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1. Introduction 

This chapter will focus on the potential role that misregulation of post-transcriptional 

control of gene expression could have on the development or progression of Huntington’s 

disease (HD). Every cell in our bodies possesses the same genetic material, and yet every cell 

is not the same. We also all know that the tremendous diversity of biology present within 

each individual is accomplished through unique patterns of gene expression on a cell-by-cell 

basis. Of course the timing and amounts of gene expression also contribute to this diversity 

of phenotype and function. The complexity, however, goes even deeper. Within individual 

genes there is information to produce multiple different messenger RNAs and often 

multiple different proteins, each with different functional implications. We see then, that the 

multi-step process of gene expression using a number of genes only modestly greater than 

what is found in certain species of ciliates is capable of generating a being of vastly more 

complicated biology. With this complexity in mind, it is therefore possible that small defects 

at any of the steps of gene expression could have deleterious consequences on the identity, 

ability to appropriately respond to environmental cues, and on the survival of cells. 

In HD, certain parts of the brain are primarily affected over others. Furthermore, the 

Huntington’s disease gene product huntingtin (Htt) is ubiquitously expressed. So how is 

specificity of the disease manifested when the mutant protein is present everywhere in our 

bodies at all times? One possible explanation for this observation is that the expression of 

specific genes important for the survival and function of the cells affected in HD are 

disrupted to a more significant extent than others. These alterations need not be drastic; 

rather they are more likely to be the result of an accumulation of small changes, which over 

time could lead to the dysfunction or death of particular types of neurons. There is already a 

large body of research on the role of Htt in transcriptional control, and many studies have 

identified reproducible alterations in gene expression patterns between mouse models of 

HD and postmortem human HD patient brain samples (Hodges et al. 2006; Seredenina and 

Luthi-Carter 2011). While we do not discount this potential mechanism, we suggest that 

mutant Htt may also influence gene expression at steps downstream of transcription. 

This hypothesis, although unique amongst HD researchers, is either gaining traction or is 
already widely accepted as the basis for other neurodegenerative diseases. These diseases 
would affect the processing of multiple messenger RNAs and present with a broad 
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phenotypic spectrum, reflecting the loss of function or aberrant processing of specific 
mRNAs. For example, amyotrophic lateral sclerosis (ALS) results from the death of cortical 
motor neurons and the spinal cord motor neurons on which they synapse. Although the 
majority of ALS cases have no genetic predisposition, a small percentage of cases have been 
linked to mutations in the RNA binding proteins TDP-43 and TLS (Lagier-Tourenne, 
Polymenidou, and Cleveland 2010). However, in both genetic (TDP-43 driven) and sporadic 
cases of ALS, TDP-43 forms abnormal intracellular aggregates, which are thought to 
influence the expression patterns of mRNAs dependent upon TDP-43 function for their 
normal post-transcriptional processing (Mackenzie et al. 2007). Similarly, Fragile X 
syndrome (FXS) and the related Fragile X tremor ataxia syndrome (FXTAS) are also known 
to result from mutations in the Fragile X gene (FMR1) whose protein product is involved in 
translational control of mRNAs to which the protein is bound (Willemsen, Levenga, and 
Oostra 2011). These examples and others argue that the dysfunction of RNA binding 
proteins can produce cell-type specific effects based on the RNA binding proteins affected 
and their associated RNAs. Here we provide an overview of the steps at which gene 
expression may be controlled downstream of transcription, examples in which each of these 
processes may be perturbed in other neurodegenerative diseases, and review the evidence 
implicating Htt in control of post-transcriptional gene expression. We aim to incite 
enthusiasm in the reader for this underappreciated hypothesis and cite the numerous 
parallels between HD and other neurodegenerative diseases involving the dysfunction of 
normal post-transcriptional RNA processing. 

2. Gene expression is controlled at multiple steps downstream of 
transcription 

Transcription produces a full-length RNA copy of the DNA sequence of a gene, which is 
heavily edited through removal of intronic sequences, the joining of exonic sequences, the 
cleavage of the mRNA at specific sites, and the addition of elements not coded for in the 
genome. The processed RNA must then be exported from the nucleus to be translated. Upon 
nuclear export, mRNAs may be stored in a translationally repressed state bound by RNA 
binding proteins until this translational repression is relieved, or they may be immediately 
translated. Translationally repressed mRNAs can be trafficked to distant sites within the cell 
to impart an additional level of control to gene expression. mRNAs have a finite lifespan 
and the levels of mRNA can be controlled through degradation in addition to rates of 
transcription. Each of these steps is controlled by the activity of specific proteins, which 
ultimately enable a tight control of protein content, amounts, and location within the cell. 

2.1 Alternative patterns of RNA splicing produce multiple messages from a common 
gene 

Alternative splicing is the process by which different exons are joined together to form 

different sequences from the same precursor mRNA (pre-mRNA). The different patterns of 

exon joining in alternatively spliced transcripts are determined by sequences contained 

within the introns of pre-mRNAs and the presence or absence of the proteins that recognize 

these sequences, although sometimes exons themselves also play a role in this process 

(Wahl, Will, and Luhrmann 2009). Regardless of the location of the cis-acting elements 

within pre-mRNAs, specific RNA binding proteins promote the inclusion or exclusion of 
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particular exons. These exons may contain protein-coding sequence or untranslated regions 

(UTRs) if they are present outside of the main open reading frame (ORF). Failure to remove 

an intron or the exclusion of a particular exon(s) can produce mRNAs that are targeted for 

degradation before any protein can be produced from these messages (Rebbapragada and 

Lykke-Andersen 2009). Most human genes are composed of multiple exons (Venter et al. 

2001); therefore, the splicing process must be carefully orchestrated to ensure the generation 

of a meaningful and high fidelity transcript. Furthermore, most human genes are 

alternatively spliced, which vastly increases the diversity of RNAs and proteins coded for in 

the entire genome. 

2.1.1 Alternative splicing generates different protein isoforms 

Splicing events are catalyzed by a large ribonucleoprotein complex called the spliceosome 
(Wahl, Will, and Luhrmann 2009). Specificity is imparted through the action of distinct 
splicing factors that recognize particular sequence elements within a pre-mRNA and recruit 
the spliceosome to these sites. Additionally, splicing factors may mask individual splice sites 
so they are not included, or spliced out of the resultant mRNA. The activity of these splicing 
factors is required for the process of alternative splicing as well as to ensure the generation 
of an intron-free mature mRNA. Alternative splicing can change the amino acid coding 
potential of an mRNA and thereby generate multiple different proteins from a single gene. 
Proteins are often composed of modular domains. For example, a protein may harbor a 
membrane targeting sequence at its N-terminus and a catalytic domain at its C-terminus. 
Therefore, an mRNA encompassing both of these features would produce a membrane 
bound protein with catalytic activity. If the membrane-targeting domain of a hypothetical 
protein were contained within a single exon, then omission of this exon in an alternatively 
spliced version of this mRNA would produce a cytoplasmically localized protein with 
catalytic activity (Figure 1). 

 

Fig. 1. Alternative splicing can generate different protein isoforms from a single gene. The 

cartoon illustrates a hypothetical gene with 4 exons (grey boxes numbered 1-4). The solid 

line represents the unspliced transcript, with the lines above indicating the splicing pattern 

of the hypothetical mRNA. Inclusion of exon 2 results in the translation of a protein with a 

plasma membrane (grey squiggly lines, PM) -targeting domain. Exclusion of exon 2 

produces a cytoplasmically localized protein. 
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The protein tau, which is one of the main components of the neurofibrillary tangles in 
dementia and Alzheimer’s disease, is present in as many as 30 different isoforms within 
neurons, all of which are generated through alternative splicing (Andreadis 2011). Tau helps 
organize axonal microtubules and functions as a cytoskeletal scaffold in post-synaptic 
densities (Pritchard et al. 2011). Alterations in the ratio of tau isoforms are the cause of 
familial cases of frontotemporal lobar degeneration (FTLD) (Gasparini, Terni, and Spillantini 
2007). These mutations do not change the coding potential of the tau gene, but instead alter 
the frequency of alternative splicing events such that appropriate stoichiometry of tau 
isoforms is disrupted. 

2.1.2 Defects in mRNA splicing lead to abnormal protein translation or mRNA 
degradation 

The inclusion of an intron(s) within a mature mRNA can lead to its degradation or the 
translation of a protein with an unintended amino acid sequence. Splicing aberrations are 
normally detected by the nonsense-mediated decay (NMD) pathway. This pathway 
recognizes mRNAs that contain a premature termination codon and targets them for 
destruction. Premature termination codons are recognized by the context in which they are 
found, vis-à-vis the presence of protein complexes on the transcript at defined positions. 
Normally, mature mRNAs are marked at splice sites by proteins of the exon-exon junction 
complex (EJC) (Rebbapragada and Lykke-Andersen 2009). If the NMD protein machinery 
encounters a stop codon upstream of an EJC, then this signals that the termination codon 
may be premature. However, the positioning of other factors on the mRNA may prevent 
NMD from occurring. In short, mRNAs are bound by proteins that recognize specific 
elements within their sequence. The positioning of these elements provides a context in 
which to determine whether the message has been appropriately processed. mRNAs that 
escape the NMD pathway are available for translation and when translated can provoke 
unforeseen cellular responses. Figure 2 illustrates the consequences of errors in splicing. 

 

Fig. 2. Errors in splicing can lead to mRNA degradation or aberrant protein synthesis. The 
cartoon shows how errors in splicing can lead to the inclusion of an intron, which may 
contain a termination codon (UAA) and activate the NMD pathway. Alternatively, the 
intron may not contain a premature termination codon, but produce a frame-shifted 
transcript coding for an abnormal protein. 

www.intechopen.com



 
Role of Huntington’s Disease Protein in Post-Transcriptional Gene Regulatory Pathways 

 

299 

In ALS, aberrant splicing results in the inclusion of introns in the mature mRNA for the 
intermediate filament protein peripherin (Xiao et al. 2008). Peripherin is present within the 
protein aggregations observed in ALS patient tissue and overexpression of peripherin is 
sufficient to induce neurodegeneration in transgenic mice (Robertson et al. 2003). 
Furthermore, expression of the aberrant transcript in cultured motor neurons resulted in its 
aggregation, and was associated with the death of these cells (Robertson et al. 2003). These 
findings suggest that the abnormal splicing events can trigger neurodegeneration in a cell 
type specific manner. 

2.2 Non-protein coding sequences influence stability, location, and translational 
potential of mRNAs 

Eukaryotic mRNAs contain untranslated regions (UTRs) at their 5’ and 3’ ends that contain 
information used in determining the stability, translational potential, and location of an 
RNA. As the name suggests, untranslated regions of an mRNA are not translated into 
protein, but serve as cis-acting elements within an mRNA that provide binding surfaces for 
other molecules through the secondary structural elements conferred by the sequence of the 
UTR (Spriggs, Bushell, and Willis 2010). While exons most often contain the information 
required for the assembly of the encoded protein, they also include UTRs at the 5’ and 3’ end 
of a mature mRNA. Sometimes different 5’ and 3’ UTRs for the same mRNA arise from 
alternative splicing events, as has been observed for the brain derived neurotrophic factor, 
BDNF (Pruunsild et al. 2007). Alternative versions of 3’ UTRs may also be generated 
through the cleavage of precursor mRNAs in anticipation of poly-A (poly-adenosine 
monophosphate) tail addition (Hughes 2006). The vast majority of mRNAs include a stretch 
of poly-A residues at their 3’ end that are not coded for in the genome and are added post-
transcriptionally. The poly-A tail protects the mRNA from degradation at the 3’ end and is 
involved in initiation of protein translation through its interaction with poly-A binding 
protein (PABP) (Lemay et al. 2010). Many pre-mRNAs may be poly-adenylated at multiple 
positions based on the presence of multiple poly-A signal sequences in the pre-mRNA (Tian 
et al. 2005). The selection of the cleavage site on the pre-mRNA can therefore directly 
determine the extent and content of the 3’ UTR contained within an mRNA. We provide a 
brief overview of the functions of 5’ and 3’ UTRs and highlight examples where 
perturbations in these processes may contribute to neurodegeneration. 

2.2.1 The 5’ UTR functions in mRNA translation 

5’ UTRs typically contain sequences necessary for the initiation of translation. The 5’ end of 
most mammalian mRNAs is capped by a modified ribonucleotide, the m7G cap. This 
modified nucleotide is attached to the 5’ end of the mRNA through an atypical 5’ to 5’ 
linkage. The m7G cap is bound by a translation initiation factor complex (eIF4E), which is 
then used to circularize the transcript through binding to PABP. Circularization is thought 
to improve the efficiency of translation (Gingras, Raught, and Sonenberg 1999). In addition 
to the 5’ cap, 5’ UTRs often contain upstream open reading frames (uORFs). The presence of 
a uORF is usually inhibitory; a ribosome scanning along the mRNA will encounter the start 
codon of a uORF and begin translation at this position. This results in fewer ribosomes 
recognizing the main ORF start codon and decreased protein translation. uORF-encoded 
polypeptides can also directly inhibit translation by binding to the ribosome and preventing 
the translation of the major downstream ORF (Lovett and Rogers 1996). 
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Beta site APP-cleaving enzyme 1 (BACE1) cleaves the amyloid precursor protein (APP) 
producing the toxic fragment that forms the amyloid plaques that define Alzheimer’s 
disease (Sisodia 1992). Elevated levels of BACE1 protein expression are normally kept in 
check by the presence of six uORFs (Zhou and Song 2006). Alzheimer’s disease patients 
typically display elevated levels of BACE1 protein compared with unaffected individuals, 
but the levels of BACE1 mRNA do not always reflect this (Mihailovich et al. 2007). This 
suggests that translational efficiency of BACE1 may be enhanced in Alzheimer’s disease 
compared with unaffected cases. These uORFs are therefore thought to be important in 
keeping the levels of BACE1 protein low. 

5’ UTRs also typically contain highly structured regions, which can be bound by proteins 
that recognize these structures. Protein binding to the secondary structures within the 5’ 
UTR can promote 5’ m7G cap-independent translation initiation (Pickering and Willis 2005). 
In this context, these secondary structures are known as IRES (internal ribosome entry sites). 
These sites are used under conditions of cellular stress when the translation of many other 
proteins is globally inhibited (Spriggs, Bushell, and Willis 2010). Global translational 
inhibition is mediated through the phosphorylation of eIF2A. eIF2A can be phosphorylated 
by four different kinases (PKR, PERK, GCN2, and HRI), which are activated by different 
cellular stresses. Phosphorylated eIF2A inhibits translation by preventing recycling of 
initiation complexes to translation start sites. The presence of an IRES in an mRNA can 
bypass this translational repression by recruiting ribosomes to start codons by an eIF4A- 
and m7G cap-independent mechanism (Spriggs, Bushell, and Willis 2010). 

Fragile X syndrome (FXS) and fragile X tremor ataxia syndrome (FXTAS) are caused by 
differing degrees of a CGG repeat expansion at the 5’ non-protein-coding end of the fragile 
X mental retardation 1 (FMR1) gene. The extent of CGG repeat expansion determines the 
disease; longer CGG expansions (> 200 repeats) result in FXS and shorter CGG expansions 
(55-200) result in FXTAS. The repeat expansion lengths of FXS silence transcription of FMR1, 
effectively producing a null mutation through increased methylation of the FMR1 gene 
promoter. By contrast, the shorter CGG expansions of FXTAS do not result in transcriptional 
silencing, but instead produce an mRNA containing a large stem-loop structure composed 
of CGG repeats in the 5’ UTR (Willemsen, Levenga, and Oostra 2011). Transgenic mice 
expressing FXTAS-correlated CGG repeat lengths, outside of a protein translation context, 
phenocopy symptoms of the human condition, which indicates that the RNA itself may be 
the toxic agent in FXTAS (Van Dam et al. 2005). The stem-loop generated by expanded CGG 
repeats in the 5’ UTR of FMR1 could act as a sponge to pull the RNA binding proteins away 
from their normal targets and therefore affect the processing of other RNAs normally bound 
by these RNA binding proteins (Jin et al. 2003). This mechanism implies that the processing 
of many other RNAs may be affected by the single mutation in FMR1. 

2.2.2 The 3’ UTR functions in mRNA stability and defines its localization 

3’ UTRs are typically much longer than 5’ UTRs and therefore contain significantly more 
information that can be used to affect the fate of mRNA to which they are attached. This 
information is decoded from the 3’ UTR sequence by the binding of proteins or other RNAs 
to the 3’ UTR. A combination of sequence and secondary structure allows specific proteins 
to bind to 3’ UTRs, where they affect the stability, localization, and translational potential of 
the mRNA. All of these processes are important regulators of gene expression, and defects 
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in any one of these processes may lead to cell dysfunction and undesirable effects 
depending on the affected mRNAs (Andreassi and Riccio 2009). 

Recently, the role of non-coding RNAs (ncRNAs) in the regulation of gene expression has 
received considerable attention. ncRNAs contribute to the regulation of gene expression at 
both the transcriptional and post-transcriptional steps. As nucleic acids, ncRNAs are able to 
form base-pair interactions with perfect or imperfect complementarity. This feature provides 
a simple mechanism to allow for the targeting of specific sequences by these ncRNAs. 
ncRNAs could therefore serve as an adaptor molecule to facilitate RNA-protein interactions 
(Mattick and Makunin 2006). In this model, a protein would have an affinity for either a 
sequence or a structural feature present within the ncRNA. The ncRNA in turn would have 
sequence elements within it that allow it to recognize and form base-pair interactions with 
distinct RNA(s). In this manner, an ncRNA could allow a protein to interact with a large 
variety of messages. No other system is as well characterized with regards to this 
phenomenon as the RNA interference pathway. In this pathway, small RNAs of 21-23 
nucleotides in length recognize sequences in a target mRNA, and through base-paired 
interactions direct the assembly of a protein complex called RISC (RNA-induced silencing 
complex) onto the matched mRNA. Perfect complementarity between the small RNA 
(siRNA) and RNA target leads to cleavage and degradation of the RNA mediated by the 
endonucleolytic activity of the protein Argonaute 2 (Ago2) (Siomi and Siomi 2009). RNAi 
(RNA interference) has now become an invaluable tool in experimental molecular biology and 
has exciting potential therapeutic applications. Most small RNAs or microRNAs (miRNAs) 
present in mammalian cells, however, have imperfect sequence complementarity with their 
targets resulting in the translational silencing of the affected message through Ago family 
members Ago1, 2, 3, and 4 (Siomi and Siomi 2009), or degradation of target mRNAs . Current 
estimates suggest that around 60% of all human genes are regulated by miRNAs (Friedman et 
al. 2009). miRNAs and components of the RISC complex are found in dendrites where they 
repress the translation of synaptic proteins (Swanger and Bassell 2011). Although the effects of 
miRNAs on protein levels are subtle, the elimination of miRNAs from adult brain results in a 
neurodegenerative phenotype in mice (Hebert et al. 2010). 

Changes in RNA stability may contribute to the pathology of ALS. The brains of ALS 
affected individuals possess intracellular accumulations of neurofilament proteins. 
Neurofilament proteins come in three different isotypes: neurofilament heavy, medium, and 
light, all encoded by separate genes. The stoichiometry of neurofilaments is hypothesized to 
be important to prevent their aggregation (Xu et al. 1993). TDP-43 stabilizes the 
neurofilament light chain (NFL) mRNA by binding to its 3’UTR (Strong et al. 2007). As 
discussed in the introduction, TDP-43 is present within intracellular inclusions in ALS. This 
sequestration of TDP-43 may abrogate its binding to the NFL mRNA and thus decrease the 
stability of the mRNA. Indeed, NFL mRNA levels are reduced in ALS patient brains 
(Volkening et al. 2009). Therefore, this reduction in mRNA could translate to a reduction in 
NFL protein, altered neurofilament stoichiometry, and protein aggregation. 

Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion in the 3’ UTR of the 
dystrophia myotonica-protein kinase (DMPK) gene (Mahadevan et al. 1992). This repeat 
expansion results in the sequestration and aggregation of CUG-expanded RNA in the 
nucleus. Here the protein muscleblind-like (MBNL) binds to the CUG-expanded RNA and is 
prevented from performing its normal role in splicing (Jiang et al. 2004), which is similar to 
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the proposed mechanistic explanation for FXTAS. Additionally, expression of a CUG repeat-
expanded RNA was sufficient to cause the formation of large RNA and protein aggregations 
called stress granules in cell culture (Huichalaf et al. 2010). Stress granules are sites of RNA 
storage, where translation is inhibited and RNAs are kept from a potentially damaging 
cytoplasmic environment (Buchan and Parker 2009). Stress granules contain a 
heterogeneous population of mRNAs, and therefore the induction of the stress granule 
assembly in response to CUG-expanded RNA expression could affect the translation of 
many different mRNAs. Could CAG-expanded RNA expression in Huntington’s disease 
produce a similar response? 

2.2.3 The poly-A tail contributes to stability and translational potential of an mRNA 

Polyadenylation is a requisite step in the biogenesis of most mRNAs. This modification 
serves to protect mRNAs from degradation by 3’ to 5’ exonucleases (Mangus, Evans, and 
Jacobson 2003). This protection is imparted to the mRNA through the binding of PABP to 
the poly-A sequence. As a polyadenylated mature mRNA ages, the length of the poly-A tail 
shrinks. This poly-A shortening is analogous to the process that occurs at telomeres as a cell 
ages. Just as a critically short telomere signals senescence, a critically short poly-A tail is 
unable to stave off the exonucleases wishing to make a lunch of it, and it is degraded 
(Meyer, Temme, and Wahle 2004). The poly-A tail therefore helps to establish a lifespan for 
RNAs. Polyadenylation most often occurs in the nucleus, but can also take place in the 
cytoplasm. Cytoplasmic mRNAs lacking a poly-A tail or possessing a shortened poly-A tail 
are sequestered in ribonucleoprotein particles until they are acted upon by a cytoplasmic 
polyadenylation element binding protein (CPEB), which promotes poly-A tail extension and 
subsequent translation (Richter 2007). The addition and function of the poly-A tail therefore 
provide yet another step at which gene expression may be regulated. 

Brain derived neurotrophic factor (BDNF) possesses two cytoplasmic polyadenylation 
elements in its 3’ UTR generating short and long forms of mRNAs. One of these elements is 
required for constitutive BDNF mRNA trafficking to dendrites, while the other is important 
for activity dependent trafficking (Oe and Yoneda 2010), although different conclusions 
were drawn from another study (An et al. 2008). BDNF plays important roles in the health 
and survival of neurons, and the protein is present at reduced levels in both Alzheimer’s 
disease and HD patient brain tissue (Ferrer et al. 2000; Narisawa-Saito et al. 1996). In 
Alzheimer’s disease, BDNF mRNA levels are reduced, and the severity of BDNF mRNA 
reduction correlates with the Aβ aggregation size in mouse models of AD (Peng et al. 2009). 

The autosomal dominant disorder, oculopharyngeal muscular dystrophy (OPMD) is caused 
by a GCG repeat expansion in the coding region of poly(A) binding protein nuclear 1 
(PABPN1). Heterozygous PABPN1 mutant carriers display myopathic symptoms: proximal 
limb weakness, dysphagia, and ptosis (Davies, Berger, and Rubinsztein 2006). However, 
individuals with homozygous mutations often display neurological disturbances: cognitive 
decline, depression, and psychosis (Blumen et al. 2009). The GCG expansion is translated into 
an expanded poly-alanine tract, which results in the nuclear aggregation of PABPN1 (Davies, 
Berger, and Rubinsztein 2006). The aggregation of PABPN1 into filamentous nuclear 
inclusions correlates with retention of large amounts of poly-A containing mRNA (Calado et 
al. 2000). This suggests that multiple mRNAs may be affected by the mutation in a single gene 
and fits into a paradigm for diseases caused by malfunctioning of RNA binding proteins. 
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2.3 The multiple steps of RNA processing downstream of transcription allow for 
multiple regulations and potential errors 

Interactions between mRNA and protein, and mRNA and RNA are responsible for 

executing distinct steps of post-transcriptional processing on particular RNAs. Most RNA 

binding proteins and ncRNAs influence the fate of multiple transcripts and therefore 

problems with either an RNA binding protein or an ncRNA will affect multiple messages. 

RNA binding proteins can interact with RNA and other proteins. An RNA binding protein 

has stabilizing and destabilizing effects on target RNAs, depending upon its interactions 

with other proteins. Figure 3 depicts a hypothetical mRNA with common features indicated 

and the positions/features where RNA binding proteins and ncRNAs likely bind. A 

cytoplasmic complex of RNA and proteins is referred to as ribonucleoprotein particle (RNP) 

and distinctions between types of RNPs are made based upon the protein constituents of 

different complexes and the fate of transcripts within an RNP. There are many different 

types of RNPs, but for brevity sake we will simplify the discussion to transport RNPs, P-

bodies, and stress granules. Their functions and consequences of their dysfunction as they 

relate to neurodegenerative diseases will be described in the following sections. 

 

Fig. 3. mRNA processing is mediated by multiple proteins and ncRNAs. The cartoon shows a 

hypothetical mRNA organized by regions: 5’ UTR and 3’ UTR (black line segments) and 

coding sequence (gray line segment). Proteins/entities labeled in green in general have a 

positive effect on mRNA translation, while those in red tend to inhibit protein translation or 

mRNA stability. Proteins in black may have positive or negative effects on mRNA translation 

or stability. The abbreviations used are: m7G (7-methylguanosine), uORF (upstream open 

reading frame), IRES (internal ribosome entry site), ITAF (IRES-transacting factor), EJC (exon-

exon junction complex), miRNA (micro RNA), and RISC (RNA-induced silencing complex). 

2.3.1 Transport RNPs deliver mRNAs to discrete locations within a cell 

RNA transport is an efficient means to spatially control gene expression patterns in a single 

cell. In transporting an mRNA a cell is able to produce multiple protein copies from a single 

molecule of mRNA at a discrete location, and thus reduce the energy expenditure that 

would be required if individual protein molecules were instead transported. This 

mechanism also eliminates the need to suppress the activity of a protein with properties that 

could be detrimental if present in an inappropriate context (Andreassi and Riccio 2009). 

Transported mRNAs are translationally repressed until they are delivered to their final 

destinations by protein- and ncRNA-dependent mechanisms (Wang, Martin, and Zukin 

2010). This section will focus on transport RNPs in neurons. 
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RNA transport is mediated by specific proteins and/or ncRNAs that function to tether the 
mRNA to a motor protein complex (Wang, Martin, and Zukin 2010). Movement of transport 
RNPs out of the soma occurs largely on the backs of the microtubule-based motor proteins 
kinesin and dynein (Wang, Martin, and Zukin 2010). The microtubules present in axons are 
all oriented with their plus ends pointed away from the cell interior, and so only the activity 
of plus-end directed kinesin motors can move cargoes into axons. In contrast, dendrites 
have a mixed polarity of microtubules in proximal segments; therefore, minus-end directed 
dynein motors are capable of directing cargoes into dendrites in addition to plus-end 
directed kinesin motors (Kapitein et al. 2010). Actin-based myosin motors also contribute to 
mRNA transport and are most likely involved in moving mRNAs from larger bore dendritic 
chambers into the smaller diameter dendritic spines where actin filaments predominate 
(Hirokawa, Niwa, and Tanaka 2010). 

mRNAs bound for transport are first recognized in the nucleus by trans-acting factors that 
recognize specific sequence elements present within the mRNA. Although 3’ UTR sequence 
seems a prime candidate for the placement of these location-defining elements, they may 
also occur within the coding sequence of an mRNA. The protein-bound mRNA is then 
exported from the nucleus where additional proteins can be recruited to the transcript 
through binding sites on the trans-acting factor or mRNA (Sossin and DesGroseillers 2006). 
These RNPs are then thought recognized by motor protein complexes, which then move the 
mRNA to an appropriate location in the cell. 

Fragile X mental retardation protein (FMR1) is an RNA binding protein important for the 
transport and localization of specific RNAs. FMR1 binds to distinct RNAs and represses 
their translation, through either a direct influence on the processivity of bound ribosomes 
and/or an association with Argonaute proteins and miRNAs (De Rubeis and Bagni 2010; 
Muddashetty et al. 2011). Fragile X syndrome is an inherited intellectual disability that 
results from a loss of FMR1 expression and is therefore predicted to affect the trafficking and 
translation of the RNAs normally bound by FMR1 (De Rubeis and Bagni 2010). Many of the 
RNAs bound by FMR1 are involved in pre- and postsynaptic functions, which suggest that 
loss of FMR1 may drastically impair neuronal function (Darnell et al. 2011). Interestingly, 
Huntington’s disease protein huntingtin was identified as an FMR1-associated RNA in this 
study. Staufen is another protein involved in RNA transport and was originally identified in 
Drosophila, where mutations were shown to affect the asymmetric localization of mRNAs 
important for embryonic axis generation (St Johnston, Beuchle, and Nusslein-Volhard 1991). 
A human homolog of Staufen (hStau) co-purifies and co-localizes with RNA, FMR1, kinesin, 
dynein, and myosin proteins in human cell (Villace, Marion, and Ortin 2004). This example 
illustrates the combinatorial control and potential redundancy that is utilized for RNA 
transport. 

Once delivered to their final destinations, transported RNAs could be tethered to the 
cytoskeleton through binding to cytoskeletal associated proteins with affinity for particular 
mRNAs, or proteins present in the transport RNPs (Kim and Coulombe 2010). Cytoplasmic 
fractions of cultured cells are enriched for certain mitochondrial RNAs and ribosomal 
protein RNAs (Russo et al. 2008). Furthermore, disassembly of the microtubule cytoskeleton 
by nocodazole treatment results in shifting of these mRNAs into the soluble portion of the 
cytoplasm. A definitive identification of the proteins responsible for cytoskeletal tethering of 
mRNAs in neurons has not yet been made, although a tug-of-war between different 
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polarity-directed motors could effectively produce a localized mRNA. Cytoplasmic FMR1-
interacting proteins 1 and 2 (CYFIP1, 2) interact with FMR1 and are involved in actin 
cytoskeletal remodeling (Anitei et al. 2010). Although it has yet to be shown if CYFIP1 or 2 
act to anchor FMR1-associated RNAs to the cytoskeleton, this seems like a possibility based 
on the proteins’ affinity for FMR1 and actin remodeling proteins. 

Localized transcripts are translationally silenced until the repression is relieved by the 
dissociation of the inhibitory factor(s). PSD-95 is a post-synaptic scaffolding protein that 
functions in the regulation of AMPA-type glutamate receptor endocytosis and in the 
maintenance of dendritic spine architecture. FMR1 along with miR125a (microRNA 125a) 
and Ago2 bind to the PSD-95 transcript to suppress its translation. The binding of these 
molecules to the PSD-95 mRNA is dependent upon the phosphorylation of FMR1. When 
FMR1 is dephosphorylated following group I metabotropic glutamate receptor stimulation, 
miR125a and Ago2 dissociate from the 3’ UTR of PSD-95 and the mRNA is translated 
(Muddashetty et al. 2011). This example illustrates how post-translational modifications of 
RNA binding proteins control their inhibitory or stimulatory effects on mRNA translation. 

2.3.2 P-bodies control mRNA stability 

Processing bodies (P-bodies) share components with transport RNPs, and considerable grey 
area exists in discriminating between the two types of particles based on protein 
associations. P-bodies are functionally defined as constitutively present cytoplasmic 
outposts of RNA degradation or storage (Buchan and Parker 2009). In some instances, 
mRNAs may be rescued from P-body association and be translated (Brengues, Teixeira, and 
Parker 2005), although the mechanism for this alternative fate is unclear. P-bodies contain 
the ribonucleases responsible for 5’ m7G cap removal, 5’ exoribonucleases, deadenylases, as 
well as components of the RISC pathway (Parker and Sheth 2007). 

2.3.3 Stress granules are large ribonucleoprotein particles that assemble in response 
to various cellular stressors 

Cellular stress caused by a variety of factors results in the phosphorylation of eIF2A and the 

subsequent translational silencing of mRNAs not involved in the stress response (Spriggs, 

Bushell, and Willis 2010). Translationally silenced mRNAs are sequestered away from large 

ribosomal subunits and the potentially damaging cytoplasmic environment by recruitment 

into large assemblies of proteins and RNAs called stress granules. Stress granules contain 

translation initiation factors, small ribosomal subunits, specific RNA binding proteins and 

their associated RNAs, and general stress granule assembly factors (Buchan and Parker 

2009). Experiments in yeast demonstrated that stress granules are dependent upon P-bodies 

for their assembly, but P-bodies can form when stress granule assembly is inhibited by 

genetic means (Buchan, Muhlrad, and Parker 2008). mRNAs stored in stress granules can be 

transferred to P-bodies for degradation and vice-versa (Buchan and Parker 2009). The 

signals that promote this switch have yet to be identified. 

Stress granules form in part through self-association properties, similar to what takes 
place during protein aggregation. Indeed, several P-body and stress granule associated 
proteins with glutamine- and asparagine- (Q/N) rich regions depend on these regions for 
the self assembly requisite for stress granule and P-body formation (Buchan and Parker 
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2009). TDP-43 localizes to stress granules and C-terminal cleavage products generated by 
caspase 3 are prone to cytoplasmic aggregation (Liu-Yesucevitz et al. 2010). In the event 
that TDP-43 levels are elevated and there is increased production of C-terminal caspase 3 
cleavage products, then this could lead to the nucleation of constitutive stress granules. 
These stress granules may contain TDP-43 target mRNAs and therefore reduce the levels 
of the proteins encoded in these mRNAs. By another conspicuous coincidence, caspase 3 
is known to cleave mutant huntingtin, which also has intrinsic aggregation properties 
(Wellington et al. 1998). 

Mutations in TLS are associated with a subset of familial cases of ALS (Lagier-Tourenne, 
Polymenidou, and Cleveland 2010). When these mutant alleles of TLS are expressed in HeLa 
cells, they localize to stress granules in the absence of added cellular stress (Bosco et al. 
2010). Endogenous TLS is also found in stress granules, but only upon experimentally 
induced cellular stress. These mutant TLS-induced stress granules did not recruit 
endogenous TLS or TDP-43 into these abnormal structures. If different RNA binding 
proteins are responsible for delivering their RNA targets to stress granules upon induction 
of the stress response, then the absence of endogenous TDP-43 from the mutant TLS-
induced stress granules could mean that TDP-43 specific mRNAs are also absent from these 
aggregates. 

FMR1 is a well-established stress granule marker and seems to be required for stress granule 
assembly in mouse and human cells in culture (Didiot et al. 2009). Mouse embryonic 
fibroblasts from FMR1 null mice do not assemble stress granules, yet P-body assembly is 
unaffected. FMR1 protein levels increase in response to stress (Didiot et al. 2009). There are 
currently no mutants in FMR1 that can separate its role in stress granule assembly from its 
role in transport RNPs, and these structures may in fact be inextricably linked (Kiebler and 
Bassell 2006). It would be interesting to determine if Fragile X syndrome results from 
impairment in stress granule assembly or from a reduction in RNA transport, or a 
combination of the two. 

3. Huntington’s disease may involve detrimental changes in post-
transcriptional gene expression patterns 

There is mounting circumstantial and experimental evidence implicating deviations in post-
transcriptional RNA processing events in the establishment and/or progression of HD. 
Changes in post-transcriptional processing of RNA could account for the enhanced 
susceptibility of certain types of cells in HD if specific RNAs important for the survival or 
proper functioning of these cells are affected by mutant huntingtin (Htt) expression. Here 
we will review the evidence that suggests Htt is normally involved in RNA processing, and 
mutant Htt expression may impair normal RNA processing or activate stress responses that 
alters gene expression. 

3.1 Huntingtin association with Ago2 is important for RNA silencing pathway 

Our group discovered an Htt-Ago2 association through affinity purification and mass 

spectrometry of a FLAG-tagged N-terminal fragments of wild-type (25 glutamines) and 

mutant (97 glutamines) Htt expressed in HeLa cells (Savas et al. 2008). We went on to 

show that endogenous Htt co-localizes with Ago2 and Dcp1 at P-bodies in U2OS cells. 
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Because these N-terminal Htt purifications did not contain dicer or other proteins 

involved in the biogenesis of miRNAs, we hypothesized that Htt was involved in the 

effector stage of the RNA silencing pathway. Knockdown of Htt in U2OS cells by RNAi 

revealed that a subset of P-bodies required Htt for their assembly. Incomplete inhibition 

of P-body assembly could have resulted from incomplete knockdown of Htt. 

Alternatively, a specific subset of RNPs could require Htt for their incorporation into 

functional P-bodies. Interestingly, a knock-in striatal precursor cell line expressing mutant 

Htt (Trettel et al. 2000) formed fewer P-bodies than a wild-type striatal precursor cell line 

(Savas et al. 2008). This observation suggests that mutant Htt may have a dominant 

negative or loss-of-function effect on the RNA silencing pathway. We further 

demonstrated that knockdown of Htt inhibits the RNA interference response by reporter 

assays, and that mutant Htt-expressing cells are less efficient in this pathway. Finally, 

fluorescence recovery after photobleaching (FRAP) analysis of GFP-Ago2 dynamics in 

wild-type (25 glutamines) and mutant (97 glutamines) Htt fragment-expressing cells 

demonstrated that mutant Htt inhibits the recruitment of Ago2 to P-bodies. 

In a follow-up study, we focused our analysis on cultured cortical neurons and a 

neuroblastoma cell line. This work showed that Htt co-localizes, co-fractionates, and co-

purifies with Ago2 in cultured cortical neurons (Savas et al. 2010). We also discovered that 

tethering Htt to a luciferase reporter mRNA through a λN element-box-B interaction 

represses luciferase expression. This repression was found to be at least partially dependent 

on the presence of Ago2 in the assay. In summary, the Ago2-Htt interaction uncovered by 

affinity purification has been verified by numerous assays and is functionally important in 

the RNA silencing pathway. Moreover, mutant Htt-expressing cells seem to be less able to 

utilize this pathway, possibly through a decreased recruitment of Ago2 to P-bodies. We 

have since found that full-length FLAG-tagged mutant Htt expressed from the endogenous 

locus associates with Ago2 in mouse brains (Culver, Savas, et. al. submitted). Based on these 

observations we suggest that Htt may contribute to the silencing of a specific subset of 

messages and that mutant Htt interfering with this process could give rise to inappropriate 

levels of particular target proteins. 

3.2 Huntingtin contributes to mRNA transport in neurons 

Our studies indicate that Htt co-localizes with mRNAs, and lentiviral-mediated knockdown 

of Htt drastically reduces the number of punctate polyadenylated RNA-containing particles 

detected by FISH in cultured cortical neurons. Furthermore, Htt co-localizes with Staufen 

and co-traffics with an MS2-tagged IP3R1 3’ UTR (inositol 1,4,5-trisphosphate receptor 1) 

mRNA in cultured cortical neurons (Savas et al. 2010). Htt is known to associate with the 

microtubule-based motor dynein complex (Caviston et al. 2007). These data seem to suggest 

that Htt may be required for all directed dendritic RNA transport in cultured neurons. 

Although we did not demonstrate that mutant Htt expression had any effect on this process, 

based on the inhibitory effect that mutant Htt expression has on vesicular transport of 

BDNF- and APP-containing vesicles (Gauthier et al. 2004; Her and Goldstein 2008), it seems 

likely that mutant Htt will also inhibit RNA transport. If this is the case, then many mRNAs 

may be inappropriately localized and neurons could be less able to respond to stimuli 

through local translation. 
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BDNF levels are reduced in HD patient brains and exogenous delivery of BDNF rescues 
many of the phenotypes in a mouse model of HD (Gharami et al. 2008). Furthermore, 
mutant Htt expression inhibits the trafficking of BDNF-containing vesicles in cultured 
cortical neurons (Gauthier et al. 2004). We have recently found that Htt co-localizes with 
BDNF mRNA in cultured cortical neurons and in brain cortical sections (Ma et al. 2010). 
These observations suggest that not only Htt is important for BDNF protein trafficking, but 
also mRNA trafficking. It is also interesting that wild-type Htt overexpression increases 
BDNF mRNA levels, while mutant Htt overexpression reduces BDNF mRNA. Furthermore, 
BDNF mRNA levels are reduced in HD brain compared with unaffected individuals 
(Zuccato et al. 2001). It would therefore seem that Htt influences BDNF levels and location 
from transcription to mRNA localization, to delivery of the translated protein to its sites of 
action. 

3.3 Mutant Htt aggregates may cause RNA processing defects through sequestration 
of RNA binding proteins 

Cytoplasmic Htt-containing aggregates in HD brain tissue contain the RNA binding 

proteins TDP-43 and TLS (Doi et al. 2010; Schwab et al. 2008). Intriguingly, these same two 

RNA binding proteins also form aggregates in ALS and FTLD (a type of dementia). TDP-43 

is a widely expressed RNA binding protein with roles in RNA splicing, stability, and 

regulation of protein translation. TDP-43 purifications from UV cross-linked sources 

identified thousands of mRNAs bound by TDP-43. Many of the RNAs were involved in 

RNA metabolic processes, and Htt was among the list of mRNAs that co-purified with 

cross-linked TDP-43 (Sephton et al. 2011). TDP-43 also binds to its own mRNA and leads to 

its degradation (Ayala et al. 2011). This finding, along with the findings discussed in section 

2.2.2, suggest that TDP-43 activity is important for controlling the levels of particular 

transcripts. Over-expression of TDP-43 is sufficient to induce neurodegenerative phenotypes 

in model organisms (Ash et al. 2010; Tatom et al. 2009). Therefore, a reduced capacity of 

TDP-43 to regulate its own mRNA levels through sequestration of the protein in aggregates 

could produce increasing levels of TDP-43 available for aggregation and thus accelerate 

toxicity. 

TLS is similar to TDP-43 in that it is involved in many different steps of RNA processing, 
from transcription and RNA splicing, to mRNA stability, and transport. It is also similar to 
TDP-43 in that it forms aggregates in ALS in cases where mutations in TLS correlate with 
disease presentation (Lagier-Tourenne, Polymenidou, and Cleveland 2010). TDP-43 and TLS 
aggregation seem to be mutually exclusive, as TDP-43 aggregations were not observed in 
ALS cases associated with mutations in TLS (Vance et al. 2009). This observation strongly 
argues that alterations in RNA processing events can cause ALS and FTLD by multiple 
independent means. Clinical presentations of HD are somewhat heterogeneous: some 
patients display more severe forms of psychiatric and intellectual disturbances, as well as 
varying degrees of mobility impairment. These differences in clinical presentation are not 
correlated with differences in CAG repeat lengths (Weigell-Weber, Schmid, and Spiegel 
1996), which suggests that additional genetic or environmental factors contribute to the 
differences seen in HD patients. We hypothesize that these differences could be accounted 
for by unique combinations of alterations in the post-transcriptional processing of specific 
RNAs. 
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3.4 Htt associates with proteins involved in RNA splicing and cleavage 

A yeast two-hybrid screen using the N-terminus of Htt identified three RNA binding 

proteins that interacted with Htt. Two of these proteins are involved in RNA splicing 

activity and are widely conserved in eukaryotic evolution (PRPF40A and PRPF40B). They are 

both general components of the core splicing machinery and as such, would be predicted to 

have broad effects if their activity were perturbed (Faber et al. 1998). As would be expected of 

a protein involved in mRNA splicing, PRPF40A is predominantly a nuclear protein. However, 

the protein is redirected to the cytoplasm when co-overexpressed with a mutant form of a Htt 

fragment (Jiang et al. 2011). Furthermore, mutant Htt fragments more strongly interact with 

PRPF40A than wild-type fragments. The authors suggest that mutant Htt may actively 

sequester PRPF40A in the cytoplasm and thereby inhibit the protein’s normal splicing activity. 

The other RNA binding protein identified in this yeast two-hybrid screen is known as 

symplekin (SYMPK) and is involved in polyadenylation of mRNAs. SYMPK is present in a 

large complex containing other proteins involved in mRNA cleavage and polyadenylation 

(Kolev and Steitz 2005). Although SYMPK was initially identified by yeast two-hybrid, the 

protein was also present along with other members of the cleavage and polyadenylation 

specificity factor (CPSF) complex in Htt purifications from HeLa cells (our unpublished 

observations). SYMPK is required for both nuclear and cytoplasmic polyadenylation events 

(Barnard et al. 2004). Therefore, any changes in SYMPK activity could have a global impact 

on the stability and translational potential of mRNAs. Interestingly however, SYMPK was 

identified in a genome-wide screen for modifiers of mitotic fidelity (Cappell et al. 2010). The 

influence of SYMPK on spindle positioning was shown to occur through its role in 

polyadenylation, as knockdown of other genes involved in this process produced a similar 

effect. It is therefore possible that specific cellular processes are more sensitive to a reduction 

in polyadenylated transcripts than others. 

3.5 Mutant Htt mRNA may have detrimental effects independent of coding for mutant 
Htt protein 

Mutant Htt mRNA can form hairpin loops through G-C base pairing amongst the CAG 

repeats and the downstream CGG repeats of the poly-proline encoding region (de Mezer et 

al. 2011). These hairpins are bound by the double-stranded RNA dependent protein kinase 

PKR (Peel et al. 2001). Furthermore, PKR activity is elevated in HD patient brain tissue 

(Bando et al. 2005). PKR is activated by viral infection and acts to repress 5’ m7G cap-

dependent translation of endogenous transcripts through phosphorylation of eIF2A 

(Spriggs, Bushell, and Willis 2010). Activated PKR induces the stress response and 

preferentially allows for the translation of mRNAs containing an IRES element immediately 

upstream of the initiation codon. Htt contains a uORF in its 5’ UTR, which can inhibit the 

translation of a CAT reporter when fused upstream of the CAT ATG codon (Lee et al. 2002). 

This uORF is predicted to reduce the translation of Htt under normal conditions when cap-

dependent translation is employed. The intervening sequence between the uORF in the Htt 

5’ UTR and the initiation codon of Htt is GC-rich. Furthermore, this sequence is predicted to 

form a long hairpin structure by the RNAfold webserver sequence analysis program. In the 

future it would be interesting to determine if Htt can be translated in the absence of a 5’ 

m7G cap. 
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The ability of CAG-expanded mRNA to form extended hairpin loops leaves open the 

possibility that the mRNA could act as a molecular sponge for other RNA binding proteins 

and produce a toxic response similar to what has been proposed for myotonic dystrophy 

type 1 (DM1) and fragile X tremor ataxia syndrome (FXTAS). In this model, mutant Htt 

mRNA could actively recruit RNA binding proteins that recognize the CAG/CGG hairpin, 

and either prevents the RNA binding proteins from performing their normal activities 

through an effective reduction in their levels, or initiates an inappropriate response through 

a scaffolding-type effect between different RNA binding proteins such as PKR. We have 

noticed that mutant Htt knock-in cell lines and animals produce less mutant protein than 

wild-type, despite identical 5’ regions (unpublished observations). The expanded CAG 

region could therefore inhibit the translation of mutant Htt protein through the CAG/CGG 

hairpin structure. 

CNG (N represents any nucleotide) expanded mRNAs were demonstrated to lead to 

translation initiation independent of an initiation codon (Zu et al. 2011). This ATG-
independent translation occurred only when the extent of expansion was beyond a certain 

threshold. Strikingly, the threshold for CAG expansion necessary to produce ATG 
independent translation occurred at 42 CAG repeats, which is remarkably close to the 

threshold for HD diagnosis (Group 1993). This exciting finding raises the possibility that 
mutant Htt may be translated by a 5’ m7G cap-independent mechanism. Furthermore, these 

authors (Zu et al. 2011) showed that the CAG-expanded RNA was capable of producing 
protein in all three frames of translation, meaning that poly-alanine, poly-serine, and poly-

glutamine proteins would be produced from this expansion. In SCA3 (spinocerebellar ataxia 
type 3), CAG repeat expansion also produces a poly-alanine peptide in addition to the poly-

glutamine peptide (Gaspar et al. 2000). Similarly, poly-alanine and poly-serine proteins were 
found in HD patient brain tissues where they localized to ubiquitin-positive intranuclear 

inclusions (Davies and Rubinsztein 2006). Poly-alanine expansion in PABPN1 results in 
nuclear aggregation of the protein in oculopharyngeal muscular dystrophy (Davies, Berger, 

and Rubinsztein 2006). Poly-alanine or poly-serine containing peptides produced from 
frame-shifted translation of Htt would encounter stop codons very shortly after the 

homopolymeric stretch of amino acids. This would result in the production of very small 
proteins, which could diffuse through the nuclear pore without the aid of the import 

machinery or a nuclear localization element. Poly-alanine stretches are highly hydrophobic 
and are predicted to form stable and compact β-sheets, which are assembled into insoluble 

fibrils as the lowest energy conformation (Shinchuk et al. 2005). 

3.6 Mutant Htt purifications from mouse brain are enriched in RNA binding proteins 
and protein translation machinery components 

We have recently used affinity purification and mass spectrometry to identify the cellular 
pathways most likely affected by mutant Htt expression in mouse brains. Our as yet 
unpublished observations demonstrated that mutant Htt associates with vast numbers of 
proteins involved in translation initiation and RNA metabolic processes. These functional 
categories were significantly better represented in mutant purifications than wild-type, 
which argues that mutant Htt disproportionately affects these processes compared with 
wild-type. We also found that mutant Htt expression influenced the solubility of two of its 
newly identified interaction partners, FMR1 and PABP by affecting their sensitivity to 
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treatment with RNAse. These observations suggest that mutant Htt expression affects the 
activity of at least two RNA binding proteins known to target many mRNAs. 

One of the commonalities between the many RNA binding proteins and translational 

proteins identified in our purifications was their known involvement in stress granule 

assembly or function. This led us to discover that both wild-type and mutant Htt localize to 

stress granules (Culver, Savas, et. al, submitted). Similar to what we previously observed 

with regards to mutant Htt expression on P-body formation (Savas et al. 2008), we found 

that mutant Htt-expressing striatal precursor cell line (Trettel et al. 2000) formed fewer, but 

larger stress granules than a wild-type version of these cells (Culver, Savas, et. al, 

submitted). Htt is not required for stress granule assembly, however, as Htt-null mouse ES 

cells are able to form stress granules as well as wild-type cells (our unpublished 

observation). Based on these data, we propose that Htt may help to deliver specific mRNAs 

to stress granules, but is not required for their assembly. 

Late stage HD patient brains exhibit reduced electron transport chain activity in 

mitochondrial complex II, III, and IV when assayed postmortem (Gu et al. 1996). In addition, 

systemic delivery of the complex II inhibitor 3-nitropropionic acid results in striatal-specific 

cell death in rodents and non-human primates (Brouillet et al. 2005). Inhibition of the 

electron transport chain can lead to accumulation of reactive oxygen species (ROS) (Chen et 

al. 2007). ROS species can activate the stress response, lead to the formation of stress 

granules, and subsequently suppress the translation of many different kinds of proteins. 

Since the striatum seems to be exquisitely sensitive to electron transport chain inhibition, 

perhaps the death of the cells within this tissue stems from a reduced ability to synthesize 

the proteins required for maintaining neuronal activity and viability. This hypothesis agrees 

with the increased levels of activated PKR seen in HD patient brain tissue as mentioned 

above. Indeed, ROS generation has been shown to increase PKR transcription and hence 

activity of the kinase (Pyo, Lee, and Choi 2008). We speculate that cellular stress, either 

owing to mutant Htt expression, or normally experienced by the brain, acts to activate the 

stress response, which results in a chronic down regulation of translation of proteins vital to 

the integrity of the neurons of the striatum. A similar type of process may also contribute to 

the neurodegeneration accompanying a stroke or the chronic head injuries experienced by 

athletes involved in contact sports. 

Mutant Htt aggregates in HD contain RNA binding proteins (Doi et al. 2010; Schwab et al. 

2008) and we have since found that expression of an aggregate-prone fragment of mutant 

Htt in mouse neuroblastoma cell line N2A produces mutant Htt aggregates that also contain 

RNA (Culver, Savas et. al, submitted). It is therefore possible that the mutant Htt aggregates 

present in HD also contain RNA. There are two possible interpretations for the aggregation 

of RNA binding proteins in neurodegenerative diseases that are not mutually exclusive. One 

is that that the aggregation of RNA binding proteins prevents them from acting on their 

normal targets, thereby altering the expression patterns of particular RNAs. It is also 

possible that certain RNAs are also sequestered within protein aggregates and this 

sequestration prevents the translation of these RNAs. One could imagine that disease-by-

disease combinations of aggregated RNA binding proteins and RNAs could produce the 

defining symptoms and features for a particular disease. These defining features would 

depend on the combinations of genes affected in each disease. 
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3.7 Htt protein associates with its own mRNA 

One of the necessary conditions for the hypothesis that mutant Htt influences post-

transcriptional gene expression is that there must be specific mRNAs adversely affected 

over others. It seems unlikely that a global interference with this process by mutant Htt 

would produce the specific effects of the disease. We have attempted to identify these 

specific mRNAs through affinity purification and microarray profiling of Htt-associated 

RNAs in mouse brains. In agreement with the results of our mass spectrometry data, we 

have found that mutant Htt purifications contained substantially more enriched mRNAs 

than wild-type purifications (unpublished observations). Although, many of these enriched 

mRNAs have been reproduced and have direct relevance to HD, the identifications are still 

too preliminary to be reported here. However, we are confident that Htt protein 

purifications reproducibly recovered substantial amounts of Htt mRNA. Despite reduced 

amounts of mutant Htt protein recovery, these purifications contained substantially more 

Htt mRNA than wild-type purifications (Figure 4). 

 

Fig. 4. Mutant Htt associates with more of its own mRNA than wild-type in mouse brains. 

The western blot on the left shows that wild-type Htt purifications recover more protein 

than mutant purifications. Htt was recovered (FLAG IP) from a cytoplasmic fraction of 

FLAG-tagged wild-type and mutant Htt knock-in mouse brains. Control purifications were 

from non-transgenic littermates. The blot is probed with an anti-Htt antibody. The bar graph 

on the right shows the levels of Htt mRNA in the inputs and affinity purifications (IP) from 

three independent experiments relative to the control. 

This result has since been reproduced in cultured neurons and neuroblastoma cell lines 

using an Htt specific antibody (Culver, unpublished observations). This unexpected and 

exciting finding has interesting parallels to TDP-43 autoregulation of its own mRNA, and 

our lab is currently investigating if a similar phenomenon occurs with respect to Htt and its 

own mRNA. 

4. Conclusion 

There is now considerable evidence that Htt influences multiple steps of post-transcriptional 
gene expression. Htt interacts with proteins involved in RNA splicing, and expression of a 
mutant Htt fragment results in the cytoplasmic retention of a pre-mRNA processing factor 
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PRPF40a. Splicing occurs in the nucleus and therefore the absence of a splicing factor from 
here is functionally equivalent to a loss-of-function of the protein. This could have far 
reaching consequences in cases where redundancy mechanisms preclude splicing activity 
rescue for PRPF40a. The advent of highly sensitive RNA sequencing technology could be 
used to identify small or subtle differences in the splicing patterns of mRNAs in HD 
compared with an unaffected population. Potential differences in splicing patterns could be 
informative in characterizing how HD pathology progresses. Ideally, we would like to see a 
link between affected mRNAs and splicing proteins known to associate with Htt. 

Htt interacts with Ago2, localizes to P-bodies, and participates in RNA silencing. 
Furthermore, mutant Htt-expressing cells possess fewer P-bodies and less efficiently execute 
the RNA silencing response. Artificial tethering of Htt to a luciferase reporter reduces its 
expression and this inhibition is partially mediated by Ago2. If the RNA silencing response 
is less effective in HD, then this could lead to increased levels of mRNAs and proteins 
whose levels are normally tightly controlled. This key step in regulation of gene expression 
is critical to ensure that potentially damaging gene products are only expressed under the 
right conditions. An impressive microarray study of HD patients and unaffected individuals 
has already pinpointed several mRNAs whose levels are elevated in HD compared with 
unaffected individuals (Hodges et al. 2006). In the future it will be important to determine if 
any of these mRNAs is regulated post-transcriptionally by Argonaute proteins and the RNA 
silencing pathway. 

Mutant Htt mRNA can form hairpin structures composed of CAG and neighboring CGG 
repeats. These hairpins are recognized by the double stranded RNA binding protein kinase 
PKR, which acts to repress translation by inhibiting m7G cap-dependent translation through 
phosphorylation of eIF2A. PKR levels are elevated in HD patient brain tissue and elevated 
PKR activity can induce the formation of stress granules through global m7G cap-dependent 
translational inhibition. Expression of a CUG-expanded RNA is sufficient to induce stress 
granule formation in a cell culture model of myotonic dystrophy type I. This response is 
mediated by PKR activation (Huichalaf et al. 2010). These stress granules sequester an 
mRNA encoding a key DNA repair enzyme. Both wild-type and mutant Htt localize to 
stress granules, although Htt seems to be dispensable for their formation. Aggregation of 
proteins required for stress granule and P-body assembly involves glutamine-rich regions. 
We propose that stress granules are assembled in Htt either through activation of PKR by 
expanded CAG hairpins, increased ROS generation through electron transport chain 
impairment, or a combination of both processes. Htt localization to stress granules could 
lead to increased recruitment of Htt to stress granules through the expanded polyglutamine 
repeat sequence of mutant Htt. In this model, stress granules therefore serve as a nucleating 
factor in Htt aggregate assembly. The RNAs that are trapped within these stress granule-
nucleated aggregates will therefore be prevented from being translated. In theory this could 
generate a feedback loop which leads to increased accumulation of Htt as the stress response 
is perpetuated. In cell culture, mutant Htt aggregates contain RNA. In the future we would 
like to identify the specific RNAs that may be trapped within insoluble Htt aggregates as 
they could be key factors in determining HD disease symptoms. 

Htt is involved in trafficking RNAs in cultured neurons. Lentiviral-mediated Htt 
knockdown in cultured cortical neurons results in a drastic reduction in the amount of large 
ribonucleoprotein particles containing polyadenylated RNA present in dendrites. Htt co-
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localizes with proteins important for transporting RNAs and with the BDNF mRNA in rat 
brain slices and in cultured cortical neurons. Mutant Htt expression inhibits transport of 
vesicular cargoes and so it is likely that mutant Htt expression will also inhibit RNA 
transport by a similar mechanism. Localized protein translation is known to be important 
for synaptic plasticity. If mutant Htt reduces the amount of RNA transported, then this 
could manifest as a decreased ability of cells to quickly respond to changes in their 
environment. Data from our lab suggests that Htt plays a central role in RNA transport, 
with little specificity for particular mRNAs. Further experiments in simpler model systems 
(e.g. flies) will be required to determine if this is in fact the case. If defects in systemic RNA 
transport contribute to HD, then genetic studies in mouse on genes with central roles in 
RNA transport should produce a similar constellation of phenotypes as HD. 

If HD results in part from the post-transcriptional deregulation of specific RNAs, then these 
transcripts will need to be identified to strengthen this hypothesis. These genes should 
function in a process that is known to be perturbed in HD or be important for the proper 
functioning or survival of striatal and cortical neurons. We are currently identifying Htt-
associated RNAs by affinity purification of wild-type and mutant Htt from mouse brains. 
The significance of these potential interactions will be verified in animal models and human 
tissue. It is our hope that these experiments will further our understanding of HD and 
possibly contribute to treatment and a cure. 
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