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1. Introduction 

Embedded systems comprise small-size computing platforms that are self-sufficient. This 
means that they contain all the software and hardware components which are “embedded” 
inside the system so that complete applications can be realised and executed without the aid 
of other means or external resources. Usually, embedded systems are found in portable 
computing platforms such as PDAs, mobile and smart phones as well as GPS receivers. 
Nevertheless, larger systems such as microwave ovens and vehicle electronics, contain 
embedded systems. An embedded platform can be thought of as a configuration that 
contains one or more general microprocessor or microprocessor core, along with a number 
of customized, special function co-processors or accelerators on the same electronic board or 
integrated inside the same System-on-Chip (Soc). Often in our days, such embedded 
systems are implemented using advanced Field-Programmable Gate Arrays (FPGAs) or 
other types of Programmable Logic Devices (PLDs). FPGAs have improved a great deal in 
terms of integrated area, circuit performance and low power features. FPGA 
implementations can be easily and rapidly prototyped, and the system can be easily 
reconfigured when design updates or bug fixes are present and needed.  

During the last 3-4 decades, the advances on chip integration capability have increased the 
complexity of embedded and in general custom VLSI systems to such a level that sometimes 
their spec-to-product development time exceeds even their product lifetime in the market. 
Because of this, and in combination with the high design cost and development effort 
required for the delivery of such products, they often even miss their market window. This 
problem generates competitive disadvantages for the relevant industries that design and 
develop these complex computing products. The current practice in the used design and 
engineering flows, for the development of such systems and applications, includes to a large 
extent approaches which are semi-manual, add-hoc, incompatible from one level of the 
design flow to the next, and with a lot of design iterations caused by the discovery of 
functional and timing bugs, as well as specification to implementation mismatches late in 
the development flow. All of these issues have motivated industry and academia to invest in 
suitable methodologies and tools to achieve higher automation in the design of 
contemporary systems. Nowadays, a higher level of code abstraction is pursued as input to 
automated E-CAD tools. Furthermore, methodologies and tools such as High-level 
Synthesis (HLS) and Electronic System Level (ESL) design entry employ established 
techniques, which are borrowed from the computer language program compilers and 
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mature E-CAD tools and new algorithms such as advanced scheduling, loop unrolling and 
code motion heuristics. 

The conventional approach in designing complex digital systems is the use of Register-
Transfer Level (RTL) coding in hardware description languages such as VHDL and Verilog. 
However, for designs that exceed an area of a hundred thousand logic gates, the use of RTL 
models for specification and design can result into years of design flow loops and 
verification simulations. Combined with the short lifetime of electronic products in the 
market, this constitutes a great problem for the industry. The programming style of the 
(hardware/software) specification code has an unavoidable impact on the quality of the 
synthesized system. This is deteriorated by models with hierarchical blocks, subprogram 
calls as well as nested control constructs (e.g. if-then-else and while loops). For these models 
the complexity of the transformations that are required for the synthesis tasks (compilation, 
algorithmic transformations, scheduling, allocation and binding) increases at an exponential 
rate, for a linear increase in the design size. 

Usually the input code (such as ANSI-C or ADA) to HLS tool, is first transformed into a 

control/data flow graph (CDFG) by a front-end compilation stage. Then various synthesis 

transformations are applied on the CDFG to generate the final implementation. The most 

important HLS tasks of this process are scheduling, allocation and binding. Scheduling 

makes an as-much-as-possible optimal order of the operations in a number of control steps 

or states. Optimization at this stage includes making as many operations as possible parallel, 

so as to achieve shorter execution times of the generated implementation. Allocation and 

binding assign operations onto functional units, and variables and data structures onto 

registers, wires or memory positions, which are available from an implementation library. 

A number of commercial HLS tools exist nowadays, which often impose their own 

extensions or restrictions on the programming language code that they accept as input, as 

well as various shortcuts and heuristics on the HLS tasks that they execute. Such tools are 

the CatapultC by Mentor Graphics, the Cynthesizer by Forte Design Systems, the Impulse 

CoDeveloper by Impulse Accelerated Technologies, the Synfony HLS by Synopsys, the C-to-

silicon by Cadence, the C to Verilog Compiler by C-to-Verilog, the AutoPilot by AutoESL, 

the PICO by Synfora, and the CyberWorkBench by NEC System Technologies Ltd. The 

analysis of these tools is not the purpose of this work, but most of them are suitable for 

linear, dataflow dominated (e.g. stream-based) applications, such as pipelined DSP and 

image filtering. 

An important aspect of the HLS tools is whether their transformation tasks (e.g. within the 
scheduler) are based on formal techniques. The latter would guarantee that the produced 
hardware implementations are correct-by-construction. This means that by definition of the 
formal process, the functionality of the implementation matches the functionality of the 
behavioral specification model (the source code). In this way, the design will need to be 
verified only at the behavioral level, without spending hours or days (or even weeks for 
complex designs) of simulations of the generated register-transfer level (RTL), or even worse 
of the netlists generated by a subsequent RTL synthesis of the implementations. Behavioral 
verification (at the source code level) is orders of magnitude faster than RTL or even more 
than gate-netlist simulations. Releasing an embedded product with bugs can be very 
expensive, when considering the cost of field upgrades, recalls and repairs. Something that 
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is less measurable, but very important as well, is the damage done to the industry’s 
reputation and the consequent loss of customer trust. However, many embedded products 
are indeed released without all the testing that is necessary and/or desirable. Therefore, the 
quality of the specification code as well as formal techniques employed during 
transformations (“compilations”) in order to deliver the hardware and software components 
of the system, are receiving increasing focus in embedded application development. 

This chapter reviews previous and existing work of HLS methodologies for embedded 
systems. It also discusses the usability and benefits using the prototype hardware 
compilation system which was developed by the author. Section 2 discusses related work. 
Section 3 presents HLS problems related to the low energy consumption which is 
particularly interesting for embedded system design. The hardware compilation design flow 
is explained in section 4. Section 5 explains the formal nature of the prototype compiler’s 
formal logic inference rules. In section 6 the mechanism of the formal high-level synthesis 
transformations of the back-end compiler is presented. Section 7 outlines the structure and 
logic of the PARCS optimizing scheduler which is part of the back-end compiler rules. 
Section 8 explains the available options for target micro-architecture generation and the 
communication of the accelerators with their computing environment. Section 9 outlines the 
execution environment for the generated hardware accelerators. Sections 10 and 11 discuss 
experimental results, draw useful conclusions, and propose future work. 

2. Background and review of ESL methodologies 

2.1 The scheduling task 

The scheduling problem covers two major categories: time-constrained scheduling and 
resource-constrained scheduling. Time-constrained scheduling attempts to achieve the 
lowest area or number of functional units, when the total number of control steps (states) 
is given (time constraint). Resource-constrained scheduling attempts to produce the 
fastest schedule (the fewest control states) when the amount of hardware resources or 
hardware area are given (resource constraint). Integer linear programming (ILP) solutions 
have been proposed, but their run time grows exponentially with the increase of design 
size, which makes them impractical. Heuristic methods have also been proposed to 
handle large designs and to provide sub-optimal but practical implementations. There are 
two heuristic scheduling techniques: constructive solutions and iterative refinement. Two 
constructive methods are the as-soon-as-possible (ASAP) and the as-late-as-possible 
(ALAP) approach. 

In both ASAP and ALAP scheduling, the operations that belong to the critical path of the 

design are not given any special priority over other operations. Thus, excessive delay may 

be imposed on the critical path operations. This is not good for the quality of the produced 

implementation. On the contrary, list scheduling utilizes a global priority function to select 

the next operation to be scheduled. This global priority function can be either the mobility 

(Pangrle & Gajski, 1987) of the operation or its urgency (Girczyc et al., 1985). Force-directed 

scheduling (Paulin & Knight, 1989) calculates the range of control steps for each operation 

between the operation’s ASAP and ALAP state assignment. It then attempts to reduce the 

total number of functional units of the design’s implementation, in order to evenly 

distribute the operations of the same type into all of the available states of the range.  
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The problem with constructive scheduling is that there is not any lookahead into future 

assignment of operations into the same control step, which may lead to sub-optimal 

implementations. After an initial schedule is delivered by any of the above scheduling 

algorithms, then iterative scheduling produces new schedules, by iteratively re-scheduling 

sequences of operations that maximally reduce the cost functions (Park & Kyung, 1991). This 

method is suitable for dataflow-oriented designs with linear control. In order to schedule 

control-intensive designs, the use of loop pipelining (Park & Parker, 1988) and loop folding 

(Girczyc, 1987), have been reported in the bibliography. 

2.2 Allocation and binding tasks 

Allocation determines the type of resource storage and functional units, selected from the 

library of components, for each data object and operation of the input program. Allocation 

also calculates the number of resources of each type that are needed to implement every 

operation or data variable. Binding assigns operations, data variables, data structures and 

data transfers onto functional units, storage elements (registers or memory blocks) and 

interconnections respectively. Also binding makes sure that the design’s functionality does 

not change by using the selected library components. 

Generally, there are three kinds of solutions to the allocation problem: constructive 

techniques, decomposition techniques and iterative approaches. Constructive allocation 

techniques start with an empty implementation and progressively build the datapath and 

control parts of the implementation by adding more functional, storage and interconnection 

elements while they traverse the CDFG or any other type of internal graph/representation 

format. Decomposition techniques divide the allocation problem into a sequence of well-

defined independent sub-tasks. Each such sub-task is a graph-based theoretical problem 

which is solved with any of the three well known graph methods: clique partitioning, the 

left-edge technique and the weighted bipartite matching technique. The task of finding the 

minimum cliques in the graph which is the solution for the sub-tasks, is a NP-hard problem, 

so heuristic approaches (Tseng & Siewiorek, 1986)  are utilized for allocation. 

Because the conventional sub-task of storage allocation, ignores the side-effects between the 

storage and interconnections allocation, when using the clique partitioning technique, graph 

edges are enhanced with weights that represent the effect on interconnection complexity. 

The left-edge algorithm is applied on the storage allocation problem, and it allocates the 

minimum number of registers (Kurdahi & Parker, 1987). A weighted, bipartite-matching 

algorithm is used to solve both the storage and functional unit allocation problems. First a 

bipartite graph is generated which contains two disjoint sets, e.g. one for variables and one 

for registers, or one for operations and one for functional units. An edge between one node 

of the one of the sets and one node of the other represents an allocation of e.g. a variable to a 

register. The bipartite-matching algorithm considers the effect of register allocation on the 

design’s interconnection elements, since the edges of the two sets of the graph are weighted 

(Huang et al., 1990). In order to improve the generated datapaths iteratively, a simple 

assignment exchange, using the pairwise exchange of the simulated annealing, or by using a 

branch-and-bound approach is utilized. The latter reallocates groups of elements of different 

types (Tsay & Hsu, 1990). 
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2.3 Early high-level synthesis 

HLS has been an active research field for more than two decades now. Early approaches of 
experimental synthesis tools that synthesized small subsets of programming constructs or 
proprietary modeling formats have emerged since the late 80’s. As an example, an early tool 
that generated hardware structures from algorithmic code, written in the PASCAL-like, 
Digital System Specification language (DSL) is reported in (Camposano & Rosenstiel, 1989). 
This synthesis tool performs the circuit compilation in two steps: first step is datapath 
synthesis which is followed by control synthesis.  Examples of other behavioral circuit 
specification languages of that time, apart from DSL, were DAISY (Johnson, 1984), ISPS 
(Barbacci et al., 1979), and MIMOLA (Marwedel, 1984).  

In (Casavant et al., 1989) the circuit to be synthesized is described with a combination of 
algorithmic and structural level code and then the PARSIFAL tool synthesizes the code into 
a bit-serial DSP circuit implementation. The PARSIFAL tool is part of a larger E-CAD 
system called FACE and which included the FACE design representation and design 
manager core. FACE and PARSIFAL were suitable for DSP pipelined implementations, 
rather than for a more general behavioral hardware models with hierarchy and complex 
control. 

According to (Paulin & Knight, 1989)  scheduling consists of determining the propagation 
delay of each operation and then assigning all operations into control steps (states) of a finite 
state machine. List-scheduling uses a local priority function to postpone the assignment of 
operations into states, when resource constraints are violated. On the contrary, force-
directed scheduling (FDS) tries to satisfy a global execution deadline (time constraint) while 
minimizing the utilized hardware resources (functional units, registers and busses). The 
force-directed list scheduling (FDLS) algorithm attempts to implement the fastest schedule 
while satisfying fixed hardware resource constraints.  

The main HLS tasks in (Gajski &  Ramachandran, 1994) include allocation, scheduling and 
binding. According to (Walker & Chaudhuri, 1995) scheduling is finding the sequence of 
which operations to execute in a specific order so as to produce a schedule of control steps 
with allocated operations in each step of the schedule; allocation is defining the required 
number of functional, storage and interconnect units; binding is assigning operations to 
functional units, variables and values to storage elements and forming the interconnections 
amongst them to form a complete working circuit that executes the functionality of the 
source behavioral model.  

The V compiler (Berstis, 1989) translates sequential descriptions into RTL models using 
parsing, scheduling and resource allocation. The source sequential descriptions are written 
in the V language which includes queues, asynchronous calls and cycle blocks and it is 
tuned to a kind of parallel hardware RTL implementations. The V compiler utilizes 
percolation scheduling (Fisher, 1981) to achieve the required degree of parallelism by 
meeting time constraints.  

A timing network is generated from the behavioral design in (Kuehlmann & Bergamaschi, 
1992) and is annotated with parameters for every different scheduling approach. The 
scheduling approach in this work attempts to satisfy a given design cycle for a given set of 
resource constraints, using the timing model parameters. This approach uses an integer 
linear program (ILP) which minimizes a weighted sum of area and execution time of the 
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implementation. According to the authors, their Symphony tool delivers better area and 
speed than ADPS (Papachristou & Konuk, 1990). This synthesis technique is suitable for 
data-flow designs (e.g. DSP blocks) and not for more general complex control flow designs. 

The CALLAS synthesis framework (Biesenack et al., 1993), transforms algorithmic, 
behavioral VHDL models into VHDL RTL and gate netlists, under timing constraints. The 
generated circuit is implemented using a Moore-type finite state machine (FSM), which is 
consistent with the semantics of the VHDL subset used for the specification code. Formal 
verification techniques such as equivalence checking, which checks the equivalence between 
the original VHDL FSM and the synthesized FSM are used in the CALLAS framework by 
using the symbolic verifier of the Circuit Verification Environment (CVE) system (Filkorn, 
1991).  

The Ptolemy framework (Kalavade & Lee, 1993) allows for an integrated hardware-software 
co-design methodology from the specification through to synthesis of hardware and 
software components, simulation and evaluation of the implementation. The tools of 
Ptolemy can synthesize assembly code for a programmable DSP core (e.g. DSP processor), 
which is built for a synthesis-oriented application. In Ptolemy, an initial model of the entire 
system is partitioned into the software and hardware parts which are synthesized in 
combination with their interface synthesis.  

The Cosyma hardware-software co-synthesis framework (Ernst et al., 1993) realizes an 
iterative partitioning process, based on a hardware extraction algorithm which is driven by 
a cost function. The primary target in this work is to minimize customized hardware within 
microcontrollers but the same time to allow for space exploration of large designs. The 
specialized co-processors of the embedded system can be synthesized using HLS tools. The 
specification language is based on C with various extensions. The generated hardware 
descriptions are in turn ported to the Olympus HLS tool (De Micheli et al., 1990). The 
presented work included tests and experimental results based on a configuration of an 
embedded system, which is built around the Sparc microprocessor. 

Co-synthesis and hardware-software partitioning are executed in combination with control 
parallelism transformations in (Thomas et al., 1993). The hardware-software partition is 
defined by a set of application-level functions which are implemented with application-
specific hardware. The control parallelism is defined by the interaction of the processes of 
the functional behavior of the specified system. The system behavior is modeled using a set 
of communicating sequential processes (Hoare, 1985). Each process is then assigned either to 
hardware or to software implementation.  

A hardware-software co-design methodology, which employs synthesis of heterogeneous 
systems, is presented in (Gupta & De Micheli, 1993). The synthesis process is driven by 
timing constraints which drive the mapping of tasks onto hardware or software parts so that 
the performance requirements of the intended system are met. This method is based on 
using modeling and synthesis of programs written in the HardwareC language. An example 
application which was used to test the methodology in this work was an Ethernet-based 
network co-processor.  

2.4 Next generation high-level synthesis tools 

More advanced methodologies and tools started appearing from the late 90s and continue 
with improved input programming code sets as well as scheduling and other optimization 
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algorithms. The CoWare hardware-software co-design environment (Bolsens et al., 1997)  is 
based on a data model that allows the user to specify, simulate and produce heterogeneous 
implementations from heterogeneous specification source models. This synthesis approach 
focuses on designing telecommunication systems that contain DSP, control loops and user 
interfaces. The synchronous dataflow (SDF) type of algorithms found in a category of DSP 
applications, can easily be synthesized into hardware from languages such as SILAGE 
(Genin et al., 1990), DFL (Willekens et al., 1994), and LUSTRE (Halbwachs et al. 1991). In 
contrast to this, dynamic dataflow (DDF) algorithms consume and produce tokens that are 
data-dependent, and thus they allow for complex if-then-else and while loop control 
constructs. CAD systems that allow for specifying both SDF and DDF algorithms and 
perform as much as possible static scheduling are the DSP-station from Mentor Graphics 
(Van Canneyt, 1994), PTOLEMY (Buck et al., 1994), GRAPE-II (Lauwereins et al., 1995), 
COSSAP from Synopsys and SPW from the Alta group (Rafie et al., 1994).  

C models that include dynamic memory allocation, pointers and the functions malloc and 
free are mapped onto hardware in (Semeria et al., 2001). The SpC tool which was developed 
in this work resolves pointer variables at compile time and thus C functional models are 
synthesized into Verilog hardware models. The synthesis of functions in C, and therefore 
the resolution of pointers and malloc/free inside of functions, is not included in this work. 
The different techniques and optimizations described above have been implemented using 
the SUIF compiler environment (Wilson et al., 1994).  

A heuristic for scheduling behavioral specifications that include a lot of conditional control 
flow, is presented in (Kountouris & Wolinski, 2002). This heuristic is based on a powerful 
intermediate design representation called hierarchical conditional dependency graph 
(HCDG). HCDG allows chaining and multicycling, and it enables advanced techniques such 
as conditional resource sharing and speculative execution, which are suitable for scheduling 
conditional behaviors. The HLS techniques in this work were implemented in a prototype 
graphical interactive tool called CODESIS which used HCDG as its internal design 
representation. The tool generates VHDL or C code from the HCDG, but no translation of 
standard programming language code into HCDG are known so far. 

A coordinated set of coarse-grain and fine-grain parallelizing HLS transformations on the 
input design model are discussed in (Gupta et al., 2004). These transformations are executed 
in order to deliver synthesis results that don’t suffer from the negative effects of complex 
control constructs in the specification code. All of the HLS techniques in this work were 
implemented in the SPARK HLS tool, which transforms specifications in a small subset of C 
into RTL VHDL hardware models. SPARK utilizes both control/data flow graphs (CDFGs) 
as well as an encapsulation of basic design blocks inside hierarchical task graphs (HTGs),  
which enable coarse-grain code restructuring such as loop transformations and an efficient 
way to move operations across large pieces of specification code.  

Typical HLS tasks such as scheduling, resource allocation, module binding, module 
selection, register binding and clock selection are executed simultaneously in (Wang et al., 
2003)  so as to achieve better optimization in design energy, power and area. The scheduling 
algorithm utilized in this HLS methodology applies concurrent loop optimization and 
multicycling and it is driven by resource constraints. The state transition graph (STG) of the 
design is simulated in order to generate switched capacitance matrices. These matrices are 
then used to estimate power/energy consumption of the design’s datapath. Nevertheless, 
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the input to the HLS tool, is not programming language code but a proprietary format 
representing an enhanced CDFG as well as a RTL design library and resource constraints.  

An incremental floorplanner is described in (Gu et al., 2005)  which is used in order to 
combine an incremental behavioral and physical optimization into HLS. These techniques 
were integrated into an existing interconnect-aware HLS tool called ISCALP (Zhong & Jha, 
2002). The new combination was named IFP-HLS (incremental floorplanner high-level 
synthesis) tool, and it attempts to concurrently improve the design’s schedule, resource 
binding and floorplan, by integrating high-level and physical design algorithms.  

(Huang et al., 2007) discusses a HLS methodology which is suitable for the design of 
distributed logic and memory architectures. Beginning with a behavioral description of the 
system in C, the methodology starts with behavioral profiling in order to extract simulation 
statistics of computations and references of array data. Then array data are distributed into 
different partitions. An industrial tool called Cyber (Wakabayashi, 1999)  was developed 
which generates a distributed logic/memory micro-architecture RTL model, which is 
synthesizable with existing RTL synthesizers, and which consists of two or more partitions, 
depending on the clustering of operations that was applied earlier.  

A system specification containing communicating processes is synthesized in (Wang et al., 
2003). The impact of the operation scheduling is considered globally in the system critical 
path (as opposed to the individual process critical path), in this work. It is argued by the 
authors in this work, that this methodology allocates the resources where they are mostly 
needed in the system, which is in the critical paths, and in this way it improves the overall 
multi-process designed system performance. 

The work in (Gal et al., 2008)  contributes towards incorporating memory access 
management within a HLS design flow. It mainly targets digital signal processing (DSP) 
applications but also other streaming applications can be included along with specific 
performance constraints. The synthesis process is performed on the extended data-flow 
graph (EDFG) which is based on the signal flow graph. Mutually exclusive scheduling 
methods (Gupta et al., 2003; Wakabayashi & Tanaka, 1992) are implemented with the EDFG. 
The graph which is processed by a number of annotations and improvements is then given 
to the GAUT HLS tool (Martin et al., 1993)  to perform operator selection and allocation, 
scheduling and binding. 

A combined execution of operation decomposition and pattern-matching techniques is 
targeted to reduce the total circuit area in (Molina et al., 2009). The datapath area is reduced 
by decomposing multicycle operations, so that they are executed on monocycle functional 
units (FUs that take one clock cycle to execute and deliver their results). A simple formal 
model that relies on a FSM-based formalism for describing and synthesizing on-chip 
communication protocols and protocol converters between different bus-based protocols is 
discussed in (Avnit, 2009). The utilized FSM-based format is at an abstraction level which is 
low enough so that it can be automatically translated into HDL implementations. The 
generated HDL models are synthesizable with commercial tools. Synchronous FSMs with 
bounded counters that communicate via channels are used to model communication 
protocols. The model devised in this work is validated with an example of communication 
protocol pairs which included AMBA APB and ASB. These protocols are checked regarding 
their compatibility, by using the formal model.  
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The methodology of SystemCoDesigner (Keinert et al., 2009) uses an actor-oriented 
approach so as to integrate HLS into electronic system level (ESL) design space exploration 
tools. The design starts with an executable SystemC system model. Then, commercial 
synthesizers such as Forte’s Cynthesizer are used in order to generate hardware 
implementations of actors from the behavioral model. This enables the design space 
exploration in finding the best candidate architectures (mixtures of hardware and software 
modules). After deciding on the chosen solution, the suitable target platform is then 
synthesized with the implementations of the hardware and software parts. The final step of 
this methodology is to generate the FPGA-based SoC implementation from the chosen 
hardware/software solution. Based on the proposed methodology, it seems that 
SystemCoDesigner method is suitable for stream-based applications, found in areas such as 
DSP, image filtering and communications.  

A formal approach is followed in (Kundu et al., 2010)  so as to prove that every HLS 
translation of a source code model produces a RTL model that is functionally-equivalent to 
the one in the behavioral input to the HLS tools. This technique is called translation 
validation and it has been maturing via its use in the optimizing software compilers. The 
validating system in this work is called SURYA, it is using the Symplify theorem prover and 
it was used to validate the SPARK HLS tool. This validation work found two bugs in the 
SPARK compilations. 

The replacement of flip-flop registers with latches is proposed in (Paik et al., 2010)  in order 
to yield better timing in the implemented designs. The justification for this is that latches are 
inherently more tolerant to process variations than flip-flops. These techniques were 
integrated into a tool called HLS-1. HLS-1 translates behavioral VHDL code into a 
synthesized netlist. Nevertheless, implementing registers with latches instead of edge-
triggered flip-flops is generally considered to be cumbersome due to the complicated timing 
behavior of latches. 

3. Synthesis for low power 

A number of portable and embedded computing systems and applications such as mobile 
(smart) phones, PDAs, etc, require low power consumption therefore synthesis for low 
energy is becoming very important in the whole area of VLSI and embedded system design. 
During the last decade, industry and academia invested on significant part of research 
regarding VLSI techniques and HLS for low power design. In order to achieve low energy in 
the results of HLS and system design, new techniques that help to estimate power 
consumption at the high-level description level, are needed. In (Raghunathan et al., 1996), 
switching activity and power consumption are estimated at the RTL description taking also 
into account the glitching activity on a number of signals of the datapath and the controller. 
The spatial locality, the regularity, the operation count and the ratio of critical path to 
available time are identified in (Rabaey et al., 1995) with the aim to reduce the power 
consumption of the interconnections. The HLS scheduling, allocation and binding tasks 
consider such algorithmic statistics and properties in order to reduce the fanins and fanouts 
of the interconnect wires. This will result into reducing the complexity and the power 
consumed on the capacitance of the inteconnection buses (Mehra & Rabaey, 1996). 

The effect of the controller on the power consumption of the datapath is considered in 
(Raghunathan & Jha, 1994). Pipelining and module selection was proposed in (Goodby et 
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al., 1994) for low power consumption. The activity of the functional units was reduced in 
(Musoll & Cortadella, 1995) by minimizing the transitions of the functional unit’s inputs. 
This was utilized in a scheduling and resource binding algorithm, in order to reduce power 
consumption. In (Kumar et al., 1995) the DFG is simulated with profiling stimuli, provided 
by the user, in order to measure the activity of operations and data carriers. Then, the 
switching activity is reduced, by selecting a special module set and schedule. Reducing 
supply voltage, disabling the clock of idle elements, and architectural tradeoffs were utilized 
in (Martin & Knight, 1995) in order to minimize power consumption within HLS. 

The energy consumption of memory subsystem and the communication lines within a 
multiprocessor system-on-a-chip (MPSoC) is addressed in (Issenin et al., 2008). This work 
targets streaming applications such as image and video processing that have regular 
memory access patterns. The way to realize optimal solutions for MPSoCs is to execute the 
memory architecture definition and the connectivity synthesis in the same step.  

4. The CCC hardware synthesis method 

The previous two sections reviewed related work in HLS methodologies. This section and 
the following six sections describe a particular, formal HLS methodology which is directly 
applicable on embedded system design, and it has been developed solely by the author of 
this chapter. The Formal Intermediate Format (FIF)1 was invented and designed by the 
author of this chapter as a tool and media for the design encapsulation and the HLS 
transformations in the CCC (Custom Coprocessor Compilation) hardware compilation tool2. 
A near-complete analysis of FIF syntax and semantics can be found in (Dossis, 2010). The 
formal methodology discussed here is based on using predicate logic to describe the 
intermediate representations of the compilation steps,  and the resolution of a set of 
transformation Horn clauses (Nilsson & Maluszynski, 1995)  is used, as the building blocks 
of the prototype HLS tool. 

The front-end compiler translates the algorithmic data of the source programs into the FIF’s 
logic statements (logic facts). The inference logic rules of the back-end compiler transform 
the FIF facts into the hardware implementations. There is one-to-one correspondence 
between the source specification’s subroutines and the generated hardware modules. The 
source code subroutines can be hierarchical, and this hierarchy is maintained in the 
generated hardware implementation. Each generated hardware model is a FSM-controlled 
custom processor (or co-processor, or accelerator), that executes a specific task, described in 
the source program code. This hardware synthesis flow is depicted in Figure 1. 

Essentially the front-end compilation resembles software compilation and the back-end 
compilation executes formal transformation tasks that are normally found in HLS tools. This 
whole compilation flow is a formal transformation process, which converts the source code 
programs into implementable RTL (Register-Transfer Level) VHDL hardware accelerator 
models. If there are function calls in the specification code, then each subprogram call is 
transformed into an interface event in the generated hardware FSM. The interface event is 

                                                 
1 The Formal Intermediate Format is patented with patent number: 1006354, 15/4/2009, from the Greek 
Industrial Property Organization 
2 This hardware compiler method is patented with patent number: 1005308, 5/10/2006, from the Greek 
Industrial Property Organization 
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used so that the “calling” accelerator uses the “services” of the “called” accelerator, as it is 
depicted in the source code hierarchy as well. 

 

Fig. 1. Hardware synthesis flow and tools. 

5. Back-end compiler inference logic rules 

The back-end compiler consists of a very large number of logic rules. The back-end compiler 
logic rules are coded with logic programming techniques, which are used to implement the 
HLS algorithms of the back-end compilation phase. As an example, one of the latter 
algorithms reads and incorporates the FIF tables’ facts into the compiler’s internal inference 
engine of logic predicates and rules (Nilsson & Maluszynski, 1995). The back-end compiler 
rules are given as a great number of definite clauses of the following form: 

 A0 ← A1 ∧ … ∧ An (where n ≥ 0) (form 1) 

where ← is the logical implication symbol (A ← B means that if B applies then A applies), 
and A0, … , An are atomic formulas (logic facts) of the form: 

 predicate_symbol(Var_1, Var_2, …, Var_N)    (form 2) 

where the positional parameters Var_1,…,Var_N of the above predicate “predicate_symbol” 
are either variable names (in the case of the back-end compiler inference rules), or constants 
(in the case of the FIF table statements). The predicate syntax in form 2 is typical of the way 
that the FIF facts and other facts interact with each other, they are organized and they are 
used internally in the inference engine. Thus, the hardware descriptions are generated as 
“conclusions” of the inference engine upon the FIF ”facts”. This is done in a formal way 
from the input programs by the back-end phase, which turns the overall transformation into 
a provably-correct compilation process. In essence, the FIF file consists of a number of such 
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software compilation
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FIF loading
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atomic formulas, which are grouped in the FIF tables. Each such table contains a list of 
homogeneous facts which describe a certain aspect of the compiled program. E.g. all 
prog_stmt facts for a given subprogram are grouped together in the listing of the program 
statements table. 

6. Inference logic and back-end transformations 

The inference engine of the back-end compiler consists of a great number of logic rules (like 
the one in form 1) which conclude on a number of input logic predicate facts and produce 
another set of logic facts and so on. Eventually, the inference logic rules produce the logic 
predicates that encapsulate the writing of RTL VHDL hardware co-processor models. These 
hardware models are directly implementable to any hardware (e.g. ASIC or FPGA) 
technology, since they are technology and platform – independent. For example, generated 
RTL models produced in this way from the prototype compiler were synthesized 
successfully into hardware implementations using the Synopsys DC Ultra, the Xilinx ISE 
and the Mentor Graphics Precision software without the need of any manual alterations of 
the produced RTL VHDL code. In the following form 3 an example of such an inference rule 
is shown: 

dont_schedule(Operation1, Operation2) ← 

            examine(Operation1, Operation2), 

                        predecessor(Operation1, Operation2).                   (form 3) 

The meaning of this rule that combines two input logic predicate facts to produce another 
logic relation (dont_schedule), is that when two operations (Operation1 and Operation2) are 
examined and the first is a predecessor of the second (in terms of data and control 
dependencies), then don’t schedule them in the same control step. This rule is part of a 
parallelizing optimizer which is called “PARCS” (meaning: Parallel, Abstract Resource – 
Constrained Scheduler). 

The way that the inference engine rules (predicates relations-productions) work is depicted 
in Figure 2. The last produced (from its rule) predicate fact is the VHDL RTL writing 
predicate at the top of the diagram. Right bellow level 0 of predicate production rule there is 
a rule at the -1 level, then level -2 and so on. The first predicates that are fed into this engine 
of production rules belong to level –K, as shown in this figure. Level –K predicate facts 
include of course the FIF facts that are loaded into the inference engine along with the other 
predicates of this level.  

In this way, the back-end compiler works with inference logic on the basis of predicate 
relation rules and therefore, this process is a formal transformation of the FIF source 
program definitions into the hardware accelerator (implementable) models. Of course in the 
case of the prototype compiler, there is a very large number of predicates and their relation 
rules that are defined inside the implementation code of the back-end compiler, but the 
whole concept of implementing this phase is as shown in Figure 2. The user of the back-end 
compiler can select certain environment command list options as well as build an external 
memory port parameter file as well as drive the compiler’s optimizer with specific resource 
constraints of the available hardware operators. 
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Fig. 2. The back-end inference logic rules structure. 
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Fig. 3. The processing stages of the back-end compiler. 

The most important of the back-end compilation stages can be seen in Figure 3. The 

compilation process starts with the loading of the FIF facts into the inference rule engine. 

After the FIF database is analyzed, the local data object, operation and initial state lists are 

built. Then the environment options are read and the temporary lists are updated with the 

special (communication) operations as well as the predecessor and successor dependency 

relation lists. After the complete initial schedule is built and concluded, the PARCS 

optimizer is run on it, and the optimized schedule is delivered to the micro-architecture 

generator. The transformation is concluded with the formation of the FSM and datapath 

implementation and the writing of the RTL VHDL model for each accelerator that is defined 

in each subprogram of the source code program.  

A separate hardware accelerator model is generated from each subprogram in the system 

model code. All of the generated hardware models are directly implementable into 

hardware using commercial CAD tools, such as the Synopsys DC-ultra, the Xilinx ISE and 

the Mentor Graphics Precision RTL synthesizers. Also the hierarchy of the source program 

modules (subprograms) is maintained and the generated accelerators may be hierarchical. 

This means that an accelerator can invoke the services of another accelerator from within its 

processing states, and that other accelerator may use the services of yet another accelerator 

and so on. In this way, a subprogram call in the source code is translated into an external 

coprocessor interface event of the corresponding hardware accelerator. 
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7. The PARCS optimizer 

PARCS aggressively attempts to schedule as many as possible operations in the same 
control step. The only limits to this are the data and control dependencies as well as the 
optional resource (operator) constraints, which are provided by the user.  

 

Fig. 4. Pseudo-code of the PARCS scheduling algorithm. 

The pseudo-code for the main procedures of the PARCS scheduler is shown in Figure 4. All 

of the predicate rules (like the one in form 1) of PARCS are part of the inference engine of 

the back-end compiler. A new design to be synthesized is loaded via its FIF into the back-

end compiler’s inference engine. Hence, the FIF’s facts as well as the newly created predicate 

facts from the so far logic processing, “drive” the logic rules of the back-end compiler which 

generate provably-correct hardware architectures. It is worthy to note that although the HLS 

transformations are implemented with logic predicate rules, the PARCS optimizer is very 

efficient and fast. In most of benchmark cases that were run through the prototype 

hardware compiler flow, compilation did not exceed 1-10 minutes of run-time and the 

results of the compilation were very efficient as explained bellow. 

8. Generated hardware architectures 

The back-end stage of micro-architecture generation can be driven by command-line options. 
One of the options e.g. is to generate massively parallel architectures. The results of this 
option are shown in Figure 5. This option generates a single process – FSM VHDL 
description with all the data operations being dependent on different machine states. This 
implies that every operator is enabled by single wire activation commands that are driven 
by different state register values. This in turn means that there is a redundancy in the 
generated hardware, in a way that during part of execution time, a number of state-
dedicated operators remain idle. However, this redundancy is balanced by the fact that this 
option achieves the fastest clock cycle, since the state command encoder, as well as the data  

1. start with the initial schedule (including the special external port operations) 
2. Current PARCS state <- 1 
3. Get the 1st state and make it the current state 
4. Get the next state 
5. Examine the next state’s operations to find out if there are any dependencies 

with the current state 
6. If there are no dependencies then absorb the next state’s operations into the 

current PARCS state; If there are dependencies then finalize the so far 
absorbed operations into the current PARCS state, store the current PARCS 
state, PARCS state <- PARCS state + 1; make next state the current state; store 
the new state’s operations into the current PARCS state 

7. If next state is of conditional type (it is enabled by guarding conditions) then 
call the conditional (true/false branch) processing predicates, else continue 

8. If there are more states to process then go to step 4, otherwise finalize the so far 
operations of the current PARCS state and terminate 
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Fig. 5. Massively-parallel microarchitecture generation option. 

multiplexers are replaced by single wire commands which don’t exhibit any additional 
delay, and this option is very suitable to implement on large ASICs with plenty of resources. 

Another micro-architecture option is the generation of traditional FSM + datapath based 

VHDL models. The results of this option are shown in Figure 6. With this option activated 

the generated VHDL models of the hardware accelerators include a next state process as 

well as signal assignments with multiplexing which correspond to the input data 

multiplexers of the activated operators. Although this option produces smaller hardware 

structures (than the massively-parallel option), it can exceed the target clock period due to 

larger delays through the data multiplexers that are used in the datapath of the accelerator. 

Using the above micro-architecture options, the user of the CCC HLS tool can select various 

solutions between the fastest and larger massively-parallel micro-architecture, which may 

be suitable for richer technologies in terms of operators such as large ASICs, and smaller 

and more economic (in terms of available resources) technologies such as smaller FPGAs. 

As it can be seen in Figure 5 and Figure 6, the produced co-processors (accelerators) are 

initiated with the input command signal START. Upon receiving this command the co-

processors respond to the controlling environment using the handshake output signal BUSY  
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Fig. 6. The traditional FSM + datapath generated micro-architecture option. 

and right after this, they start processing the input data in order to produce the results. This 

process may take a number of clock cycles and it is controlled by a set of states (discrete 

control steps). When the co-processors complete their processing, they notify their 

environment with the output signal DONE. In order to conclude the handshake the 

controlling environment (e.g. a controlling central processing unit) responds with the 

handshake input RESULTS_READ, to notify the accelerator that the processed result data 

have been read by the environment. This handshake protocol is also followed when one 

(higher-level) co-processor calls the services of another (lower-level) co-processor.  

The handshake is implemented between any number of accelerators (in pairs) using  

the START/BUSY and DONE/RESULTS_READ signals. Therefore, the set of executing  

co-processors can be also hierarchical in this way. 

Other environment options, passed to the back-end compiler, control the way that the data 

object resources are used, such as registers and memories. Using a memory port 

configuration file, the user can determine that certain multi-dimensional data objects, such 

as arrays and array aggregates are implemented in external (e.g. central, shared) memories 

(e.g. system RAM). Otherwise, the default option remains that all data objects are allocated 

to hardware (e.g. on-chip) registers. All of the related memory communication protocols and 
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hardware ports/signals, are automatically generated by the back-end synthesizer, and 

without the need for any manual editing of the RTL code by the user. Both synchronous and 

asynchronous memory communication protocol generation are supported. 

9. Co-processor execution system 

The generated accelerators can be placed inside the computing environment that they 
accelerate or can be executed standalone. For every subprogram in the source specification 
code one co-processor is generated to speed up (accelerate) the particular system task. The 
whole system (both hardware and software models) is modeled in algorithmic ADA code 
which can be compiled and executed with the host compiler and linker to run and verify the 
operation of the whole system at the program code level. In this way, extremely fast 
verification can be achieved at the algorithmic level. It is evident that such behavioral (high-
level) compilation and execution is orders of magnitude faster than conventional RTL 
simulations. 

After the required co-processors are specified, coded in ADA, generated with the prototype 
hardware compiler and implemented with commercial back-end tools, they can be 
downloaded into the target computing system (if the target system includes FPGAs) and 
executed to accelerate certain system tasks. This process is shown in Figure 7. The 
accelerators can communicate with each other and with the host computing environment 
using synchronous handshake signals and connections with the system’s handshake logic. 

10. Experimental results and evaluation of the method 

In order to evaluate the efficiency of the presented HLS and ESL method, many designs 
from the area of hardware compilation and high-level synthesis were run through the front-
end and the back-end compilers. Five selected benchmarks include a DSP FIR filter, a 
second order differential equation iterative solver, a well-known high-level synthesis 
benchmark, a RSA crypto-processor from cryptography applications, a synthetic benchmark 
that uses two level nested for-loops, and a large MPEG video compression engine. The 
fourth benchmark includes subroutines with two-dimensional data arrays stored in external 
memories. These data arrays are processed within the bodies of 2-level nested loops. All of 
the above generated accelerators were simulated and the RTL behavior matched the input 
source program’s functionality. The state number reduction after applying the PARCS 
optimizer, on the various modules of the five benchmarks is shown in Table 1. 

Moreover, the number of lines of RTL code is orders of magnitude more compared with the 
lines of the source code model for each sub-module. This indicates the gain in engineering 
productivity when the prototype ESL tools are used to automatically implement the 
computing products. It is well accepted in the engineering community that the coding & 
verification time at the algorithmic program level is only a small fraction of the time 
required for verifying designs at the RTL or the gate-netlist level. There were more than 400 
states in the initial schedule of the MPEG benchmark. In addition to this, manual coding is 
extremely prone to errors which are very cumbersome and time-consuming to correct with 
(traditional) RTL simulations and debugging. 

The specification (source code) model of the various benchmarks, and all of the designs 
using the prototype compilation flow, contains unaltered regular ADA program code,  
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Fig. 7. Host computing environment and accelerators execution configuration. 

without additional semantics and compilation directives which are usual in other synthesis 
tools which compile code in SystemC, HandelC, or any other modified program code with 
additional object class and TLM primitive libraries. This advantage of the presented 
methodology eliminates the need for the system designers to learn a new language, a new 
set of program constructs or a new set of custom libraries. Moreover, the programming 
constructs and semantics, that the prototype HLS compiler utilizes are the subset which is 
common to almost all of the imperative and procedural programming languages such as 
ANSI C, Pascal, Modula, Basic etc. Therefore, it is very easy for a user that is familiar with 
these other imperative languages, to get also familiar with the rich subset of ADA that the 
prototype hardware compiler processes. It is estimated that this familiarization doesn’t 
exceed a few days, if not hours for the very experienced software/system 
programmer/modeler. 
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Module name 
Initial schedule 

states 
PARCS parallelized 

states 
State reduction 

rate 

FIR filter main routine 17 10 41% 

Differential equation solver 20 13 35% 

RSA main routine 16 11 31% 

nested loops 
1st subroutine 

28 20 29% 

nested loops 
2nd subroutine (with embedded 
mem) 

36 26 28% 

nested loops 
2nd subroutine (with external mem)

96 79 18% 

nested loops 
3rd subroutine 

15 10 33% 

nested loops 
4th subroutine 

18 12 33% 

nested loops 
5th subroutine 

17 13 24% 

MPEG 1st subroutine 88 56 36% 

MPEG 2nd subroutine 88 56 36% 

MPEG 3rd subroutine 37 25 32% 

MPEG top subroutine (with embed. 
mem) 

326 223 32% 

MPEG top subroutine (with external 
mem) 

462 343 26% 

Table 1. State reduction statistics from the IKBS PARCS optimizer. 

The following Table 2 contains the area and timing statistics of the main module of the 
MPEG application synthesis runs. Synthesis was executed on a Ubuntu 10.04 LTS linux 
server with Synopsys DC-Ultra synthesizer and the 65nm UMC technology libraries. From 
this table a reduction in terms of area can be observed for the FSM+datapath 
implementation against the massively parallel one. Nevertheless, due to the quality of the 
technology libraries the speed target of 2 ns clock period was achieved in all 4 cases. 

 

Area/time statistic 

massively-
parallel, 
initial 
schedule 

massively-
parallel, 
PARCS 
schedule 

FSM + 
datapath, 
initial 
schedule 

FSM + 
datapath, 
PARCS 
schedule 

area in square nm 117486 114579 111025 107242 

equivalent number of 
NAND2 gates 

91876 89515 86738 83783 

achievable clock period 2 ns 2 ns 2 ns 2 ns 

achievable clock 
frequency 

500 MHz 500 MHz 500 MHz 500 MHz 

Table 2. Area and timing statistics from UMC 65nm technology implementation. 
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Moreover, the area reduction for the FSM+datapath implementations of both the initial 
schedule and the optimized (by PARCS) one isn’t dramatic and it reaches to about 6 %. This 
happens because the overhead of massively-parallel operators is balanced by the large 
amount of data and control multiplexing in the case of the FSM+datapath option. 

11. Conclusions and future work 

This chapter includes a discussion and survey of past and present existing ESL HLS tools 

and related synthesis methodologies suitable for embedded systems. Formal and heuristic 

techniques for the HLS tasks are discussed and more specific synthesis issues are analyzed. 

The conclusion from this survey is that the authors prototype ESL behavioral synthesizer is 

unique in terms of generality of input code constructs, the formal methodologies employed 

and the speed and utility of the developed hardware compiler. 

One important contribution of this work is a provably-correct, ESL, and HLS method and a 

unified prototype tool-chain, which is based on compiler-compiler and formal logic 

inference techniques. The prototype tools transform a number of arbitrary input 

subprograms (for now coded in the ADA language) into an equivalent number of correct-

by-construction and functionally-equivalent RTL VHDL hardware accelerator descriptions. 

Encouraging state-reduction rates of the PARCS scheduler-optimizer were observed for five 

benchmarks in this chapter, which exceed 30% in some cases. Using its formal flow, the 

prototype hardware compiler can be used to develop complex embedded systems in orders 

of magnitude shorter time and lower engineering effort, than that which are usually 

required using conventional design approaches such as RTL coding or IP encapsulation and 

schematic entry using custom libraries. 

Existing HLS tools compile usually a small-subset of the programming language, and 

sometimes with severe restrictions in the type of constructs they accept (some of them don’t 

accept while-loops for example). Furthermore, most of them are suited for linear, data-flow 

oriented specifications. However, a large number of applications found in embedded and 

telecommunication systems, mobile and other portable computing platforms involve a great 

deal of complex control flow with nesting and hierarchy levels. For this kind of applications 

most of HLS tools produce low level of quality results. The prototype ESL tool developed by 

the author has proved that it can deliver a better quality of results in applications with 

complex control such as image compression and processing standards.  

Future extensions of this work include undergoing work to upgrade the front-end phase to 

accommodate more input programming languages (e.g. ANSI-C, C++) and the back-end 

HDL writer to include more back-end RTL languages (e.g. Verilog HDL), which are 

currently under development. Another extension could be the inclusion of more than 2 

operand operations as well as multi-cycle arithmetic unit modules, such as multi-cycle 

operators, to be used in datapath pipelining. Moreover, there is ongoing work to extend the 

FIF’s semantics so that it can accommodate embedding of IP blocks (such as floating-point 

units) into the compilation flow, and enhance further the schedule optimizer algorithm for 

even more reduced schedules. Furthermore, connection flows from the front-end compiler 

to even more front-end diagrammatic system modeling formats such as the UML 

formulation are currently investigated. 
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