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1. Introduction 

In recent years video-based tracking systems have been gaining widespread attention in 
several application fields. They are often used in military or surveillance applications (Ellis 
& Black, 2003; Collins et al, 2000; Cupillard et al., 2003; Fischer et al.,2004; Safeguards, 2007), 
in medicine (Grimson et al., 1998; Bornik et al, 2003; Pandya & Siadat, 2001; Tang et al., 1998; 
Bernd & Seibert, 2004), entertainment industry (Stapleton et al., 2002; Wren et al., 1997; 
Huang & Yan, 2002; Collomosse et al., 2003; Fua & Plankers, 2003) or sport (Qiu et al., 2004; 
Gueziec, 2002; Kristan et al., 2006), for research on human-computer interaction (Sato et al., 
2004; Bradley & Roth, 2005; Polat et al., 2003), intelligent environments (Krumm et al., 2000) 
and similar. Continuous technological development and increasing competition among 
vendors have led to a great selection of tracking systems that are available on the market 
today with a variety of capabilities.  
To compare them, several factors have to be considered. While price, speed or technical 
limitations may be very important for initial selection, the tracking accuracy is usually the 
most important property. To assess a tracking system and its precision, we need a reliable 
measure which allows for comparison of tracking system performance, provides estimates 
of tracking errors and indicates how to optimize the tracking system parameters.  
The natural way to analyze the accuracy of any tracking system is to compare it to some 
reliable reference data. While a selection of comparison methods is readily available to the 
research community (Needham & Boyle, 2003), a reliable reference data (ground truth) can 
be hard to obtain, especially if greater accuracy is desired. Publicly available collections of 
video recordings with registered 3D ground truth information can be helpful, but are very 
scarce and with limited selection (Scharstein & Szeliski, 2003; CVTI, 2007). Such collections 
can be very useful in the development and testing of tracking algorithms, but are not 
enough for evaluation of a complex video tracking system in its actual operating 
environment.
Instead, one of the most popular approaches to obtain the reference data is to resort to an 
electromagnetic tracking device. These devices offer fast and accurate measurements and 
are insensitive to the line-of-sight requirements of optical motion trackers, which makes 
them ideally suited for tracking free-moving objects.  

Source: Scene Reconstruction, Pose Estimation and Tracking, Book edited by: Rustam Stolkin,
ISBN 978-3-902613-06-6, pp.530, I-Tech, Vienna, Austria, June 2007
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In this chapter we describe a general framework for assessing the 3D accuracy of video-
based tracker by comparing it to an electromagnetic tracking device. Since both devices 
record data within their local coordinate systems, the data needs to be aligned accordingly 
before any comparison. This transformation between the coordinate systems of a video 
camera and the reference tracker is crucial for reliable and unbiased analysis of the optical 
tracking algorithm performance. 
We analyze three possible models for the coordinate system alignment, based on measuring 
the position and orientation of video camera inside the reference coordinate frame. We also 
derive methods and metrics for comparing the models and their sensitivity. The 
transformation error is analytically and statistically separated from the tracking error of the 
algorithm, making it possible to compare 3D tracking accuracy of different algorithms in the 
same experimental setting.  
The last part of the chapter demonstrates the applied value of the introduced models by a 
real-world experiment. The accuracy of a stereo camera-based face and hand tracker is 
analyzed by comparing the simultaneous measurements from the Polhemus 3Space Fastrak 
electromagnetic tracker (Polhemus, 1998). Three various transformation models are tested 
and compared using the derived metrics. Finally, the algorithm’s tracking error is estimated 
by statistically separating it from the transformation-induced error.  

2. Survey of the performance characterization of optical 3D tracking systems 

Performance characterization of 2D tracking systems is a well developed field. Its maturity 
is confirmed by the growing success of conferences such as IEEE Performance Evaluation of 
Tracking and Surveillance – PETS (PETS, 2005), along with other workshops and specialised 
conference sections. The European project Performance Characterization in Computer Vision – 
PCCV (PCCV, 2007) also boosted the growing awareness and interest in the scientific 
community. A comprehensive review of the field can be found in (Christensen & Förstner, 
1997; Gavrila, 1999; Black et al., 2003; Bashir & Porikli, 2006; Georis et al., 2003). In 
(Needham & Boyle, 2003), several metrics are presented for comparing the tracked 
trajectories, but they are still limited to 2D. The paper also describes an example of how to 
generate ground truth data by manually marking the video sequence. This approach is often 
used, despite the fact that it is very labour intensive, time demanding and unreliable. To 
make the process easier, several authors developed semi-automatic procedures that use 
existing collections of ground truth data to generate new reference data (Jaynes et al., 2002; 
Doermann & Mihalcik, 2000; Black et al., 2003; Georis et al., 2004). 
Performance characterization of 3D optical trackers is faced with a serious obstacle, since 
reliable ground truth data is much harder to obtain than for 2D trackers. Manual and semi-
automatic annotation of video streams with 3D reference information still have all the 
drawbacks of 2D approaches, and are even less precise due to difficulties in estimating  the 
depth, which makes it generally unsuitable for such tasks. The best approach is to measure 
ground truth using a second 3D tracking or measuring device with significantly better 
accuracy than the tested device. Electromagnetic tracking devices, marker-based optical 
systems and laser scanners are all frequently used for this purpose.  
Electromagnetic trackers such as (Polhemus, 1998) and (Ascension, 2007) are examples of the 
most popular solutions, and have been in use for more than 30 years. The latest models can 
produce measurements of a sensor’s position and orientation (6 DOF) with sample rates up 
to 240 Hz and static accuracy of 0.8 mm RMS for position and 0.15º RMS for orientation. 
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They are insensitive to occlusions, which makes them very suitable for tracking free-moving 
targets, such as humans and their body parts in movement. The majority of products use 
wired sensors which can be cumbersome to wear and may interfere with the free movement 
of the object. However, newer devices solve this problem by using wireless, battery-
powered sensors. A bigger concern is electromagnetic interference which greatly affects the 
actual device’s precision and is very hard to avoid in any urban environment. Precision also 
decreases rapidly once the distance from the transmitter crosses a certain limit. Therefore, 
appropriate means should be taken to reduce the effect of environment prior to performing 
any experiments (Kindarenko, 2000; La Cascia et al., 2000). Recent reports on the usage of a 
magnetic tracker for tracking the position of head movements were published in (Xiao et al., 
2003; La Cascia & Sclaroff, 1999), while (Rehg & Kanade, 1994) reports using it for tracking 
the hand movements. In (Bernd & Seibert, 2004) a specially designed magnetic sensor was 
implemented to guide an augmented reality system during minimally invasive surgery. 
Marker-based optical systems mean another attractive solution. To ensure the accuracy 
which is required for a reliable ground truth, the reference optical trackers usually depend 
on active or passive markers that are attached to the target. The NDI Optotrak Certus 
system (NDI, 2007) uses up to 512 markers at distances up to 2.25 m. Markers are scanned at 
1500 Hz with accuracy of 0.15 mm RMS. NaturalPoint (NP, 2007) and ARTracking (ART, 
2007) also supply various marker-based trackers. Besides their speed and reasonably good 
accuracy, optical trackers have another advantage. To calibrate them, a specially designed 
target is usually shown to the camera (Bornik et al, 2003). This same target can also be used 
to calibrate the optical tracker whose accuracy is being measured, so the same coordinate 
system is used, which greatly simplifies the data comparison. However, the main obstacle 
remains their sensitivity to occlusions, which is undesired when tracking the complex 
movements. It also hinders a reliable performance evaluation of the video-based tracker. 
Recent examples of application include tracking the position of the head (Vogt et al., 2006), 
the body (Herda et al., 2001), person tracking (Balan et al., 2005), in medicine (Keemink et 
al., 1991; Bornik et al, 2003), etc. 
While the electromagnetic devices and marker-based optical trackers can only provide 
measurements for a limited number of 3D points, laser scanners can scan the whole scene 
and obtain dense range measurements with great accuracy. For example, the systems 
(Optix, 2007) and (VIVID, 2007) achieve the resolution of 0.05 mm at 100 mm distance and 
0.5 mm at 900 mm distance. Dense range information is very useful for a number of 
applications, but comes at a price: the scene is usually scanned through a lens by a single 
laser and this operation typically takes a couple of seconds on modern devices. This 
currently makes laser trackers inappropriate for tracking any reasonably fast movement, but 
they can provide an excellent reference for static scenes. A combination of laser and optical 
tracking system for neuro-surgery application is described in (Grimson et al., 1998).  
Unfortunately, a surprisingly low number of papers can be found on general evaluation of 
3D tracking accuracy. Some authors (Yao & Li, 2004; La Cascia et al., 2000; Kindarenko, 
2000) inspect this issue in more detail, but they ignore the relationship between the two 
coordinate systems, i.e. of the verified system and of the reference, and usually align the two 
sets of measurements by only looking for an optimal fit (Needham & Boyle, 2003). Such 
performance analysis is insufficient, as it masks possible tracker alignment errors and 
doesn’t give real accuracy information. To clarify this issue the next chapter focuses on 
electromagnetic tracking device as an example of a ground truth for video-based tracking 
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evaluation. We also explain the necessary coordinate system transformation and evaluate 
the factors involved in it. 

3. Electromagnetic tracker as a reference for video-based tracking 

In this section we describe the general framework for assessing the 3D accuracy of video-
based tracker by comparing it to an electromagnetic tracking device. Fig. 1 depicts the usual 
approach. In order to compare the tracking performance, the target’s position must be 
measured by both systems simultaneously. The magnetic sensor is firmly attached to the 
target object. Each time a frame of the scene is captured by the camera, the sensor’s position 
is read and stored into a file, thus forming a motion trajectory of the target as detected by 
the magnetic tracker (a reference trajectory). Afterwards, the video is processed by a 
tracking algorithm to reconstruct the vision-based trajectory. Each trajectory is expressed in 
its own coordinate system (CS). In order to compare them, they need to be transformed into 
a common CS. Without loss of generality we select the coordinate system of magnetic 
tracker as the common CS in this discussion. 

Figure 1. A general approach to analyzing the accuracy of video-based tracking with an 
electromagnetic tracking device. Suitable alignment of coordinate systems is necessary for 
comparison of detected motion trajectories 

This transformation between the coordinate systems is crucial for a reliable and unbiased 
analysis of the optical tracking algorithm performance. Once the tracking data is properly 
aligned, it can be compared using any standard metrics, such as Root Mean Square (RMS) 
for example. The most frequently used method for aligning two trajectories uses 
optimization that minimizes the distances between them. Such a solution completely ignores 
possible bias errors and gives little information on how well the tracking algorithm follows 
the actual movement of the object. For example, if an algorithm consistently provides 
overestimated depths, the aligned trajectories can still show a close match. Another solution 
to this problem is aligning of the two coordinate systems physically by carefully positioning 
the camera and the magnetic tracker. Although this might seem a fast and simple procedure, 
such alignment is never perfect and results in considerable transformation errors. A quick 
calculation shows that an orientation error of 1º results in the position error of 3.5 cm at a 
distance of 2 meters from the camera. 
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A better approach to align the coordinate systems is by measuring the position and 
orientation of video camera using the magnetic tracker’s sensors. This gives us enough 
information to derive a mathematical transformation between the CS of video camera (CSC)
and magnetic tracker (CSM). Such alignment enables more thorough study of the 
transformation and its parameters, as well as comparison between the errors caused by the 
transformation and by the tested tracking algorithm. Although the idea seems 
straightforward, its implementation must be carefully considered, as will be explained in the 
next subsections. 

3.1 Transformation models for coordinate systems 

Assume we have a point in 3D space that needs to be expressed in two coordinate systems 

simultaneously. In CSC we denote it by C C C C T

1 2 3( , , ,1)p p p=p  and in CSM by 
M M M M T

1 2 3( , , ,1)p p p=p , respectively (using homogenous coordinates and denoting the 

transposition of vectors by T). Since both vectors pM and pC represent the same point in 
space, the following equation holds: 

M C=p Ap . (1) 

Transformation matrix A contains the information about translation and rotation of CSC

with regards to CSM. The position of camera’s origin can be described by point oC = (o1, o2,
o3)T, while base vectors iC = (i1, i2, i3)T, jC = (j1, j2, j3)T and kC = (k1, k2, k3)T describe its 
orientation. If homogenous coordinates are used, matrix A has the following structure: 

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 1

i j k o

i j k o

i j k o
=A . (2) 

Vectors iC, jC, kC and oC that define A depend on a set of parameters , { }l= Θ , l = 1, …, 

N. The exact number of parameters, N, depends on the procedure selected for building the 
transformation model. One of the most important parameters is the exact camera position. 
Of course, this information is usually not readily available, but it can be measured by 
placing one of the magnetic sensors on the camera and reading its position and orientation 
data. This simple approach has several shortcomings: 

• The origin of CSC is usually located inside the camera body and is impossible to be 
measured directly.  

• The camera housing is usually metallic and therefore distorts the sensor’s 
electromagnetic field. 

• While inaccurate measurements of camera position have a relatively small effect on the 
overall accuracy, the erroneous camera orientation can cause significant deviations in 
results. 

To address the abovementioned problems we present three different models for 
transformation of CSC into CSM. In all three models, the magnetic tracker is used to measure 
only the position of a number of control points around the camera that are used to calculate 
its position and orientation. Positional information shows significantly lower level of signal 
distortion than the information about orientation, as we have indicated. For a unique 
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solution at least three control points in space are needed. They can be selected in a number 
of ways, but due to physical limitations of the used equipment (presence of ferromagnetic 
materials, camera range) this selection can affect the quality of transformation. The 
following options will be examined: 

• All three control points are measured away from the camera (model A). 

• Two points are measured on the camera and one away from it (model B). 

• One point is measured on the camera and the other two away from it (model C). 

Model A
To ensure that the camera body does not interfere with measuring magnetic sensor, all three 
control points are measured at a certain distance from it. The camera housing is fixed to a 
flat wooden board and accurately aligned with the board’s sides (Fig. 2). Three corners of 
the board are selected and their coordinates are measured by magnetic sensor to obtain 
three control points T1, T2 and T3. Since it is assumed that camera’s coordinate axes are 

completely aligned with the board, the base vector iC can be expressed by 3 1TT , the base 

vector kC by 2 1T T  and the base vector jC is determined by the cross product (Fig. 2): 

C C3 1 2 1

3 1 2 1

, ,= =
TT T T

i k
TT T T

C C C= ×j k i . (3) 

The position of the camera’s CS origin, oC, is expressed in CSM by manually measuring the 
relative distances d1 and d2 between control point T1 and oC (Fig. 2): 

C C

1 1 2

Cd d= − −o T i j . (4) 

This way the transformation model A can be completely described by 11 parameters 

{ }A 1 1 1 2 2 2 3 3 3 1 2, , , , , , , , , , ,x y z x y z x y z d d=  where 1 1 1 1( , , )x y z=T , 2 2 2 2( , , )x y z=T  and 

3 3 3 3( , , )x y z=T .

Figure 2. The setup of the magnetic tracker (left) and the camera (right) for model A. Vectors 
iM, jM, kM denote base vectors of CSM, while iC, jC, kC denote base vectors of CSC. T1, T2 and 
T3 mark the control point positions, while d1 and d2 mark manual measurements 

Model B
The second transformation model neglects the fact that the camera housing disturbs the 
measurements, but it can be implemented only if those disturbances are proven very small 
compared to the errors caused by false orientation data. If the magnetic sensor is placed on 
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the camera lens’ face (Fig. 3), the disturbances caused by the camera housing are reduced to 
a minimum. This model also considers a stereoscopic (Jain et al., 1995) camera setup with 
two lenses that are used as two acceptable position measuring spots. The proposed model 
could be extended to a single camera, but the second measured point on the camera, T3,
would be more problematic. This is why we are developing only the stereoscopic setup here.  

Figure 3. The setup of the magnetic tracker and the camera for model B. Vectors iM, jM, kM

denote base vectors of CSM, while iC, jC, kC denote base vectors of CSC. T1, T2 and T3 mark 
the control point positions, while d marks the lens’ focal length 

First, the position of control point T1 on the face of the left camera lens (Fig. 3) is measured. 
Next, the magnetic sensor is attached to an arbitrary flat screen in front of the camera 
(control point T2 in Fig. 3) and the camera is aligned in such a way that the sensor is visible 
exactly in the centre of the left image. This step insures that the point T2 lies on the camera’s 
(i.e. the lens’) left optical axis. Since base vector kC has the same direction as this optical axis, 
we calculate it from T1 and T2. The base vector iC is obtained by measuring the coordinates 
of the third control point T3 on the face of the right camera lens (Fig. 3): 

C 1 2

1 2

=
TT

k
TT

, C 1 3

1 3

=
TT

i
TT

. (5) 

Base vector jC is calculated from Eq. (3). The origin of CSC lies on the camera’s left optical 
axis and is determined by displacing the point T1 by d, i.e. the camera’s focal length (Fig. 3): 

C C

1 d= −o T k . (6) 

The transformation model B is therefore described by 10 parameters: 

{ }B 1 1 1 2 2 2 3 3 3, , , , , , , , ,x y z x y z x y z d= ,

where the initial 9 parameters have the same meaning as with A, and d is the focal length.  
When aligning T2 with the centre of left image, a quantization error of at least ½ pixel is 
unavoidable. This error causes a displacement of T2 from the optical axis by rH in horizontal 
direction and rV in vertical direction (relative to camera’s left optical axis). At distance h
from the screen, camera’s field of view measures equal uH × uV (Fig. 4). At the same time, 
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this area is represented in the image by vH × vV pixels. Therefore, an error of 1 pixel (± 0.5 
pixel) causes a displacement of point T2 by 

H V

H V
H V

H H V V

2 tg 2 tg
2 2

,

h h
u u

r r
v v v v

ϕ ϕ

= = = = , (7) 

where Hϕ  and Vϕ  mark the camera’s horizontal and vertical view angles (Jain et al, 1995). 

Other parameters of model B are not affected by the image quantization error.  

Figure 4. Left: stereo camera’s field of view. Right: vertical displacement rV of point T2 due 
to 1 pixel of error when aligning it with the centre of the left image 

Model C
This model is similar to model B, except that control point T3 is also measured on the screen 
in front of the camera (Fig. 5). The camera should be aligned so that its left image displays T2

in the centre, while T3 is displaced from the image centre by mH pixels horizontally and mV

pixels vertically. Therefore, base vectors kC and jC are obtained by using the same procedure 
as with model B.  

Figure 5. The setup of the magnetic tracker and the camera for model C. Vectors iM, jM, kM

denote base vectors of CSM, while iC, jC, kC denote base vectors of CSC. T1, T2 and T3 mark 
the original control point positions, T3' and T3'' mark recalculated position of T3, while d

denotes the lens’ focal length. Plane ℜ is perpendicular to the left optical axis 

Base vector iC could be determined by T2 and T3, but since the camera’s optical axis is, in 
general, not perpendicular to the screen, the point T3 position must be recalculated 

accordingly. Imagine a plane ℜ which is perpendicular to the optical axis and intersects it in 
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T2. Point T3' ∈ ℜ can be determined by the intersection of ℜ and a line that is passing 

through T3 and is perpendicular to ℜ (Fig. 5). The new vector '

2 3T T  is coplanar with iC, but 

needs to be rotated around the camera’s left optical axis to get parallel with iC. The required 
angle of rotation α  is determined by mH and mV:

V

H

arctg
m

m
α = . (8) 

The new point T3'', obtained after the rotation, is finally used to calculate the base vector iC:

C 2 3

2 3

′′
=

′′

T T
i

T T
. (9) 

The origin of CSC is determined by focal length d, as in Eq. (6). The third transformation 
model is therefore described by 12 parameters:  

{ }C 1 1 1 2 2 2 3 3 3 H V, , , , , , , , , , , .x y z x y z x y z d m m=

3.2 Sensitivity of transformation models and their parameters 

Inaccuracies in matrix A (Eq. (2)) cause erroneous transformations of coordinate systems, 
that depend also on the measurement model applied.  To assess the appropriateness of a 
particular model, a measure for comparing the transformations and their parameters is 
needed. When parameter values are measured, the inherent measurement error can be 
statistically estimated using standard techniques (Stoodley, 1984). However, the effect of 
each parameter on the final transformation error depends also on its sensitivity. To 

determine the sensitivity of transformation matrix A to the parameter set , each element 

, ,u va ∈A [ ], 1,2,3,4u v∀ ∈ , will be described as a function of parameters lΘ ∈ :

( ), , 1 2, ,...,u v u v Na f= Θ Θ Θ . (10) 

Sensitivity of transformation matrix A can be expressed by derivatives: 

[ ] [ ], , 1 2( , ,..., )
, for , 1,2,3,4 , 1,...,

u v u v N

l l l

a f
u v l N

∂ ∂ Θ Θ Θ∂
= = ∀ ∈ ∀ ∈

∂Θ ∂Θ ∂Θ

A
. (11) 

Unfortunately, the resulting mathematical expressions in Eq. (11) are too complex for direct 
comparison. Instead, the derivatives can be compared numerically by using real parameter 
values obtained from experiments (Section 4). This procedure gives an estimate on the 
largest contributor to the transformation error.  
The effect of a mutual interaction of parameter errors on the sensitivity of matrix A is 
generally too complex to determine, but the overall upper error bound of each 
transformation model can still be estimated. The magnitude of error amplification for a 
certain parameter can be expressed if Eq. (1) is differentiated: 

M
C C ,

l l l

∂ ∂ ∂
= ≤ ⋅

∂Θ ∂Θ ∂Θ

p A A
p p  (12) 
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M
C

M M
, for 1,...,

l l

lS l N

∂ ∂
⋅

∂Θ ∂Θ
= ≤ ∀ =

p A
p

p p
. (13) 

Expression (13) describes the relative sensitivity Sl of point pM with regards to parameter 

lΘ . For matrix norm calculation, a spectral norm 
2

A is suggested (Meyer, 2001). Replacing 

pC in (13) by relationship from Eq. (1), an expression for calculating the relative sensitivity 
for individual parameters yields: 

M
1 M 1 M

1

M M M
, for 1,...,

l l l

l

l

S l N

− −

−

∂ ∂ ∂
⋅ ⋅ ⋅

∂Θ ∂Θ ∂Θ ∂
= ≤ ≤ = ⋅ ∀ =

∂Θ

p A A
A p A p

A
A

p p p
. (14) 

Finally, the upper relative sensitivity limit of the whole model (SMAX) equals the sum of 
individual sensitivities: 

M

MAX 1

M
1 2

...
N

S −

∂

∂ ∂ ∂ ∂
= ≤ + + + ⋅

∂Θ ∂Θ ∂Θ

p

A A A
A

p
. (15) 

Sensitivity of a certain model, SMAX, shows how much the inaccuracies of measured model 
parameters destroy the correct coordinate system’s alignment. It can serve as a model 
robustness measure. On the other hand, the transformation sensitivities related to the 
individual parameters, Sl, indicate how much uncertain parameter measurements can ruin a 
good alignment. Thus, they rank the parameters according to their devastating influence on 
the correct alignment and point out those whose measurements must be done most 
accurately. 

3.3 Decomposition of vision-based tracking error 

With a suitable reference, such as a magnetic tracker, the tracking error of a vision-based 
system can always be assessed. However, as we showed in previous sections, this error 
consists of two contributions: the error which emerges from the tracking algorithm and the 
error caused by inaccurate coordinate system transformation. The latter depends on the 
combination of parameter values, and can be made in favour for any of the models A, B or C 
from Subsection 3.1 just with adequate choice of parameter values. It is therefore important 
that any comparison of the models respect the same specific set of parameters, related to one 
specific setup of the camera and magnetic tracker. All comparison results and conclusions 
are thus valid for this selected setup only. 
Performance of transformation models can be most realistically evaluated by comparing the 
actual motion trajectories obtained by the magnetic tracker with the aligned trajectories from 
the tracking algorithm. The RMS difference of matching coordinate pairs reveals the average 
deviation of the algorithm results from the magnetic tracker’s reference. However, this error 
does not reveal the true accuracy of the tracking algorithm, because the transformation 
errors caused by inaccurate parameter values also contribute to the difference between 
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trajectories. For detailed analysis, the transformation error needs to be separated from the 
tracking error of the algorithm. In the sequel, we describe two possible approaches.  

Analytical approach 
Eq. (1) explains the transformation of a 3D point from CSC into CSM under ideal 
circumstances. In reality, the measurements of control point positions T1, T2 and T3 contain 
inaccuracies. As a result, the transformation matrix A is determined corrupted. Denote it by 
Ae:

e = ⋅ ΔA A A , (16) 

where A is a 4×4 matrix representing the transformation errors. Any vision-based tracking 
algorithm is also incapable of estimating the exact location of a target pC, but instead reports 

corrupted coordinate position  C

ep :

C C C

e = Δ ⋅p P p . (17) 

Error matrix PC contains unknown coordinate errors dp1, dp2 and dp3 that are added to pC :

1

2C

3

1 0 0

0 1 0

0 0 1

0 0 0 1

dp

dp

dp
Δ =P , (18) 

The errors of magnetic tracker are considered significantly smaller than algorithm-based 
errors, so points pM are considered exact in this derivation. Finally, the transformation from 
CSC into CSM can, under realistic circumstances, be expressed by 

M C

e e= ⋅ ⋅p A C p , (19) 

where matrix C compensates the errors of both the algorithm and the transformation. Eq. 

(19) is valid for any pair of points Mp  and Cp . So, we can observe more of them together. If 

four points are selected, they together can be described by a matrix C C C C C

1 2 3 4=P p p p p .

This matrix contains ideal homogenous coordinates of four arbitrary points. Analogously, 

the corresponding error-corrupted points can be joint in matrix C

eP  and related magnetic 

measurements in matrix PM. If we can find four points whose coordinate errors dp1, dp2 and 
dp3 are the same, Eq. (17) can be extended to all four points together. Although this 
condition is hard to verify in practice, four measurements with the most similar error can 
still be found by searching through all the combinations of the observed points. A criterion 
for the error similarity will be presented at the end of this section. At this point, we suppose 
that PC contains the identical error of four selected points. 
By substitution of Eq. (1) in Eq. (17), the following relationship is obtained: 

( ) ( ) ( ) ( )
1 1 1 1

M C C C C C

e

− − − −

⋅ = ⋅ ⋅ ⋅ Δ = ⋅ ΔP P A P P P A P . (20) 

Since the left-hand side of (20) is known and PC has a specific structure, the contents of the 
ideal matrix A can be reconstructed as: 
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( )

1 1 1 1 1 1 1 1 1 1 1 2 1 3 1

1 2 2 2 2 2 2 2 2 2 1 2 2 2 3 2C

3 3 3 3 3 3 3 3 3 1 3 2 3 3 3

1 0 0

0 1 0

0 0 1

0 0 0 1 0 0 0 1 0 0 0 1

i j k o dp i j k i dp j dp k dp o

i j k o dp i j k i dp j dp k dp o

i j k o dp i j k i dp j dp k dp o

−

− − − − +
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First three columns of the resulting matrix in (21) represent the rotational part of ideal 
transformation matrix A, only the translation part (the fourth column) cannot be directly 
determined. However, new base vectors i, j, k, that are more reliable, can be computed and 

used to construct new transformation matrix Â . This matrix represents the best estimate of 

ideal matrix A. If Â  is used in Eq. (16) instead of A, the estimated transformation error A
can be obtained: 

( )
1

e
ˆ

−

Δ = ⋅A A A . (22) 

Using Eqs. (1) and (17), Eq. (19) can be rearranged into 

C C C= Δ ⋅ ⋅ Δ ⋅p A C P p , (23) 

which proves that 

CΔ ⋅ ⋅ Δ =A C P I , (24) 

where I stands for identity matrix.  
Since matrix C can be calculated from Eq. (19), the error matrix PC can also be determined, 
giving also the matrix PC afterwards: 

( ) ( )

( )

1 1C

1
C C C

e

,

.

− −

−

Δ = ⋅ Δ

= Δ ⋅

P C A

P P P
 (25) 

Finally, the exact vision-based points PC can be compared to magnetic tracker reference 
data, which results in a reliable tracking accuracy analysis. 
Of course, this conclusion is based on the assumptions that four point vectors joint in matrix 

C

eP  contain the same error PC and that the magnetic tracker can be considered error-free. If 

such a set of four points can be found that the reconstructed rotation vectors (denoted by 

ROTÂ ) are orthonormal to each other, then both assumptions are satisfied. This property can 

be used as a criterion function when searching for a suitable set of points: 

( ) ( )
ROT

T

ORTO ROT ROT ROT
ˆ

ˆ ˆ ˆ

a

f
∀ ∈

= ⋅ −
A

A A A I . (26) 

Four points obtained by tracking algorithm that generate the matrix ROTÂ  (using Eq. (20)) 

with the lowest fORTO value are the ones that best satisfy the assumptions.  

Statistical approach 
Another approach to separate the coordinate-system transformation error from the tracking-
algorithm error is based on statistics. It can always be implemented, which makes it 
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preferred to the analytical approach with four selected trajectory points whose proper 
choice is not always guaranteed in practice. Eq. (1) can again serve as a starting point, but 
instead of grouping four camera-based trajectory points with similar errors, we express the 
transformation of each point separately. Same as before, the ideal values of A and pC are 

unknown, only error-contaminated Ae and C

ep  are available: 

C C C

e e

M C

e e

, ,= + Δ = + Δ

+ =

A A A p p p

p e A p
 (27) 

Note that the transformation error ΔA  and algorithm-based error CΔp  are handled 

differently than in previous approach, although the same notation is adopted. Instead of 
multiplicative error model, an additive error model is used here. Vector e denotes the total 

deviation of each transformed point C

e eA p  from its magnetic reference position Mp . The 

error of magnetic tracker is considered to be insignificant compared to other errors, so the 
tracker’s measurements are considered exact. 
Using Eq. (27), the total tracking error can be expressed by 

( )( )M C C

C C

e

,

.

= − + + Δ + Δ

= Δ + Δ

e p A A p p

e A p Ap
 (28) 

Since the actual value of e can be calculated for each point, only A, ΔA , and CΔp  remain 

unknown. Matrices A and ΔA  remain constant throughout the analysis. Consequently, 
some estimates about their value can be made using statistical methods. First, the maximum 

expected error of each transformation parameter lΘ  must be realistically estimated. Then, a 

set of random, normally distributed errors is generated and added to the measured 
parameter values of a selected coordinate-system transformation model, resulting in a 
transformation matrix ASIM whose coefficients are influenced by additional errors 
introduced artificially and, thus, exactly known. This matrix is used to transform the points 

C

ep , recognized by vision-based algorithm. A new trajectory is obtained which is a variation 

of the proper camera-tracked trajectory in CSM. By repeating this process and generating a 
large set of possible transformation matrices, their mean transformation error mRMS(ASIM)
can be calculated. Due to the averaging properties of the RMS metrics, this error is expected 
to approximate the actual mean transformation error mRMS(Ae). Experiments confirm this, 
provided that Ae is sufficiently close to ideal A.
If a large enough set of errors is simulated, one or more of the resulting trajectories may 
closely resemble the ideal transformation. Unfortunately, it cannot be specifically identified 
since the initial measurement error of Ae remains unknown. The best we can do is to find 
the simulated trajectories that minimally or maximally deviate from the mRMS(ASIM) and use 

them as estimates of minimal and maximal expected transformation error, MIN

SIMΔA  and 
MAX

SIMΔA . When those values are entered into Eq. (28) together with matching ASIM and e

values, the estimated C

SIMΔp  can be calculated, and consequently the estimated C

SIMp  as well 

(Eq. (27)). Those simulation-based estimates can be used to statistically compare individual 
factors involved in the presented tracking accuracy analysis.  
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4. A practical example: stereo video tracking compared to the Polhemus 
Fastrak magnetic tracker 

To illustrate the presented ideas on a practical example, we describe an experiment in which 
the Polhemus 3Space Fastrak magnetic tracker (Polhemus, 1998) is used as a reference for 
analysis of 3D tracking algorithm based on images from the Videre Design’s STH-MD1-C 
stereo head (Videre, 2001). The obtained motion trajectories are aligned using all three 
presented transformation models and analyzed according to procedures explained in 
Section 3. 
The Fastrak tracker uses four wired sensors and produces measurements with static 

resolution of 0.8 mm RMS for position and 0.15° RMS for orientation. This accuracy is only 
achieved when the sensor is less than 75 cm away from magnetic transmitter. We adapted 
the experiment to this requirement and took several measures to ensure that 
electromagnetic interference was minimal. 
The digital STH-MD1-C stereo head uses two synchronized CMOS sensors with 9 cm of 
baseline distance and was in our case equipped with f = 48 mm lenses. At maximum 
resolution of 1288 × 1032 pixels the camera captures only 7.5 frames per second (fps), but if 
the frame size is reduced to 320 × 240 pixels, the frame rate increases to 110 fps. During all 
our experiments the camera was positioned approximately 1 meter away from the test 
subject. Detailed schematics of camera, Fastrak and test object are depicted in Fig. 6.  

Figure 6. Schematics of the experiment setup including a stereo camera (CSC), a source of 
magnetic pulses (CSM), magnetic sensor and a frame for limiting the movement of the user’s 
hand. Left side shows top view of the setup, right side shows side view 

Video data was processed by our algorithm for detection of human hands and faces (Divjak, 
2005). The algorithm uses bimodal colour and range information to detect consistent skin 
coloured regions. 3D centroids of those regions are tracked temporally by a Kalman filter-
based prediction algorithm, resulting in smooth 3D motion trajectories of the tracked objects 
(Fig. 7). 
The positions of all control points and other transformation model parameters were 
measured before conducting the experiment (Tables 1 and 2). Then, one of Fastrak’s sensors 
was attached to the back of the test subject’s right hand. The test subject moved his hand 
along a predefined, physically limited path so that the movement remained practically the 
same during all the experiments. Every time the stereo camera captured a pair of images, 
the position of magnetic sensor was read and stored. Three different video sequences were 
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captured, each consisting of 120 – 200 colour image pairs with 320 × 240 pixels, and, in 
parallel, also the magnetic tracker reference data. 

Figure 7. A few frames of the captured video overlaid with the object region borders (in 
white), as detected by the stereo tracking algorithm 

Parameter d1 d2 d mH mV

Value 490 mm 14 mm 48 mm 85 pixels 9 pixels 

Table 1. Manually measured transformation parameter values for models A, B and C 

Parameter x1 y1 z1 x2 y2 z2 x3 y3 z3

Model A (mm) 201.4 241.9 91.3 211.2 522.2 100.2 -68.1 266.0 124.5 

Model B (mm) -83.7 204.8 88.9 -62.4 -99.4 -41.7 -97.4 198.8 84.8 

Model C (mm) -83.7 204.8 88.9 -62.4 -99.4 -41.7 107.4 -17.7 -10.6 

Table 2. Coordinates of control point T1, T2, T3 for models A, B and C as determined by the 
Polhemus magnetic tracker 

4.1 Comparison of transformation models 

Using parameter values from Table 1 and Table 2 the base vectors iC, jC, kC and coordinate 
system origin oC were calculated for each model (Table 3). Those vectors can be used to 
construct transformation matrix A by Eq. (2). Relative sensitivity of model parameters is 
presented in Table 4. Finally, the upper sensitivity limit SMAX of each transformation model 
is compared in Table 5. With our selection of parameter values, the model A turned out to 
be the most sensitive. 

Model Calculated CSC base vector values 

A
C C C C

0.999 0.037 -0.035 -288.6

-0.028 , -0.033 , -0.999 , 255.9

-0.038 0.999 -0.032 96.0

= = = =i j k o

B
C C C C

0.999 0.037 -0.027 -289.2

-0.028 , -0.038 , -0.999 , 250.0

-0.038 0.999 -0.037 96.1

= = = =i j k o

C
C C C C

0.998 0.038 -0.027 -289.2

-0.045 , -0.038 , -0.999 , 250.0

-0.040 0.998 -0.037 96.1

= = = =i j k o

Table 3. Base vectors of CSC and its origin (expressed in CSM), as defined by measured 
parameter values 
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Model A Model B Model C 

Parameter Sl value Parameter Sl value Parameter Sl value

x1 398.5 x1 410.4 x1 408.8 

y1 175.2 y1 390.7 y1 389.1 

z1 174.8 z1 410.2 z1 408.5 

x2 1.4 x2 20.4 x2 20.3 

y2 0.7 y2 3.4 y2 3.4 

z2 19.9 z2 20.3 z2 20.2 

x3 10.6 x3 0.4 x3 0.1 

y3 224.3 y3 6.9 y3 0.1 

z3 224.3 z3 4.5 z3 0.8 

d1 398.6 d 390.1 d 388.5

d2 398.6 mH 0.5 

mV 4.6 

Table 4. Numerical relative sensitivity values Sl for all parameters of models A, B and C 

Model A B C 

SMAX 2026.9 1661.1 1651.2 

Table 5. The upper sensitivity limit (SMAX) of models A, B and C for our experimental setup 

4.2 Trajectory comparison 

Fig. 7 shows an example of how the algorithm detected the image regions that represent the 
tracked objects. However, it doesn’t give us any clue about how accurate is matching 
between the reconstructed and the reference 3D position. To obtain this information, all 
captured trajectories were transformed from CSC into CSM (using constructed matrices A)
and their deviation from the magnetic reference was estimated. Table 6 reports RMS 
differences for all three transformation models. An example of the aligned trajectories is 
depicted in Fig. 8.  We experimented with 3 trajectories consisting of 500 3D points all 
together.

Model
X RMS 

difference 
(mm)

Y RMS 
difference 

(mm)

Z RMS 
difference 

(mm)

Total RMS 
difference 

(mm)

A 16.1 ± 6,1 5.8 ± 1.2 10.7 ± 1.7 20.5 ± 4.9 

B 14.8 ± 2.9 12.7 ± 0.7 72.5 ± 6.4 75.1 ± 6.8 

C 34.7 ± 3.2 12.7 ± 0.4 55.1 ± 6.7 66.4 ± 6.9 

Table 6. The RMS difference between the coordinates of video-based and magnetic-based 
trajectories, as aligned by each transformation model. Mean values plus standard deviation 
for all captured trajectories are shown 



Analysis of Video-Based 3D Tracking Accuracy  
by Using Electromagnetic Tracker as a Reference 107

Figure 8. An example of transformation of vision-based trajectories from CSC to CSM, for 
each transformation model. The magnetic tracker data is depicted by solid lines, the video-
based tracking algorithm data is depicted by dotted lines 

4.3 Error analysis 

The total tracking error (Table 6) origins in the transformation error and algorithm error, as 
described in Section 3.3. We tried to decompose the total error into its constituent 
components by the proposed statistical approach. First, we empirically estimated maximal 
expected errors of all model parameters. For Fastrak measurements, its factory specified 

accuracy of ± 0.8 mm was used, while for manual measurements with a tape measure we 

estimated accuracy of ± 0.5 mm. For measurements in pixels we estimated an error of ± 0.5 
pixel, which according to our setup (the camera was 1 m away from the object) is equivalent 

to ± 4 mm. Using those values we generated a set of random, normally distributed 
measurement errors (zero mean, 1000 Monte-Carlo runs) that were added to actual 

measured parameter values, simulating the effect of error matrix ΔA . Mean values of 
vectors of the simulated matrix ASIM are shown in Table 7. 

Model Simulated CSC base vector values 

A
C C C C

0,999 0,000 0,037 0,001 -0,035 0,004 -288,7 0,8

-0,028 0,001 , -0,033 0,004 , -0,999 0,000 , 249,9 0,6

-0,038 0,001 0,999 0,000 -0,032 0,004 95,8 0,7

± ± ± ±

= ± = ± = ± = ±

± ± ± ±

i j k o

B
C C C C

0,999 0,001 0,037 0,011 -0,027 0,003 -289,2 0,7

-0,028 0,011 , -0,038 0,003 , -0,999 0,000 , 249,9 0,8

-0,038 0,011 0,999 0,000 -0,037 0,003 96,1 0,7

± ± ± ±

= ± = ± = ± = ±

± ± ± ±

i j k o

C
C C C C

0,999 0,000 0,038 0,007 -0,027 0,003 -289,2 0,8

-0,025 0,003 , -0,038 0,003 , -0,999 0,000 , 249,9 0,8

-0,038 0,011 0,999 0,000 -0,037 0,003 96,1 0,8

± ± ± ±

= ± = ± = ± = ±

± ± ± ±

i j k o

Table 7. Base vectors of CSC and its origin (expressed in CSM), obtained by a simulated 
matrix ASIM. Mean values and standard deviations were estimated by 1000 iterations 

The effect of transformation errors was evaluated on all available trajectories, detected by 
the tracking algorithm during our experiments. Each trajectory was transformed into CSM

using matrix ASIM and compared to the magnetic reference. Trajectories with minimal and 
maximal deviation from the mean simulated value were identified and the resulting 

transformation errors MIN

SIMΔA  and MAX

SIMΔA  were used to calculate the lower and upper 

bounds of estimated tracking errors, separating the transformation error from the error of 
the tracking video-based algorithm (Table 8). 

Model A Model B Model C
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Model
Min.

transformation
error (mm RMS) 

Max.
transformation

error (mm RMS) 

Min. algorithm 
error

(mm RMS) 

Max. algorithm 
error

(mm RMS) 

A 2.5 ± 0.002 11.6 ± 0.02 17.1 20.5 

B 2.3 ± 0.02 9.5 ± 0.23 20.9 22.8 

C 1.7 ± 0.01 6.3 ± 0.08 21.4 22.2 

Table 8. Separation of total tracking error into transformation-induced error and algorithm-

induced error. Values shown are mean estimates based on MIN

SIMΔA  and MAX

SIMΔA , for all 

captured trajectories 

4.4 Discussion 

Our experiment demonstrates the importance of trajectory transformation models and their 
effects on the estimated tracking error. The main difference between the presented models 
was the placement and the way of measuring the control point positions. In model A, 
control points T1, T2, T3 are measured at a safe distance from the stereo camera and its 
coordinate system centre (approximately 50 cm). When a measurement error is made, its 
effect on the calculation of camera orientation is much smaller than if the same 
measurement error is made at close distance to the coordinate origin. In models B and C the 
metal body of the camera distorted the measurements slightly, but close to the CSC origin 
the prevailing errors appear again. 
It is important to notice that an imprecise physical alignment of the stereo camera’s two 
image sensors significantly corrupts the trajectory comparison. This is particularly obvious 
for models B and C, because they require manual alignment of control point T2 with the left 
optical axis. Any displacement of the optical axis can be verified during the calibration of 
the camera and should be corrected accordingly. 
Relative sensitivity values in Table 4 show which parameters amplify the measurement 
errors the most, possibly causing a significant transformation error. In model A, such 
parameters are T1, T3, d1 and d2. In models B and C, parameters T1 and d are the most 
sensitive. Comparison of the upper relative sensitivity limits SMAX (Table 5) also confirms 
that model A is the most sensitive, while model C is the least. But, we need to consider the 
fact that a highly sensitive parameter with low actual numerical value can have less impact 
on the transformation than a parameter with low sensitivity and large numerical value. For 
example, if a measurement error of a few millimetres is made at close distance to the camera 
(like control point T3 in model B), it would greatly distort the trajectory comparison, even if 
the parameter in question has very low sensitivity.  
Consequently, the trajectory comparison results cannot be matched directly with the 
estimated SMAX. In our experiments, the real parameter values generated such coordinate 
system transformations that model A produced the lowest tracking error, while model B 
performed the worst (Table 6, Fig. 8). On the other hand, the simulation of the 

transformation errors ΔA  determined the trajectories with the minimum and maximum 
errors (Table 8). In this context, model C corresponds to the lowest expected error, while 
model A to the biggest, which is consistent with the SMAX predictions. Thus, a conclusion 
based on the model sensitivity about the accuracy of the proposed coordinate-system 
transformation is that model C is theoretically the least error-prone, while model A is the 
most. 
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Since the identical tracking algorithm data was used in all comparisons, the error of the 
tracking algorithm should appear the same for all three transformation models. Our best 
estimate of the total tracking error is 20.5 mm RMS, as obtained by model A (Table 6). The 
minimal and the maximal transformation errors of individual models can be used to 
decompose the total tracking error, resulting in estimates of the lower and upper bound of 
the algorithm error. For model A, the transformation error is estimated between 2.5 and 11.6 
mm RMS, while the algorithm video-based error is between 17.1 and 20.5 mm RMS (Table 
8).
Reference measurements of the Fastrak tracker also contain certain inaccuracies, but since 
their magnitude is significantly lower than transformation error or algorithm error, they are 
ignored and Fastrak measurements are considered error-free. However, in experiments 
where the magnetic sensor is more than 75 cm away from the magnetic transmitter, those 
errors should be considered and compensated accordingly. 

5. Conclusion 

When a magnetic tracker is used as a reference for vision-based tracking, a reliable 
transformation of their coordinate systems is crucial for proper tracking accuracy 
estimation. To address this issue in more detail, three different models of coordinate system 
alignment were developed. By analyzing the worst-case sensitivity of transformation 
models a limited comparison of those models is possible. The most influential model 
parameters are easy to identify and should be measured with special care. However, the 
actual parameter values used also have a significant effect on the final transformation error. 
With appropriate selection of parameter values, any model can be manipulated to produce 
the most accurate transformation. Therefore, such comparisons are only reasonable if the 
parameters are fixed to a certain setup of a camera and a magnetic tracker. 
In our experiment the transformation model A resulted in the lowest total trajectory 
difference, despite being the most sensitive. Statistical separation of this error into estimates 
of the tracking algorithm’s error and the transformation-induced error provides more 
detailed discrepancy analysis. 
The presented approach is applicable to any setup where the performance of video-based 
tracking is to be estimated by a reference device with its separate coordinate system. 
Experimentally determined parameter values and conclusions are valid only for the specific 
setup, but the proposed methodology can be applied to any similar problem. 
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