their 

algorithms, they eliminate 絞 and use two other variables to Instead of comparing 絞 

relationship to zero, they only check two bits of their new adopted variables in their 

algorithm; thus making the new algorithms more efficient for hardware (by eliminating step 

2.1.1 in Alg.10). Another example can be seen in (Zadeh 2007), where the number of 

iterations is reduced from に兼 − な to 兼 by combining two loop iterations. The paper 

explores how a number of modifications can reduce the number of conditional statements. 

Other similar classes of dividers have been proposed such as Dual Field Modular dividers 

or Unified Modular Division (UMD). These classes perform division on two finite field (over 罫繋岫鶏岻 and 罫繋岫に陳岻). Unified Modular Dividers have been applied in some applications such 

as network servers (Wolkerstorfer 2002; Tenca & Tawalbeh 2004). 
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Euclidian algorithm is the most efficient algorithm for division in terms of area and time. 
Until now, not many hardware platforms were able to implement this algorithm. Advances 
in technology of ASIC offer many high capacity reconfigurable platforms such as FPGA. It 
gives hardware designers the ability of using these dividers in real applications. It is 
foreseeable that Euclidian dividers will be more widely implemented in the future. 

4. Conclusion  

In this chapter, we have reviewed two common classes of dividers which are widely used 
for cryptographic purpose. The most common dividers to be implemented in Elliptic Curve 
Cryptography and other cryptographic cores are multiplicative based dividers (based on 
Fermat’s little theorem) and Euclidian based dividers.  

To perform division over finite field, some other dividers have been proposed such as 
“Wiener-Hopf equation” based dividers. In Wiener-Hopf based dividers, the divisor (決) 
should expand to an 兼 ×兼 matrix, 稽, then the linear equation 稽 × 懸 = 欠 should be solved 
to get 懸. 懸 can be calculated using Gaussian elimination algorithm (Morii, Kasahara & 
Whiting 1989; Hasan & Bhargava 1992). The hardware efficiency of these dividers are not 
comparable with multiplicative and Euclidian based dividers.  

In terms of implementation area multiplicative based dividers are very efficient. Since they 
don’t need any extra component on the circuit and they can perform division using 
embedded components of the cipher cores. Also in term of speed, Euclidian based dividers 
are very fast.   

5. References  

Brent R. P., Kung H. T., (Aug. 1983), “Systolic VLSI arrays for linear time GCD 
computation”, in VLSI-83, pp: 145—154, Amsterdam. 

Chen C., Qin Z., (June 2011), “Efficient algorithm and systolic architecture for modular 
division”, International Journal of Electronics, vol. 98, No. 6, pp: 813—823. 

Diffie W., Hellman M. E., (Nov. 1976), “New directions in cryptography”, IEEE Transactions 
on Information Theory, vol. IT-22, pp: 644–654. 

Dormale G. M. D., Quisquater J. , (2006), “Iterative modular division over	GF岫に鱈岻: novel 
algorithm and implementations on FPGA”,   Applied Reconfigurable Computing – 
ARC 2006, pp: 370—382. 

Guajardo Jorge, Paar Christof, (2002), “Itoh-Tsujii inversion in standard basis and its 
application in cryptography and codes”, Designs, Codes and Cryptography, vol. 
25, pp: 207—216. 

Hankerson, Darrel, Menezes, Alfred J., Vanstone, Scott, (2004), “Guide to elliptic curve 
cryptography”, Springer-Verlag, ISBN: 978 0 387 95273 4. 

Hasan M.A., Bhargava V.K., (Aug. 1992), “Bit-serial systolic divider and multiplier for finite 
fields GF岫に鱈岻”,  IEEE Transaction on Computers, vol. 41, No. 8, pp: 972—980.  

Itoh T., Tsujii S., (1988), “A fast algorithm for computing multiplicative inverses in GF岫に鱈岻 
using normal basis”, Information and computing, vol. 78, pp: 171-177. 

Kim Chang Hoon, Hong Chun Pyo, (July 2002), “High speed division architecture for GF岫に鱈岻”, Electronics Letters, vol. 38, No.15, pp: 835—836. 

www.intechopen.com



 
Cryptography and Security in Computing 130 

Koblitz N., (1987), "Elliptic curve cryptosystems", Mathematics of Computation, vol. 48, pp: 
203–209. 

Miller V. S., (1985), "Use of elliptic curves in cryptography", H.C. Wiliams, Ed., Advances in 
Cryptology, CRYPTO 85, LNCS, vol. 218, pp: 417–426. 

Morii M., Kasahara M., Whiting D. L., (Nov. 1989), “Efficient bit serial multiplication and the 
discrete time Wiener Hopf equation over finite fields”, IEEE Transaction on 
Information Theory, vol. 35, pp:1177—1183. 

Rodrıguez-Henrıquez Francisco, Morales-Luna Guillermo, Saqib Nazar A., Cruz-Cortes 
Nareli, (2007), “Parallel Itoh-Tsujii multiplicative inversion algorithm for a special 
class of trinomials”, Des. Codes Cryptography, pp: 19—37. 

Takagi N., (May 1998), “a vlsi algorithm for modular division based on the binary GCD 
algorithm”, IEICE Transaction on Fundamentals, vol. E81-A, No.5, pp: 724—728. 

Takagi N., Yoshika J., Takagi K., (May 2001), “A fast algorithm for multiplicative inversion 
in GF岫に鱈岻 using normal basis”, IEEE Transaction on Computers, vol. 50, No. 5, pp: 
394—398. 

Tawalbeh L. A., Tenca A. F., (Sep. 2004), “An algorithm and hardware architecture for 
integrated modular division and multiplication in GF岫P岻 and GF岫に樽岻”, Application 
Specific Systems, Architectures and Processors 2004,  IEEE, pp: 247—257. 

Tenca A. F., Tawalbeh L.A., (March 2004), “Algorithm for unified modular division in  GF岫P岻 
and GF岫に鱈岻 suitable for cryptographic hardware”, Electronics Letters, vol. 40, No. 
5, pp: 304—306. 

Wolkerstorfer Johannes, (2002), “Dual-field arithmetic unit for GF岫P岻 and GF岫に鱈岻”, 
International Workshop on Cryptographic Hardware and Embedded Systems 
CHES 2002, LNCS, vol. 2523, pp: 500—514. 

Wu C., Wu C., Shieh M., Hwang Y., (2001), "Systolic VLSI realization of a novel iterative 
division algorithm over GF岫に鱈岻: a high-speed, low-complexity design",  ISCAS, pp: 
33—36. 

Wu C., Wu C., Shieh M., Hwang Y., (2004), "High speed, low complexity systolic designs of 
novel iterative division algorithms in GF岫に鱈岻", IEEE Transaction on Computers, pp: 
375—380. 

Wu C. H., Wu C. M., Shieh M. D., Hwanng Y. T. , (Aug 2000), “Novel iterative division 
algorithm over GF岫に鱈岻 and its systolic VLSI realization”, Circuits and Systems, pp: 
280—283. 

Zadeh Abdulah Abdulah, (2007), “High speed modular divider based on GCD algorithm”, 
Information and Communications Security, ICICS, LNCS, pp: 189—200. 

www.intechopen.com



Cryptography and Security in Computing
Edited by Dr. Jaydip Sen

ISBN 978-953-51-0179-6
Hard cover, 242 pages
Publisher InTech
Published online 07, March, 2012
Published in print edition March, 2012

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

The purpose of this book is to present some of the critical security challenges in today's computing world and
to discuss mechanisms for defending against those attacks by using classical and modern approaches of
cryptography and other defence mechanisms. It contains eleven chapters which are divided into two parts.
The chapters in Part 1 of the book mostly deal with theoretical and fundamental aspects of cryptography. The
chapters in Part 2, on the other hand, discuss various applications of cryptographic protocols and techniques
in designing computing and network security solutions. The book will be useful for researchers, engineers,
graduate and doctoral students working in cryptography and security related areas. It will also be useful for
faculty members of graduate schools and universities.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Abdulah Abdulah Zadeh (2012). Division and Inversion Over Finite Fields, Cryptography and Security in
Computing, Dr. Jaydip Sen (Ed.), ISBN: 978-953-51-0179-6, InTech, Available from:
http://www.intechopen.com/books/cryptography-and-security-in-computing/division-and-inversion-over-finite-
fields



© 2012 The Author(s). Licensee IntechOpen. This is an open access article
distributed under the terms of the Creative Commons Attribution 3.0
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0

