
0

Robotic Software Systems: From Code-Driven to
Model-Driven Software Development

Christian Schlegel, Andreas Steck and Alex Lotz
Computer Science Department, University of Applied Sciences Ulm

Germany

1. Introduction

Advances in robotics and cognitive sciences have stimulated expectations for emergence of
new generations of robotic devices that interact and cooperate with people in ordinary human
environments (robot companion, elder care, home health care), that seamlessly integrate
themselves into complex environments (domestic, outdoor, public spaces), that fit into
different levels of system hierarchies (human-robot co-working, hyper-flexible production
cells, cognitive factory), that can fulfill different tasks (multi-purpose systems) and that
are able to adapt themselves to different situations and changing conditions (dynamic
environments, varying availability and accessibility of internal and external resources,
coordination and collaboration with other agents).
Unfortunately, so far, steady improvements in specific robot abilities and robot hardware have
not been matched by corresponding robot performance in real-world environments. On the
one hand, simple robotic devices for tasks such as cleaning floors and cutting the grass have
met with growing commercial success. Robustness and single purpose design is the key
quality factor of these simple systems. At the same time, more sophisticated robotic devices
such as Care-O-Bot 3 (Reiser et al., 2009) and PR2 (Willow Garage, 2011) have not yet met
commercial success. Hardware and software complexity is their distinguishing factor.
Advanced robotic systems are systems of systems and their complexity is tremendous.
Complex means they are built by integrating an increasingly larger body of heterogeneous
(robotics, cognitive, computational, algorithmic) resources. The need for these resources arises
from the overwhelming number of different situations an advanced robot is faced with during
execution of multitude tasks. Despite the expended effort, even sophisticated systems are
still not able to perform at an expected and appropriate level of overall quality of service in
complex scenarios in real-world environments. By quality of service we mean the set of system
level non-functional properties that a robotic system should exhibit to appropriately operate
in an open-ended environment, such as robustness to exceptional situations, performance
despite of limited resources and aliveness for long periods of time.
Since vital functions of advanced robotic systems are provided by software and software
dominance is still growing, the above challenges of system complexity are closely related to
the need of mastering software complexity. Mastering software complexity becomes pivotal
towards exploiting the capabilities of advanced robotic components and algorithms. Tailoring
modern approaches of software engineering to the needs of robotics is seen as decisive
towards significant progress in system integration for advanced robotic systems.

23

www.intechopen.com

2 Robotic Systems

2. Software engineering in robotics

Complex systems are rarely built from scratch but their design is typically partitioned
according to the variety of technological concerns. In robotics, these are among others
mechanics, sensors and actuators, control and algorithms, computational infrastructure and
software systems. In general, successful engineering of complex systems heavily relies on
the divide and conquer principle in order to reduce complexity. Successful markets typically
come up with precise role assignments for participants and stakeholders ranging from
component developers over system integrators and experts of an application domain to
business consultants and end-users.
Sensors, actuators, computers and mechanical parts are readily available as commercial
off-the-shelf black-box components with precisely specified characteristics. They can be
re-used in different systems and they are provided by various dedicated suppliers. In
contrast, most robotics software systems are still based on proprietarily designed software
architectures. Very often, robotics software is tightly bound to specific robot hardware,
processing platforms, or communication infrastructures. In addition, assumptions and
constraints about tasks, operational environments, and robotic hardware are hidden and
hard-coded in the software implementation.
Software for robotics is typically embedded, concurrent, real-time, distributed, data-intensive
and must meet specific requirements, such as safety, reliability and fault-tolerance. From
this point of view, software requirements of advanced robots are similar to those of
software systems in other domains, such as avionics, automotive, factory automation,
telecommunication and even large scale information systems. In these domains, modern
software engineering principles are rigorously applied to separate roles and responsibilities
in order to cope with the overall system complexity.
In robotics, tremendous code-bases (libraries, middleware, etc.) coexist without being
interoperable and each tool has attributes that favors its use. Although one would like to
reuse existing and matured software building blocks in order to reduce development time and
costs, increase robustness and take advantage from specialized and second source suppliers,
up to now this is not possible. Typically, experts for application domains need to become
experts for robotics software to make use of robotics technology in their domain. So far,
robotics software systems even do not enforce separation of roles for component developers
and system integrators.
The current situation in software for robotics is caused by the lack of separation of concerns.
In consequence, role assignments for robotics software are not possible, there is nothing like
a software component market for robotic systems, there is no separation between component
developers and system integrators and even no separation between experts in robotics and
experts in application domains. This is seen as a major and serious obstacle towards
developing a market of advanced robotic systems (for example, all kinds of cognitive robots,
companion systems, service robots).
The current situation in software for robotics can be compared with the early times of the
World Wide Web (WWW) where one had to be a computer engineer to setup web pages. The
WWW turned into a universal medium only since the availability of tools which have made
it accessible and which support separation of concerns: domain experts like journalists can
now easily provide content without bothering with technical details and there is a variety
of specialized, competing and interoperable tools available provided by computer engineers,
designers and others. These can be used to provide and access any kind of content and to
support any kind of application domain.

474 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 3

Based on these observations, we assume that the next big step in advanced robotic systems
towards mastering their complexity and their overall integration into any kind of environment
and systems depends on separation of concerns. Since software plays a pivotal role in
advanced robotic systems, we illustrate how to tailor a service-oriented component-based
software approach to robotics, how to support it by a model-driven approach and according
tools and how this allows separation of concerns which so far is not yet addressed
appropriately in robotics software systems.
Experienced software engineers should get insights into the specifics of robotics and should
better understand what is in the robotics community needed and expected from the
software engineering community. Experienced roboticists should get detailed insights into
how model-driven software development (MDSD) and its design abstraction is an approach
towards system-level complexity handling and towards decoupling of robotics knowledge
from implementational technologies. Practitioners should get insights into how separation of
concerns in robotics is supported by a service-oriented component-based software approach
and that according tools are already matured enough to make life easier for developers
of robotics software and system integrators. Experts in application domains and business
consultants should gain insights into maturity levels of robotic software systems and according
approaches under a short-term, medium-term and long-term perspective. Students should
understand how design abstraction as recurrent principle of computer science applied to
software systems results in MDSD, how MDSD can be applied to robotics, how it provides
a perspective to overcome the vicious circle of robotics software starting from scratch again
and again and how software engineering and robotics can cross-fertilize each other.

2.1 Separation of concerns

Separation of concerns is one of the most fundamental principles in software engineering
(Chris, 1989; Dijkstra, 1976; Parnas, 1972). It states that a given problem involves different
kinds of concerns, promotes their identification and separation in order to solve them
separately without requiring detailed knowledge of the other parts, and finally combining
them into one result. It is a general problem solving strategy which breaks the problem
complexity into loosely-coupled subproblems. The solutions to the subproblems can be
composed relatively easily to yield a solution to the original problem (Mili et al., 2004). This
allows to cope with complexity and thereby achieving the required engineering quality factors
such as robustness, adaptability, maintainability, and reusability.
Despite a common agreement on the necessity of the application of the separation of concerns
principle, there is not a well-established understanding of the notion of concern. Indeed,
concern can be thought of as a unit of modularity (Blogspot, 2008). Progress towards separation
of concerns is typically achieved through modularity of programming and encapsulation
(or transparency of operation), with the help of information hiding. Advanced uses of this
principle allow for simultaneous decomposition according to multiple kinds of (overlapping
and interacting) concerns (Tarr et al., 2000).
In practice, the principle of separation of concerns should drive the identification of the right
decomposition or modularization of a problem. Obviously, there are both: (i) generic and
domain-independent patterns of how to decompose and modularize certain problems in a
suitable way as well as (ii) patterns driven by domain-specific best practices and use-cases.
In most engineering approaches as well as in robotics, at least the following are dominant
dimensions of concerns which should be kept apart (Björkelund et al., 2011; Radestock &
Eisenbach, 1996):

475Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

4 Robotic Systems

Computation provides the functionality of an entity and can be implemented in different
ways (software and/or hardware). Computation activities require communication to
access required data and to provide computed results to other entities.

Communication exchanges data between entities (ranging from hardware devices to
interfaces for real-world access over software entities to user interfaces etc.).

Configuration comprises the binding of configurable parameters of individual entities. It
also comprises the binding of configurable parameters at a system level like, for example,
connections between entities.

Coordination is about when is something being done. It determines how the activities of
all entities in a system should work together. It relates to orchestration and resource
management.

According to (Björkelund et al., 2011), this is in line with results published in (Delamer
& Lastra, 2007; Gelernter & Carriero, 1992; Lastra & Delamer, 2006) although variations
exist which split configuration (into connection and configuration) or treat configuration and
coordination in the same way (Andrade et al., 2002; Bruyninckx, 2011).
It is important to recognize that there are cross-cutting concerns like quality of service (QoS) that
have instantiations within the above dimensions of concerns. Facets of QoS for computation
can manifest with respect to time (best effort computation, hard real-time computation)
or anytime algorithms (explicated relationship between assigned computing resources and
achieved quality of result). Facets of QoS for communication are, for example, response times,
latencies and bandwidth.
It is also important to recognize that various concerns need to be addressed at different stages
of the lifecycle of a system and by different stakeholders. For example, configuration is part
of the design phase (a component developer provides dedicated configurable parameters, a
system integrator binds some of them for deployment) and of the runtime phase (the task
coordination mechanism of a robot modifies parameter settings and changes the connections
between entities according to the current situation and task to fulfill).
It is perfectly safe to say that robotics should take advantage from insights and successful
approaches for complexity handling readily available in other but similar domains like, for
example, automotive and avionics industry or embedded systems in general. Instead, robotics
often reinvents the wheel instead of exploiting cross-fertilization between robotics and
communities like software engineering and middleware systems. The interesting question is
whether there are differences in robotics compared to other domains which hinder roboticists
from jumping onto already existing and approved solutions. One should also examine
whether or not these solutions are tailorable to robotics needs.

2.2 Specifics in robotics

The difference of robotics compared to other domains like automotive and avionics is neither
the huge variety of different sensors and actuators nor the number of different disciplines
being involved nor the diversity of hardware-platforms and software-platforms. In many
domains, developers need to deal with heterogeneous hardware devices and are obliged to
deploy their software on computers which are often constrained in terms of memory and
computational power.
We are convinced that differences of robotics compared to other domains originate from the
need of a robot to cope with open-ended environments while having only limited resources
at its disposal.

476 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 5

Limited resources require decisions: when to assign which resources to what activity taking
into account perceived situation, current context and tasks to be fulfilled. Finding adequate
solutions for this major challenge of engineering robotic systems is difficult for two reasons:

• the problem space is huge: as uncertainty of the environment and the number and type of
resources available to a robot increase, the definition of the best matching between current
situation and correct robot resource exploitation becomes an overwhelming endeavour
even for the most skilled robot engineer,

• the solution space is huge: in order to enhance overall quality of service like robustness
of complex robotic systems in real-world environments, robotic system engineers should
master highly heterogeneous technologies, need to integrate them in a consistent and
effective way and need to adequately exploit the huge variety of robotic-specific resources.

In consequence, it is impossible to statically assign resources in advance in such a way that all
potential situations arising at runtime are properly covered. Due to open-ended real-world
environments, there will always be a deviation between design-time optimality and runtime
optimality with respect to resource assignments. Therefore, there is a need for dynamic
resource assignments at runtime which arises from the enormous sizes of the problem space
and the solution space.
For example, a robot designer cannot foresee how crowded an elevator will be. Thus, a robot
will need to decide by its own and at runtime whether it is possible and convenient to exploit
the elevator resource. The robot has to trade the risk of hitting an elevator’s user with the risk
of arriving late at the next destination. To match the level of safety committed at design-time,
the runtime trade-off has to come up with parameters for speed and safety margins whose
risk is within the design-time committed boundaries while still implementing the intent to
enter the elevator.

2.2.1 Model-centric robotic systems

The above example illustrates why we have to think of engineering advanced robotic systems
differently compared to other complex systems. A complex robotic system cannot be
treated as design-time finalizable system. At runtime, system configurations need to be
changeable according to current situation and context including prioritized assignments of
resources to activities, (de)activations of components as well as changes to the wiring between
components. At runtime, the robot has to analyze and to decide for the most appropriate
configuration. For example, if the current processor load does not allow to run the navigation
component at the highest level of quality, the component should be configured to a lower
level of navigation quality. A reasonable option to prepare a component to cope with reduced
resource assignments might be to reduce the maximum velocity of the robot in order to still
guarantee the same level of navigation safety.
In consequence, we need to support design-time reasoning (at least by the system engineer) as
well as runtime reasoning (by the robot itself) about both, the problem space and the solution
space. This can be achieved by raising the level of abstraction at which relevant properties
and characteristics of a robotics system are expressed. As for every engineering endeavour,
this means to rely on the power of models and asks for an overall different design approach
as illustrated in figure 1:

• The solution space can be managed by providing advanced design tools for robot
software development to design reconfigurable and adaptive robotic systems. Different
stakeholders involved in the development of a robotic system need the ability to formally

477Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

6 Robotic Systems

Fig. 1. Novel workflow bridging design-time and runtime model-usage: at design-time
variation points are purposefully left open and allow for runtime decisions (Schlegel et al.,
2010).

model and relate different views relevant to robotic system design. A major issue is the
support of separation of concerns taking into account the specific needs of robotics.

• The problem space can be mastered by giving the robot the ability to reconfigure its internal
structure and to adapt the way its resources are exploited according to its understanding
of the current situation.

 !"#$%&!!$
 !""#$#%&'(!#)*+'
$#,$#*#%&-&!.%*
."'&/#'0. #1*

'#()!*%!*%+,#% !"#$)

20-$&3424'5..16/-!%7
81#% #$7'2.1! '9.$:*7
9.$1 '+'3-,'; !&.$7
<%&.*-=$=*7'>>>

-.#(+#/% !"012% !"#$)

?%-1@*!*7'2!0=1-&!.%7'A1-%%!%B7'>>>

3-%!,=1-&#'0. #1*'-&'$=%C&!0#
D#"1#6&'6=$$#%&'*&-&#'."'&/#'
).$1 '-% '$.E.&'!%'&/#'0. #1*
3-:#' #6!*!.%*'-&'$=%C&!0#'
 #,#% !%B'.%'&/#'0. #1*

FG;44?D7'<,#%D?H;7'I-J#E.7'3#&$!6CKK7'L?3?7'>>>

 !"!#$%!&
 !"012% !"#$)
'$($)

 !*+,-./+0! '1-./+0!

Fig. 2. Separation of concerns and design abstraction: models created at design-time are used
and manipulated at runtime by the robot (Steck & Schlegel, 2011).

We coin the term model-centric robotic systems (Steck & Schlegel, 2011) for the new
approach of using models to cover and support the whole life-cycle of robotic systems.
Such a model-centric view puts models into focus and bridges design-time and runtime
model-usage.

478 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 7

During the whole lifecycle, models are refined and enriched step-by-step until finally they
become executable. Models comprise variation points which support alternative solutions.
Some variation points are purposefully left open at design time and even can be bound
earliest at runtime after a specific context and situation dependent information is available.
In consequence, models need to be interpretable not only by a human designer but also by
a computer program. At design-time, software tools should understand the models and
support designers in their transformations. At runtime, adaptation algorithms should exploit
the models to automatically reconfigure the control system according to the operational
context (see figure 2).
The need to explicitly support the design for runtime adaptability adds robotic-specific
requirements on software structures and software engineering processes, gives guidance on
how to separate concerns in robotics and allows to understand where the robotics domain
needs extended solutions compared to other and at first glance similar domains.

2.2.2 User roles and requirements

Another strong influence on robotic software systems besides technical challenges comes from
the involved individuals and their needs. We can distinguish several user roles that all put
a different focus on complexity management, on separation of concerns and on software
engineering in robotics:

End users operate applications based on the provided user interface. They focus on the
functionality of readily provided systems. They do not care on how the application has
been built and mainly expect reliable operation, easy usage and reasonable value for
money.

Application builders / system integrators assemble applications out of approved,
standardized and reusable off-the-shelf components. Any non trivial robotic application
requires the orchestration of several components such as computer vision, sensor fusion,
human machine interaction, object recognition, manipulation, localization and mapping,
control of multiple hardware devices, etc. Once these parts work together, we call it
a system. This part of the development process is called, therefore, system integration.
Components can be provided by different vendors. Application builders and system
integrators consider components as black boxes and depend on precise specifications
and explications of all relevant properties for smooth composition, resource assignments
and mappings to target platforms. Components are customized during system level
composition by adjusting parameters or filling in application dependent parts at so-called
hot spots via plug-in interfaces. Application builders expect support for system-level
engineering.

Component builders focus on the specification and implementation of a single component.
They want to focus on algorithms and component functionality without being restricted
too much with respect to component internals. They don’t want to bother with integration
issues and expect a framework to support their implementation efforts such that the
resulting component is conformant to a system-level black box view.

Framework builders / tool providers prepare and provide tools that allow the different users
to focus on their role. They implement the software frameworks and the domain-specific
add-ons on top of state-of-the-art and standard software systems (like middleware
systems), use latest software technology and make these available to the benefit of robotics.

479Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

8 Robotic Systems

The robotics community provides domain-specific concepts, best practices and design
patterns of robotics. These are independent of any software technology and
implementational technology. They form the body of knowledge of robotics and provide the
domain-specific ground for the above roles.

The essence of the work of the component builder is to design reusable components which
can seamlessly be integrated into multiple systems and different hardware platforms. A
component is considered as a black box. The developer can achieve this abstraction only
if he is strictly limited in his knowledge and assumptions about what happens outside his
component and what happens inside other components.
On the other hand, the methodology and the purpose of the system integrator is opposite: he
knows exactly the application of the software system, the platform where it will be deployed
and its constraints. For this reason, he is able to take the right decision about the kind of
components to be used, how to connect them together and how to configure their parameters
and the quality of service of each of them to orchestrate their behavior. The work of the system
integrator is rarely reusable by others, because it is intrinsically related to a specific hardware
platform and a well-defined and sometimes unique use-case. We don’t want the system
integrator to modify a component or to understand the internal structure and implementation
of the components he assembles.

2.2.3 Separation of roles from an industrial perspective

This distinction between the development of single components and system integration is
important (figure 3). So far, reuse in robotics software is mainly possible at the level of
libraries and/or complete frameworks which require system integrators to be component
developers and vice versa. A formal separation between component building and system
integration introduces another and intermediate level of abstraction for reuse which will make
it possible to

• create commercial off-the-shelf (COTS) robotic software: when components become
independent of any specific robot application, it becomes possible to integrate them
quickly into different robotic systems. This abstraction allows the component developer to
sell its robotic software component to a system integrator;

• overcome the need for the system integrator to be also an expert of robotic algorithms and
software development. We want companies devoted to system integration (often SMEs)
to take care of the Business-to-Client part of the value chain, but this will be possible only
when their work will become less challenging;

• establish dedicated system integrators (specific to industrial branches and application
domains) apart from experts for robotic components (like navigation, localization, object
recognition, speech interaction, etc.);

• provide plug-and-play robotic hardware: so far the effort of the integration of the
hardware into the platform was undertaken by the system integrator. If manufacturers
start providing ready-to-use drivers which work seamlessly in a component-driven
environment, robotic applications can be deployed faster and become cheaper.

This separation of roles will eventually have a positive impact in robotics: it will potentially
allow the creation of a robotics industry, that is an ecosystem of small, medium and large
enterprises which can profitably and symbiotically coexist to provide business-to-business

480 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 9

 !"#!$%$&'()%*+
,%-./0*%' !"#!$%$&. (1.&%"'2$&%34/&5!$

0/.% $/657
3/&5!$

.#%%8) 999

Fig. 3. Building robotic systems out of readily-available and reusable software components:
separation of the roles of component development and system integration.

and business-to-client products such as hardware parts, software applications and complete
robots with a specific application and deliver a valuable product to the customer.
To understand better what a robotics industry means, we draw an analogy to the personal
computer industry. Apart from very few exceptions, we can identify several companies
involved in the manufacturing of a single and very specific part of the final product: single
hardware components (memories, hard drives, CPU, mother boards, screens, power supplies,
graphic cards, etc.), operating systems (Windows, commercial Linux distributions), software
applications (CAD, word processing, video games, etc.) and system integrators which provide
ready-to-use platforms to the end user.

2.3 Service-oriented software components to master system complexity

Software engineering provides three major approaches that help to address the above
challenges, that is component-based software engineering (CBSE), service-oriented architectures
(SOA) and model-driven software development (MDSD).
CBSE separates the component development process from the system development process
and aims at component reusability. MDSD separates domain knowledge (formally specified
by domain experts) from how it is being implemented (defined by software experts using
model transformations). SOA is about the right level of granularity for offering functionality
and strictly separates service providers and consumers.

2.3.1 Component-based software engineering

CBSE (Heineman & Councill, 2001) is an approach that has arisen in the software engineering
community in the last decade. It shifts the emphasis in system-building from traditional
requirements analysis, system design and implementation to composing software systems
from a mixture of reusable off-the-shelf and custom-built components. A compact and widely
accepted definition of a software component is the following one:

“A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be developed
independently and is subject to composition by third parties.” (Szyperski, 2002).

Software components explicitly consider reusable pieces of software including notions of
independence and late composition. CBSE promises the benefits of increased reuse, reduced
production cost, and shorter time to market. In order to realize these benefits, it is
vital to have components that are easy to reuse and composition mechanisms that can
be applied systematically. Composition can take place during different stages of the

481Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

10 Robotic Systems

lifecycle of components that is during the design phase (design and implementation), the
deployment phase (system integration) and even the runtime phase (dynamic wiring of data
flow according to situation and context). CBSE is based on the explication of all relevant
information of a component to make it usable by other software elements whose authors
are not known. The key properties of encapsulation and composability result in the following
seven criteria that make a good component: “(i) may be used by other software elements
(clients), (ii) may be used by clients without the intervention of the component’s developers,
(iii) includes a specification of all dependencies (hardware and software platform, versions,
other components), (iv) includes a precise specification of the functionalities it offers, (v) is
usable on the sole basis of that specification, (vi) is composable with other components,
(vii) can be integrated into a system quickly and smoothly” (Meyer, 2000).

2.3.2 Service-oriented architectures

Another generally accepted view of a software component is that it is a software unit
with provided services and required services. In component models, where components are
architectural units, services are represented as ports (Lau & Wang, 2007). This view puts
the focus on the question of a proper level of abstraction of offered functionalities. Services
“combine information and behavior, hide the internal workings from outside intrusion and
present a relatively simple interface to the rest of the program” (Sprott & Wilkes, 2004). The
(CBDI Forum, 2011) recommends to define service-oriented architectures (SOA) as follows:

SOA are “the policies, practices, frameworks that enable application functionality to be
provided and consumed as sets of services published at a granularity relevant to the
service consumer. Services can be invoked, published and discovered, and are abstracted
away from the implementation using a single, standards-based form of interface” (Sprott
& Wilkes, 2004).

Service is the key to communication between providers and consumers and key properties of
good service design are summarized as in table 1. SOA is all about style (policy, practice,
frameworks) which makes process matters an essential consideration. A SOA has to ensure
that services don’t get reduced to the status of interfaces, rather they have an identity of their
own. With SOA, it is critical to implement processes that ensure that there are at least two
different and separate processes - for providers and consumers (Sprott & Wilkes, 2004).

reusable use of service, not reuse by copying of code/implementation

abstracted service is abstracted from the implementation

published precise, published specification functionality of service interface, not
implementation

formal formal contract between endpoints places obligations on provider and
consumer

relevant functionality is presented at a granularity recognized by the user as a
meaningful service

Table 1. Principles of good service design enabled by characteristics of SOA as formulated in
(Sprott & Wilkes, 2004).

2.3.3 Model-driven software development

MDSD is a technology that introduces significant efficiencies and rigor to the theory and
practice of software development. It provides a design abstraction as illustrated in figure

482 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 11

4. Abstractions are provided by models (Beydeda et al., 2005). Abstraction is a core principle
of software engineering.

“A model is a simplified representation of a system intended to enhance our ability to
understand, predict and possibly control the behavior of the system” (Neelamkavil, 1987).

Software Technology ConceptsSoftware Technology Concepts Software Technology ConceptsSoftware Technology Concepts

Modeling

Domain Concepts

like roboticists

mental work of
domain experts

with MDSDDomain Concepts

mental work of developers
(domain experts need
to be software experts)

software experts
and tool support

without MDSD

Software Technology ConceptsSoftware Technology Concepts

Fig. 4. Design abstraction of model-driven software development.

In MDSD, models are used for many purposes, including reasoning about problem and
solution domains and documenting the stages of the software lifecycle; the result is improved
software quality, improved time-to-value and reduced costs (IBM, 2006).

Deployable
Binaries,
Parameter and
Initialization FilesIndependent

Model

Computation Platform

Independent

Model

Platform

Description

Model

Platform

Specific

Model

Specific

Implementation

Platform
Runtime
Binaries

Transform
ation

Transform
ation

Transform
ation

for D
eployment

Transform
ation

Perfo
rm

Deployment

PSIPSMPIMIdea

PD
MPD

M
PD

M

Model
Meta−Model

Code
Model

Model

ro
bot

Real−world

Code
Code

Binarie
s

Fig. 5. Model-driven software development at a glance.

The standard workflow of a model-driven software development process is illustrated
in figure 5. This workflow is supported by tools like the Eclipse Modeling Project
(Eclipse Modeling Project, 2010) which provide means to express model-to-model and
model-to-code transformations. They import standardized textual XMI representations of
the models and can parse them according to the used meta-model. Thus, one can easily
introduce domain-specific concepts to forward information from a model-level to the model
transformations and code generators. Tools like Papyrus (PAPYRUS UML, 2011) allow for a
graphical representation of the various models and can export them into the XMI format.
Overall, there is a complete toolchain for graphical modelling and transformation steps
available that can be tailored to the domain specific needs of robotics.
MDSD is much more than code generation for different platforms to address the technology
change problem and to make development more efficient by automatically generating
repetitive code. The benefits of MDSD are manifold (Stahl & Völter, 2006; Völter, 2006):
(i) models are free of implementation artefacts and directly represent reusable domain
knowledge including best practices, (ii) domain experts can play a direct role and are not
requested to translate their knowledge into software representations, (iii) design patterns,
sophisticated & optimized software structures and approved software solutions can be made
available to domain experts and enforced by embedding them in templates for use by highly
optimized code generators such that even novices can immediately take advantage from a
coded immense experience, (iv) parameters and properties of components required for system
level composition and the adaptation to different target systems are explicated and can be
modified within a model-based toolchain.

483Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

12 Robotic Systems

2.4 Stable structures and freedom from choice

In robotics, we believe that the cornerstone is a component model based on service-orientation for
its provided and required interactions represented in an abstract way in form of models.
A robotics component model needs to provide component level as well as system level concepts,
structures and building blocks to support separation of concerns while at the same time
ensuring composability based on a composition theory: (i) building blocks out of which
one composes a component, (ii) patterns of how to design a well-formed component to
achieve system level conformance, (iii) guidance towards providing a suitable granularity of
services, (iv) specification of the behavior of interactions and (v) best practices and solutions
of domain-specific problems. MDSD can then provide toolchains and thereby support
separation of concerns and separation of roles.
The above approach asks for the identification of stable structures versus variation points
(Webber & Gomaa, 2004). A robotics component model has to provide guidance via stable
structures where these are required to support separation of concerns and to ensure system
level conformance. At the same time, it has to allow for freedom wherever possible.
The distinction between stable structures and variation points is of relevance at all levels
(operating system interfaces, library interfaces, component internal structures, provided
and required services etc.). In fact, identified and enforced stable structures come along
with restrictions. However, one has to notice that well thought out limitations are not a
universal negative and freedom from choice (Lee & Seshia, 2011) gives guidance and assurance
of properties beyond one’s responsibilities in order to ensure separation of concerns.
As detailed in (Schlegel et al., 2011), stable structures with respect to a service-oriented
component-based approach can be identified. These are illustrated in figure 6.

1

3

Framework−Level (F)

1

<<Deployment>>

Application
Builder

2

1

Component−Level (C)

<<Component>>

System−Level (S)

<<Component>>

Component
Builder

Framework
Builder

target platform
model onto specific
map component−

− abstract middleware
− build framework

− black−box view on
and OS details

middleware / OS

Laser Mapper ...

Control
Motion PlannerBase

provided / required
stable

ports

compose
components

libraries
algorithmas and
integrate

− black−box view on

− build component
− use framework

framework

Framework
Player, MSRS, OROCOS, ROS, OpenRTM, SmartSoft, ...

Middleware Operating System

stable interface
to middleware and
operating system

− reuse components
− black−box view on

− build system

components

Framework

User−Code
algorithms, libraries, ...

OpenCV, PCL, MRPT, OpenRAVE, ...

inside component
to user−code
stable interface

2

Fig. 6. Stable structures and different roles in a component-based software approach.

At the system level (S), provided and required service ports ① of a component form a stable
interface for the application builder. In an ideal situation, all relevant properties of a component
are made explicit to support a black box view. Hence, system level properties like resource
conformance of the component mapping to the computing platform can be checked during
system composition and deployment.

484 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 13

At the component level (C), the component builder wants to rely on a stable interface to the
component framework ②. In an ideal situation, the component framework can be considered
as black box hiding all operating system and middleware aspects from the user code. The
component framework adds the execution container to the user code such that the resulting
component is conformant to a black box component view.
At the framework level (F), two stable interfaces exist: (i) between the framework and the
user code of the component builder ② and (ii) between the framework and the underlying
middleware & operating system �. The stable interface ② ensures that no middleware
and operating system specifics are unnecessarily passed on to the component builder. The
stable interface � ensures that the framework can be mapped onto different implementational
technologies (middleware, operating systems) without reimplementing the framework in its
entirety. The framework builder maintains the framework which links the stable interfaces ②

and � and maps the framework onto different implementational technologies via the interface
�.

3. The SMARTSOFT-approach

The basic idea behind SMARTSOFT (Schlegel, 2011) is to master the component hull and
thereby achieve separation of concerns as well as separation of roles. Figure 7 illustrates the
SMARTSOFT component model and how its component hull links the stable interfaces ①, ②

and �.

Fatal Alive

 Shutdown

Init

<<Component>>

component lifecycle

Monitoring

Threads / Mutex / Timer
Interface Execution Environment

User Space
stable interface
to other components

component
user code inside
stable interface to

to middleware and
operating system

stable interface (framework internal)

can have any number of ports but each port
is based on one of the communication patterns
(send, query, push newest, push timed, event).

abstraction of operating system resources

H I

A 1

2

3

G

F

...

Query

Query

Send
StateB

C

E

DDiagnose

Middleware OS

Fig. 7. The structure of a SMARTSOFT component and its stable interfaces.

Pattern Description Service Description
send one-way communication param component configuration
query two-way request state activate/deactivate component services
push newest 1-to-n distribution wiring dynamic component wiring
push timed 1-to-n distribution diagnose introspection of components
event asynchronous notification (internally based on communication patterns)

Table 2. The set of patterns and services of SMARTMARS.

The link between ① and ② is realized by communication patterns. Binding a communication
pattern with the type of data to be transmitted results in an externally visible service
represented as port. The small set of generic and predefined communication patterns listed
in the left part of table 2 are the only ones to define externally visible services. Thus, the
behavior and usage of a service is immediately evident as soon as one knows its underlying
communication pattern.

485Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

14 Robotic Systems

#position, size, resolution

GridMapRequest

...

#position, size, resolution
#mapCells, isValid

GridMap

...

A

queryDiscard (Id)

query (R,&A)

queryReceiveWait (Id,&A)
queryReceive (Id,&A)
queryRequest (R,&Id)

a
s
y
n

c
s
y
n

c

E E

handleQuery (Id,R)
async upcall

answer(Id,A)
async answer

requests specific part of a grid map

System Integrator Component Builder

QueryServer
<GridMapRequest, GridMap>

QueryClient

QueryClient
<GridMapRequest, GridMap>

<GridMapRequest, GridMap>

Component Builder

Fig. 8. The views of a component builder and a system integrator on services by the example
of a grid map service based on a query communication pattern.

Figure 8 illustrates this concept by means of the query communication pattern which consists
of a query client and a query server. The query pattern expects two communication objects to
define a service: a request object and an answer object. Communication objects are transmitted
by-value to ensure decoupling of the lifecycles of the client side and the server side of a service.
They are arbitrary objects enriched by a unique identifier and get/set-methods. Hidden
from the user and inside the communication patterns, the content of a communication object
provided via E gets extracted and forwarded to the middleware interface H. Incoming content
at H is put into a new instance of the according communication object before providing access
to it via E.
In the example, the system integrator sees a provided port based on a query server with the
communication objects GridMapRequest and GridMap. The map service might be provided by a
map building component. Each component with a port consisting out of a query client with the
same communication objects can use that service. For example, a path planning component
might need a grid map and expose a required port for that service. The GridMapRequest object
provides the parameters of the individual request (for example, the size of the requested
map patch, its origin and resolution) and the GridMap returns the answer. The answer is
self-contained comprising all the parameters describing the provided map. That allows to
interpret the map independently of the current settings of the service providing component
and gives the service provider the chance to return a map as close to but different from the
requested parameters in case he cannot handle them exactly.
A component builder uses the stable interface E. In case of the client side of a service based on
the query pattern, it always consists of the same synchronous as well as asynchronous access
modes independent from the used communication objects and the underlying middleware.
They can be used from any number of threads in any order. The server side in this example
always consists of an asynchronous handler upcall for incoming requests and a separated
answer method. This separation is important since it does not require the upcall to wait until
the answer is available before returning. We can now implement any kind of processing model
inside a component, even a processing pipeline where the last thread calls the answer method,
without blocking or wasting system resources of the upcall or be obliged to live with the
threading models behind the upcall.
In the example, the upcall at the service provider either directly processes the incoming
GridMapRequest object or forwards it to a separate processing thread. The requested map
patch is put into a GridMap object which then is provided as answer via the answer method.
It can be seen that the client side is not just a proxy for the server side. Both sides of a
communication pattern are completely standalone entities providing stable interfaces A and
E by completely hiding all the specifics of H and I (see figure 7). One can neither expose
arbitrary member functions at the outside component hull nor can one dilute the semantics
and behavior of ports. The different communication patterns and their internals are explained
in detail in (Schlegel, 2007).

486 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 15

Besides the services defined by the component builder (A), several predefined services exist
to support system level concerns (Lotz et al., 2011). Each component needs to provide a
state service to support system level orchestration (outside view B: activation, deactivation,
reconfiguration; inside view F: manage transitions between service activations, support
housekeeping activities by entry/exit actions). An optional diagnostic service (C, G) supports
runtime monitoring of the component. The optional param service manages parameters by
name/value-pairs and allows to change them at runtime. The optional wiring service allows to
wire required services of a component at runtime from outside the component. This is needed
for task and context dependent composition of behaviors.

3.1 The SMARTMARS meta-model

All the stable interfaces, concepts and structures as well as knowledge about which
ingredients and structures form a well-formed SMARTSOFT component and a well-formed
system of SMARTSOFT components are explicated in the SMARTMARS meta-model (figure
9). The meta-model is abstract, universally valid and independent from implementation
technologies (e.g. UML profile (Fuentes-Fernández & Vallecillo-Moreno, 2004), eCore
(Gronback, 2009)). It provides the input for tool support for the different roles (like component
developer, system integrator etc.), explicates separation of concerns and can be mapped
onto different software technologies (e.g. different types of middleware like CORBA, ACE
(Schmidt, 2011) and different types of operating systems).

<<dataty
uin

etaelement>>
artQueryClient

<<metaelement>>
SmartPortClient

serverName: string

<<metaelement>>

serviceName: string

SmartPort

<<metaelement>>

requestObject: CommObject
answerObject: CommObject

QueryPattern

<<metaelement>>
SmartPortServer

SmartDiagnoseServer
<<metaelement>>

<<metaelement>>
SmartStateServer

isRealtime: boolean
isPeriodic: boolean
period: uint32
wcet: uint32
priority: int8
timeUnit: TimeUnitKind

<<metaelement>>
SmartTask

timeUnit: TimeUnitKind
cycle: uint32

<<metaelement>>
SmartTimer

<<metaelement>>
SmartSemaphore

<<datatype>>
boolean

<<dataty
stri

OS Abstraction

Ports

aelement>>
artMutex int32

<<datatype>>
Types

Monitoring
<<metaelem
SmartMon

<<metaelement>>
SmartQueryServer

<<metaelement>>
SmartQueryHandler <<metaelement>>

SmartSubState

SmartMainState
<<metaelement>>
State Automaton

schedPolicy: SchedPolicyKind

<<enumeration>>
TimeUnitKind

s
ms
us
ns

<<metaelement>>
SmartComponent

Fig. 9. Excerpt of the SMARTMARS meta-model.

3.2 Policies and strategies behind SMARTSOFT services

A major part of the SMARTSOFT approach are the policies and strategies that manifest
themselves in the structure of the component model, explain its building blocks and guide
their usage.
Separation of the roles of a component developer and a system integrator requires to control
the interface between the inner part of a component and its outer part and to control this
boundary. As soon as one gains control over the component hull, one can make sure that
all relevant properties and parameters needed for the black box view of the system integrator
become explicated at the component hull. One can also make sure that a component developer
has no chance to expose component internals to the outside. SMARTSOFT achieves this via
predefined communication patterns as the only building blocks to define externally visible
services and by further guidelines on how to build good services.

487Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

16 Robotic Systems

A basic principle is that clients of services are not allowed to make any assumptions about offered
services beyond the announced characteristics and that service providers are not allowed to make any
assumptions about service requestors (like e.g. their maximum rate of requests).
This principle results in simple and precise guidelines of how to apply the communication
patterns in order to come up with well-formed services. As long as a service is being offered,
the service provider has to accept all incoming requests and has to respond to them according
to its announced quality-of-service parameters.
We illustrate this principle by means of the query pattern. As long as there are no
further quality-of-service attributes, the service provider accepts all incoming requests and
guarantees to answer all accepted requests. However, only the service provider knows about
its resources available to process incoming requests and clients are not allowed to impose
constraints on the service provider (a request might provide further non-committal hints to
the service provider like a request priority). Thus, the service provider is allowed to provide a
nil answer (the flag is valid is set to false in the answer) in case he is running out of resources to
answer a particular request. In consequence, all service requestors always must be prepared
to get a nil answer. A service requestor is also not allowed to make any assumptions about
the response time as long as according quality-of-service attributes are not set by the service
provider. However, if a service provider announces to answer requests within a certain time
limit, one can rely on getting at least a nil answer before the deadline. If a service requestor
depends on a maximum response time although this quality-of-service attribute is not offered
by the service provider, he needs to use client-side timeouts with his request. This overall
principle ensures (i) loose coupling of services, (ii) prevents clients from imposing constraints
on service providers and (iii) gives service providers the means to arbitrate requests in case of
limited resources.
It now also becomes evident why SMARTSOFT offers more than just a request/response and
a publish/subscribe pattern which would be sufficient to cover all communicational needs.
The send pattern explicates a one-way communication although one can emulate it via a
query pattern with a void answer object. However, practical experience proved that a much
better clarity for services with this characteristic is achieved when offering a separate pattern.
The same holds true for the push newest and the push timed pattern. In principle, the push
timed pattern is a push newest pattern with a regular update. However, in case of a push
newest pattern, service requestors rely on having the latest data available at any time. This is
different from a push timed pattern where the focus is on the service provider guaranteeing a
regular time interval (in some cases even providing the same data). Although one could cover
some of these aspects by quality-of-service attributes, they also have an impact on the kind
of perception of its usage by a component developer. Again, achieving clarity and making
the characteristics easily recognizable is of particular importance for the strict separation of
the roles of component developers and system integrators. This also becomes obvious with
the event pattern. In contrast to the push patterns, service requestors get informed only in
case a server side event predicate (service requestors individually parametrize each event
activation) becomes true. This tremendously saves bandwidth compared to publishing latest
changes to all clients since one then always would have to publish a snapshot of the overall
context needed to evaluate the predicate at the client side instead of just the information when
an event fired.

488 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 17

3.3 A robotics example illustrating the SMARTSOFT concepts

Figure 10 illustrates how the SMARTSOFT component model and its meta-elements provided
by SMARTMARS structure and partition a typical robotics use-case, namely the navigation of
a mobile platform. Besides access to sensor data and to the mobile base, algorithmic building
blocks of a navigation system are map building, path planning, motion execution and self
localization. Since these building blocks are generic for navigation systems independently of
the used algorithms, it makes sense to come up with an according component structure and
services (or expect readily available components and services).

push
newest

serialport:
position−offset: (70 0 230)

LaserTask

/dev/ttyS0

tasks:

<<Component>>

SmartLaserLMS200Server
Laser Server

push
newest

state

states:
PlannerTask
neutral, active

tasks:

<<Component>>

SmartPlannerBreadthFirstSearch
Path Planning

robotshape: P3DX

states:
tasks:
maxspeed:

neutral, active
CdlTask
600

<<Component>>

SmartCdlServer
Motion Execution

<laser
scan>

state: neutral, active

<<Component>>

SmartAmcl
Self Localization

state

state

<l
as

er
 s

ca
n>

buildCurr, buildBoth
tasks: LtmTask, CurrTask

states: neutral, buildLtm,

<<Component>>

SmartMapperGridMap
Map Building push

newest

query

tasks:
serialport: /dev/ttyS1

BaseTask

<<Component>>

SmartPioneerBaseServer
Base Server <

p
o

s
e

>

push
timed

sendsend

<pose update>

<pose>

<laser scan>

<current map>

<v,w>

<goal>

Fig. 10. Structure of a navigation task based on the SMARTSOFT component model.

The SmartLaserLMS200Server component provides the latest laser scan via a push newest
port. Thus, all subscribed clients always get an update as soon as a new laserscan is available.
It is subscribed to the pose service of the robot base to label laser scans with pose stamps.
The component comprises a SmartTask to handle the internal communication with the laser
hardware. This way, the aliveness of the overall component and its services is not affected
by flaws on the laser hardware interface. Parameters like position-offset and serialport are
used to customize the component to the target robotic system. These parameters have to
be set by the application builder during the deployment step. The SmartMapperGridMap
component requires a laser scan to build the longterm and the current map. The current map
is provided by a push newest server port (as soon as a new map is available, it is provided
to subscribed clients which makes sense since path planning depends on latest maps) and
the longterm map by a query server port (since it is not needed regularly, it makes sense
to provide it only on a per-request basis). The state port is used to set the component into
different states depending on which services are needed in the current situation: build no
map at all (neutral), build the current map only (buildCurr), build the longterm map only
(buildLtm) or build both maps (buildBoth). The push newest server publishes the current
map only in the states buildCurr and buildBoth. Requests for a longterm map are answered
as long as the component and its services are alive but with an invalid map in case it is
in the states neutral or buildCurr (valid flag of answer object set to false). Accordingly,
the SmartPlannerBreadthFirstSearch component provides its intermediate waypoints by a
push newest server (update the motion execution component as soon as new information is
available). The motion execution component regularly commands new velocities to the robot
base via a send service. The motion execution component is also subscribed to the laser scan
service to be able to immediately react to obstacles in dynamic environments. This way, the
different services interact to build various control loops to combine goal directed and reactive
navigation while at the same time allowing for replacement of components.

489Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

18 Robotic Systems

3.4 State-of-the-art and related work

The historical need in robotics to be responsible for creation of the application logic and to
be at the same time the system integrator generated a poor understanding in the robotics
community that these two roles ought to be separated. In consequence, most robotics
frameworks don’t make this distinction and consequently they don’t offer any clear guideline
to the developer on how to achieve separation of roles.
For example, ROS (Quigley et al., 2009) is a currently widely-used framework in robotics
providing a huge and valuable codebase. However, it lacks guidance for component
developers to ensure system level conformance for composability. Instead, its focus is on
side-by-side existence of all kinds of overlapping concepts without an abstract representation
of its core features and properties in a way independent of any implementation.
The only approach in line with the presented concepts is the RTC Specification (OMG, 2008)
which is considered the most advanced concept of MDSD in robotics. However, it is strongly
influenced by use-cases requiring a data-flow architecture and they do not yet considerably
take into account requirements imposed by runtime adaptability.

4. Reference implementation of the SMARTMDSD TOOLCHAIN

The reference implementation of the SMARTMDSD TOOLCHAIN implements the
SMARTMARS meta-model within a particular MDSD-toolchain. It is used in real world
operation to develop components and to compose complex systems out of them. The focus
of this section is on technical details of the implementation of a meta-model. Another focus
is on the role-specific view and the support a MDSD-toolchain provides. We illustrate the
reference implementation of the toolchain along the different roles of the stakeholders and
their views on the toolchain.

4.1 Decisions and tools behind the reference implementation - framework builder view

The reference implementation of our SMARTMDSD TOOLCHAIN is based on the Eclipse
Modeling Project (EMP) (Eclipse Modeling Project, 2010) and Papyrus UML (PAPYRUS UML,
2011).
Papyrus UML is used as graphical modeling tool in our toolchain. Therefore, it is customized
by the framework builder for the development of SMARTSOFT Components (component
builder) and deployments of components (application builder). This includes for example a
customized wizard to create communication objects, components as well as deployments. The
modeling view of Papyrus UML is enriched with a customized set of meta-elements to create
the models. The model transformation and code generation steps are developed with Xpand
and Xtend (Efftinge et al., 2008) which are part of the EMP. These internals are not visible to
the component builder and the application builder. They just see the graphical modeling tool
to create their models and use the CDT Eclipse Plugin (Eclipse CDT, 2011) to extend the source
code and to compile binaries. The SMARTMARS meta-model is implemented as a UML Profile
(Fuentes-Fernández & Vallecillo-Moreno, 2004) using Papyrus UML.
The decision to use UML Profiles and Papyrus UML to implement our toolchain is motivated
by the reduced effort to come up with a graphical modeling environment customized to the
robotics domain and its requirements by reusing available tools from other communities.
Although some shortcomings have to be accepted and taken into account we were not
caught in the huge effort related to implementing a full-fledged GMF-based development
environment. This allowed us to early come up with our toolchain and to gain deeper insights

490 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 19

and more experience on the different levels of abstraction. However, the major drawbacks of
UML Profiles are:

• UML is a general purpose modeling language covering aspects of several domains and is
thus complex. Using profiles, it is only possible to enrich UML, but not to remove elements.

• Deployment and instantiations of components are not adequately supported.

• UML Profiles provide just a lightweight extension of UML. That means, the structure of
UML itself cannot be modified. The elements can be customized only by stereotypes and
tagged values.

To counter the drawbacks of UML Profiles, we only support the usage of the stereotyped
elements provided by SMARTMARS to create the models of the components and
deployments. Directly using pure UML elements in the diagrams is not supported. Thus,
the models are created using just the meta-elements provided by SMARTMARS. Restricting
the usage to SMARTMARS meta-elements, a mapping to another meta-model implementation
technology like eCore (Gronback, 2009) is straightforward. The stereotyped elements can
be mapped onto eCore without taking into account UML and its structure. In the current
implementation of our toolchain, the restriction to only use SMARTMARS meta-elements
is enforced with check (Efftinge et al., 2008), the EMP implementation of OCL (Object
Management Group, 2010). In the model transformation and code generation steps of our
toolchain pure UML elements are ignored. Another approach would be to customize the
diagrams by removing the UML elements from the palette (see fig. 12) and thus restricting
their usage. The latter approach is on the agenda of the Papyrus UML project and will be
supported by future releases.

4.2 Development of components – component builder view

Figure 11 illustrates the roles of the framework builder and the component builder. The
component builder creates a model of the component using the Eclipse based toolchain,
focusing on the component hull. Pushing the button he receives the source files where to
integrate the business logic (algorithms, libraries) of the component. During this process the
component builder is supported and guided by the toolchain. The internals of the model
transformation and code generation steps implemented by the framework builder are not
visible to the component builder.

SmartSoft
Library

Generated
Code

User Code
integrates creates Model of

Component

Meta−Model
SmartMARS

Framework Builder

Component Builder

Fig. 11. The component builder models a component, gets the source code of its overall
structure (component hull, tasks, etc.) generated by the toolchain and can then integrate
user-code into these structures.

The view of the component builder on the toolchain is depicted in figure 12. It is illustrated by
a face recognition component which is a building block in many service robotics scenarios as
part of the human-robot interface (detection, identification and memorization of persons). In
its active state, the component shall receive camera images, apply face recognition algorithms
and report detected and recognized persons. Thus, besides the standard ports for setting

491Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

20 Robotic Systems

states (active, neutral) and parameters, we need to specify a port to receive the latest camera
images (based on a push newest client) and another one to report on the results (based on
an event server). The component shall run the face recognition based on a commercially
available library within one thread and optional visualization mechanisms within a second
and separated thread. Thus, we need to specify two tasks within the component.

Fig. 12. Screenshot of our toolchain showing the view of the Component Builder.

To create the model the component builder uses the SMARTMARS meta-elements offered in
the palette. The elements of the created model can be accessed either in the outline view or
directly in the graphical representation. Several of the meta-element attributes (tagged values)
can be customized and modified in the properties tab (e.g. customizing services to ports,
specifying properties of tasks, etc.). The model is stored in files specific to Papyrus UML.
Pushing the button, the workflow is started and the PSI (source) files are generated. The
user code files are directly accessible in the src folder. The component builder integrates his
business logic into these files (in our example, the interaction with the face recognition library).
The generated files the component builder must not modify are stored in the gen folder. These
files are generated and overwritten each time the workflow is executed. For the further
processing of the source files, the Eclipse CDT plugin is used (Makefile Project). The makefile
is also generated by the workflow specific to the model properties. User modifications in the
makefile can be done inside of protected regions (Gronback, 2009).

4.3 Development of components – framework builder view

Taking a look behind the scenes of the toolchain, the workflow (fig. 13) appears as a two
step transformation according to the OMG MDA (Object Management Group & Soley, 2000).
The Platform Independent Model (PIM), which is created by the component builder using the
meta-elements provided by the PIM UML Profile, specifies the component independently
of the implementation technology. The first step in the workflow is the model-to-model

492 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 21

of SmartSoft

CorbaSmartSoft
CORBA based implementation

of SmartSoft

AceSmartSoft
ACE based implementation

Fatal Alive

 Shutdown

<<Component>>

Init

PSIPSMPIM

SmartMARS
(Modeling and Analysis of
 Robotics Systems)

OpenCV

User Code
State

Monitoring

component lifecycle

User Space Send

Query

Event

...

Threads / Mutex / Timer
Interface Execution Environment

Qt
OpenRave

legacy code

PCL

MRPT RTAI−Lab

MATLAB / Simulink

...

M2M M2T

...
any other middleware

Middleware OS

Diagnose

Fig. 13. Two step transformation workflow: Framework Builder view.

(M2M) transformation (encoded with Xtend) from the PIM into a Platform Specific Model
(PSM). In this step the elements of the PIM are transformed into corresponding elements
of the PSM according to the selected target platform. The second step is the model-to-text
(M2T) transformation (encoded with Xpand and Xtend) from the PSM into a Platform Specific
Implementation (PSI). This transformation is based on customizable code templates.

4.3.1 The SmartMARS UML profiles (PIM/PSM)

The abstract SMARTMARS meta-model is implemented by the framework builder as UML
Profile using Papyrus UML. Therefore, standard UML elements (e.g. Component, Class, Port) are
extended by stereotypes (e.g. SMARTCOMPONENT, SMARTTASK, SMARTQUERYSERVER) to
give the meta-elements a new meaning according to the SMARTMARS concept. To distinguish
and highlight the new element, it has its own icon attached. Tagged values are used to enrich
the meta-element by new attributes which are not provided by the base UML element.
In fact there are two UML Profiles: one for the PIM and one for the PSM. The PIM UML Profile
is visible to the component builder and is used by him to create the models of the components.
For each SMARTSOFT implementation (e.g. CORBA, ACE), a PSM UML Profile has to be
provided covering the specifics of the implementation. For example, the CORBA-based PSM
supports RTAI linux to provide hard realtime tasks. This is represented by the meta-element
RTAITask. The PSM UML Profile is not visible to the component builder and only used by the
transformation steps inside the toolchain.

Fig. 14. Screenshots of excerpt of the UML Profiles created with Papyrus UML showing the
metaelements dedicated to the SMARTTASK. Left: PIM; Right: PSM with the two variants (1)
standard task and (2) RTAI task.

An excerpt of the UML Profiles is illustrated in figure 14. In the UML Profile for the PIM,
the SMARTTASK extends the UML class and enriches it with attributes (tagged values) like
isPeriodic, isRealtime, period and timeUnit. For the timeUnit an enumeration (TimeUnitKind)

493Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

22 Robotic Systems

is used to specify the unit in which time values are annotated. In the UML Profile for the
CORBA-based PSM, an abstract task is specified (cannot be instantiated) and the two variants
(1) standard task and (2) realtime task are derived from it. They are both not abstract and
can thus be instantiated by the component builder to create the model. The standard task
adds an optional attribute referencing to a SMARTTIMER meta-element. This is used to
emulate periodic non-realtime tasks which are not natively supported by standard tasks of
the CORBA-based SMARTSOFT implementation.

4.3.2 Model transformation and code generation steps

The M2M transformation maps the platform independent elements of the PIM onto platform
specific elements of the selected target platform. Such a mapping is illustrated by the example
of the SmartTask (fig. 15 left) and the CORBA-based PSM. The SMARTTASK comprises several
elements which are necessary to describe a task behavior and its characteristics.

isRealtime
== true

isRealtime
== false

isPeriodic
== true

SchedPolicyKind
<<enumeration>>

FIFO
round−robin
sporadic

<<metaelement>>
SmartCorbaTask

schedPolicy : SchedPolicyKind

SmartCorbaTimer
<<metaelement>>

<<metaelement>>
SmartCorbaCondMutex

SmartCorbaMutex
<<metaelement>>

timer [0..1]

condMutex [0..1]

mutex [1]

schedPolicy : SchedPolicyKind
isRealtime : Boolean
isPeriodic : Boolean
priority : Integer

SmartTask
<<metaelement>>

timeUnit : TimeUnitType
period : Integer
wcet : Integer

isPeriodic : Boolean
priority : Integer
period : Integer

schedPolicy : SchedPolicyKind
RTAITask

<<metaelement>>

isPeriodic : Boolean
priority : Integer
period : Integer
wcet : Integer

period : Integer

PIM

PSM a b

schedPolicy: SchedPolicyKind
isRealtime: Boolean
isPeriodic: true
priority: Integer
timeUnit: TimeUnitKind
period: Integer
wcet: Integer

MyTask
<<model−element>>

<<class>>

MyTaskCore

<<class>>

SmartTask
RTAI
Task

PIM

<<class>>

User Code

PSI

a

ACE
Task

S
m
a
rt
S

o
ft

 l
ib

MyTask

generate

generate

only once

Modifiable by Component Builder

S
m
a
rt
M
A

R
S

b

. . .
Provided by
Framework
Builder

SmartTask
<<meta−element>>

<<meta−element>>

G
e
n
e
ra

ti
o
n
 G

a
p
 P

a
tt
e
rn

Fig. 15. Model transformation and code generation steps illustrated by the example of the
SMARTTASK. Left: Transformation of the PIM into a PSM. Right: Code generation and
Generation Gap Pattern.

Fig. 16. PIM to PSM model transformation of the SMARTTASK depending on the attribute
isRealtime.

494 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 23

Fig. 17. PSM to PSI transformation of the SMARTTASK. Left: Excerpt of the transformation
template (xPand) generating the PSI of a standard task. Right: The generated code where the
user adds the business logic of the task.

Depending on the attribute isRealtime the SMARTTASK is either mapped onto a RTAITASK

or a non-realtime SMARTCORBATASK1. The Xtend transformation rule to transform the PIM
SMARTTASK into the appropriate PSM element is depicted in figure 16.
In case the attributes specify a non-realtime, periodic SMARTTASK, the toolchain extends the
PSM by the elements needed to emulate periodic tasks (as this feature is not covered by
standard tasks). In each case the user integrates his algorithms and libraries into the stable
interface provided by the SMARTTASK (component builder view) independent of the hidden
internal mapping of the SMARTTASK (generated code). Figure 17 depicts the Xpand template
to generate the user code file for the task in the PSI. The figure shows the template on the left
and the generated code on the right.
The PSI consists of the SMARTSOFT library, the generated code and the user code (fig. 15
right). To be able to re-generate parts of the component source code according to modified
parameters in the model without affecting the source code parts added by the component
builder, the generation gap pattern (Vlissides, 2009) is used. It is based on inheritance –
the user code inherits from the generated code2. The source files called generated code are
generated each time the transformation workflow in the toolchain is executed. These files
contain the logic which is generated behind the scenes according to the model parameters
and must not be modified by the component builder. The source files called user code are just
generated if they do not already exist. They are intended for the component builder to add
the algorithms and libraries. The generation of the user code files is more for the convenience
of the component builder to have a code template as starting point. These files are in the
full responsibility of the component builder and are never modified or overwritten by the
transformation workflow of the toolchain. In this context generate once means that the file is
only generated if it does not already exist. This is typically the case if the workflow is executed
for the first time. The clear separation of generated code and user code by the generation gap
pattern allows on the one hand to reflect modifications of the model in the generated source

1 Corba in element names indicates that the element belongs to the CORBA specific PSM.
2 The pattern could also be used in the opposite inheritance ordering so that the generated code inherits

from the user code.

495Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

24 Robotic Systems

code without overwriting the user parts. On the other hand it gives the user the freedom to
structure his source code according to his needs and does not restrict the structure as would be
the case with, for example, protected regions. Consequently, the component builder can modify
the period, priority or even the isRealtime attribute of the task in the model, re-generate and
compile the code without requiring any modification in the user code files. The modification
in the model just affects the generated code part of the PSI.

4.4 Deployment of components – application builder view

The deployment is used to compose a robotic system out of available components. The
application builder imports the desired components and places them onto the target platform.
Furthermore, he defines the initial wiring of the components by connecting the ports
with the meta-element Connection. Figure 18 illustrates the composition of navigation

Fig. 18. Screenshot of our toolchain showing the deployment of components to build a
robotic system.

components. In this example, the application builder (system integrator) imports components
specific to a particular robot platform (SmartPioneerBaseServer) and specific to a particular
sensor (SmartLaserLMS200Server). The navigation components (SmartMapperGridMap,
SmartPlannerBreadthFirstSearch, SmartCDLServer) can be used across different mobile
robots. The SmartRobotConsole provides a user interface to command the robot.
The components are presented to the application builder as black boxes with dedicated
variation points. These have to be bound during the deployment step and can be specified
according to system level requirements. For example, a laser ranger component might need
the coordinates of its mounting point relative to the robot coordinate system. One might also
reduce the maximum scanning frequency to save computing resources. Parameters also need
to be bound for the target system. For example, in case RTAI is used inside of a component,
the RTAI scheduler parameters (timer model underlying RTAI: periodic, oneshot) of the target

496 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 25

RTAI system have to be specified. If the application builder forgets to bind required settings,
this absence is reported to him by the toolchain.
The application builder can identify the provided and required services of a component via
its ports. He can inspect its characteristics by clicking on the port icon which opens a property
view. That comprises the communication pattern type, the used communication objects
and further characteristics like service name and also port specific information like update
frequencies. The initial wiring is done within the graphical representation of the model. In
case the application builder wants to connect incompatible ports, the toolchain refuses the
connection and gives further hints on the reasons.
If the CORBA-based implementation of SMARTSOFT is used, the CORBA naming service
properties IP-address and port-number have to be set. Furthermore, the deployment type
(local, remote) has to be selected. For a remote deployment, the IP-address, username and target
folder of the target computer have to be specified. The deployed system is copied to the target
computer and can be executed there. In case of a local deployment, the system is customized
to run on the local machine of the application builder. This is, for example, the case if no real
robot is used and the deployed system uses simulation components (e.g. Gazebo). Depending
on the initial wiring, parameter files are generated and also copied into the deployment folder.
These parameter files contain application specific adjustments of the components. In addition,
a shell script to start the system is generated out of the deployment model.

4.5 Deployment of components – framework builder view

To implement the deployment of components, some meta-elements are added by the
framework builder to the UML Profile (fig. 19). This section focuses on the CORBA-based
deployment.

Fig. 19. Meta-elements to support the deployment of components.

The deployment model contains relevant information like the initial wiring between
components (Connection), naming service properties (CorbaNamingService), scheduler
properties (RTAISetup) and parameters about the deployment itself (CorbaSmartSoftTarget).
The models of the components are made available to the deployment model using the UML
import mechanism. This allows to access the internal structure of the components. Out of the
deployment model the parameter files and a start script are generated (M2T) using Xpand and
Xtend in a similar way as these transformation languages are used to generate code for the
components. Based on the deployment model several analysis and simulation models can be
generated to get feedback from 3rd-party tools. For example, one can extract parameters of
all realtime tasks mapped onto a specific processor to perform hard realtime schedulability
analysis (CHEDDAR (Cheddar, 2010)) (Schlegel et al., 2010).

497Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

26 Robotic Systems

Fig. 20. The clean-up scenario. (1) Kate approaches the table; (2/3) Kate stacks objects into
each other; (4) Kate throws cups into the kitchen sink.

As deployments and especially instantiations of components are not sufficiently supported
by UML, a few workarounds are necessary as long as the SMARTMARS meta-model is
implemented as UML Profile. For example, a robot with two laser range finders (front, rear)
requires two instances of the same component. Each laser instance requires its individual
parameters (e.g. serial port, pose on robot). These parameters are assigned to the deployment
model by the application builder specifically for each component. In the implementation
based on the UML Profile, we hence work on copies of components. Individual instances
with their own parameter sets are considered in the abstract SMARTMARS meta-model and
are also covered in the SMARTSOFT implementation, thus switching to a different meta-model
implementation technology would allow for instances. This has not yet been done due to the
huge manpower needed compared to just reusing UML tools.

5. Example / scenario

The work presented has been used to build and run several real-world scenarios, including
the participation at the RoboCup@Home challenge. Among other tasks our robot “Kate” can
follow persons, deliver drinks, recognize persons and objects and interact with humans by
gestures and speech.
In the clean-up scenario 3 (fig. 20) the robot approaches a table, recognizes the objects which
are placed on the table and cleans the table either by throwing the objects into the trash bin
or into the kitchen sink. There are different objects, like cups, beverage cans and different
types of crisp cans. The cups can be stacked into each other and have to be thrown into the
kitchen sink. Beverage cans can be stacked into crisp cans and have to be thrown into the
trash bin. Depending on the type of crisp can, one or two beverage cans can be stacked into
one crisp can. After throwing some of the objects into the correct disposal the robot has to
decide whether to drive back to the table to clean up the remaining objects (if existing) or to
drive to the operator and announce the result of the cleaning task. The robot reports whether
all objects on the table could be cleaned up or, in case any problems occurred, reports how
many objects are still left.
Such complex and different scenarios can neither be developed from scratch nor can their
overall system complexity be handled without using appropriate software engineering
methods. Due to their overall complexity and richness, they are considered as convincing
stress test for the proposed approach. In the following the development of the cleanup
example scenario is illustrated according to the different roles.
The framework builder provides the tools to develop SMARTSOFT components as well
as to perform deployments of components to build a robotic system. In the described
example this includes the CORBA-based implementation of the SMARTSOFT framework

3 http://www.youtube.com/roboticsathsulm#p/u/0/xtLK-655v7k

498 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 27

and the SMARTMDSD toolchain which are both available on Sourceforge (http://
smart-robotics.sourceforge.net).
The component builder view of the SMARTMDSD toolchain supports component builders to
develop their components independently of each other, but based on agreed interfaces. These
components are independent of the concrete implementation technology of SMARTSOFT.
Component builders provide their components in a component shelf. The models of the
components include all information to allow a black-box view of the components (e.g.
services, properties, resources). The explication of such information about the components
is required by the application builder to compose robotic systems in a systematic way. To
orchestrate the components at run-time, the task coordination language SMARTTCL (Steck &
Schlegel, 2010) is used. Therefore, SMARTTCL is wrapped by a SMARTSOFT component and
is also provided in the component shelf. The SMARTTCL component provides reusable action
plots which can be composed and extended to form the desired behavior of the robot.
The application builder uses the application builder view of the SMARTMDSD toolchain.
He composes already existing components to build the complete robotic system. In the
above described cleanup scenario, 17 components (e.g. mapping, path planning, collision
avoidance, laser ranger, robot-base) are reused from the component shelf. It is worth noting
that the components were not particularly developed for the cleanup scenario, but can be
used in the cleanup scenario due to the generic services they provide. The SMARTTCL
sequencer component is customized according to the desired behavior of the cleanup scenario.
Therefore, several of the already existing action plots can be reused. Application specific
extensions are added by the application builder.
At run-time the SMARTTCL sequencer component coordinates the software components of
the robot by modifying the configuration and parametrization as well as the wiring between
the components. As SMARTTCL can access the information (e.g. parameters, resources)
explicated in the models of the components at run-time, this information can be taken into
account by the decision making process. That allows the robot not only to take the current
situation and context into account, but also the configuration and resource usage of the
components. In the described scenario, the sequencer manages the resources of the overall
system, for example, by switching off components which are not required in the current
situation. While the robot is manipulating objects on the table and requires all available
computational resources for the trajectory planning of the manipulator, the components for
navigation are switched off.

6. Conclusion

The service-oriented component-based software approach allows separation of roles and is
an important step towards the overall vision of a robotics software component shelf. The
feasibility of the overall approach has been demonstrated by an Eclipse-based toolchain and
its application within complex Robocup@Home scenarios. Next steps towards model-centric
robotic systems that comprehensively bridge design-time and runtime model usage now
become viable.

7. References

Andrade, L., Fiadeiro, J. L., Gouveia, J. & Koutsoukos, G. (2002). Separating computation,
coordination and configuration, Journal of Software Maintenance 14(5): 353–369.

Beydeda, S., Book, M. & Gruhn, V. (eds) (2005). Model-Driven Software Development, Springer.

499Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

28 Robotic Systems

Björkelund, A., Edström, L., Haage, M., Malec, J., Nilsson, K., Nugues, P., Robertz, S. G.,
Störkle, D., Blomdell, A., Johansson, R., Linderoth, M., Nilsson, A., Robertsson,
A., Stolt, A. & Bruyninckx, H. (2011). On the integration of skilled robot motions
for productivity in manufacturing, Proc. IEEE Int. Symposium on Assembly and
Manufacturing, Tampere, Finland.

Blogspot (2008). Discussion of Aspect oriented programming(AOP).
URL: http://programmingaspects.blogspot.com/

Bruyninckx, H. (2011). Separation of Concerns: The 5Cs - Levels of Complexity, Lecture Notes,
Embedded Control Systems.
URL: http://people.mech.kuleuven.be/ bruyninc/ecs/LevelsOfComplexity-5C-20110223.pdf

CBDI Forum (2011). CBDI Service Oriented Architecture Practice Portal - Independent
Guidance for Service Architecture and Engineering.
URL: http://everware-cbdi.com/cbdi-forum

Cheddar (2010). A free real time scheduling analyzer.
URL: http://beru.univ-brest.fr/ singhoff/cheddar/

Chris, R. (1989). Elements of functional programming, Addison-Wesley Longman Publishing Co,
Boston, MA.

Delamer, I. & Lastra, J. (2007). Loosely-coupled automation systems using device-level SOA,
5th IEEE International Conference on Industrial Informatics, Vol. 2, pp. 743–748.

Dijkstra, E. (1976). A Discipline of Programming, Prentice Hall, Englewood Cliffs, NJ.
Eclipse CDT (2011). C/C++ Development Tooling for Eclipse.

URL: http://www.eclipse.org/cdt/
Eclipse Modeling Project (2010). Modeling framework and code generation facility.

URL: http://www.eclipse.org/modeling/
Efftinge, S., Friese, P., Haase, A., Hübner, D., Kadura, C., Kolb, B., Köhnlein, J., Moroff,

D., Thoms, K., Völter, M., Schönbach, P., Eysholdt, M. & Reinisch, S. (2008).
openArchitectureWare User Guide 4.3.1.

Fuentes-Fernández, L. & Vallecillo-Moreno, A. (2004). An Introduction to UML Profiles,
UPGRADE Volume V(2): 6–13.

Gelernter, D. & Carriero, N. (1992). Coordination languages and their significance, Commun.
ACM 35(2): 97–107.

Gronback, R. C. (2009). Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit,
Addison-Wesley, Upper Saddle River, NJ.

Heineman, G. T. & Councill, W. T. (eds) (2001). Component-Based Software Engineering: Putting
the Pieces Together, Addison-Wesley Professional.

IBM (2006). Model-Driven Software Development, Systems Journal 45(3).
Lastra, J. L. M. & Delamer, I. M. (2006). Semantic web services in factory automation:

Fundamental insights and research roadmap, IEEE Trans. Ind. Informatics 2: 1–11.
Lau, K.-K. & Wang, Z. (2007). Software component models, IEEE Transactions on Software

Engineering 33: 709–724.
Lee, E. A. & Seshia, S. A. (2011). Introduction to Embedded Systems - A Cyber-Physical Systems

Approach, ISBN 978-0-557-70857-4.
URL: http://LeeSeshia.org

Lotz, A., Steck, A. & Schlegel, C. (2011). Runtime monitoring of robotics software components:
Increasing robustness of service robotic systems, Proc. 15th Int. Conference on Advanced
Robotics (ICAR), Tallinn, Estland.

Meyer, B. (2000). What to compose, Software Development 8(3): 59, 71, 74–75.

500 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Software Systems: From Code-Driven to Model-Driven Software Development 29

Mili, H., Elkharraz, A. & Mcheick, H. (2004). Understanding separation of concerns, Proc.
Workshop Early Aspects: Aspect-Oriented Requirements Engineering and Architecture
Design, Vancouver, Canada, pp. 75–84.

Neelamkavil, F. (1987). Computer simulation and modeling, John Wiley & Sons Inc.
Object Management Group (2010). Object Constraint Language (OCL).

URL: http://www.omg.org/spec/OCL/
Object Management Group & Soley, R. (2000). Model-Driven Architecture (MDA).

URL: http://www.omg.org/mda
OMG (2008). Robotic Technology Component (RTC).

URL: http://www.omg.org/spec/RTC/
PAPYRUS UML (2011). Graphical editing tool for uml.

URL: http://www.eclipse.org/modeling/mdt/papyrus/
Parnas, D. (1972). On the criteria to be used in decomposing systems into modules,

Communications of the ACM 15(12).
Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R. & Ng,

A. (2009). ROS: An open-source Robot Operating System, ICRA Workshop on Open
Source Software.

Radestock, M. & Eisenbach, S. (1996). Coordination in evolving systems, Trends in Distributed
Systems – CORBA and Beyond, Springer-Verlag, pp. 162–176.

Reiser, U., Connette, C., Fischer, J., Kubacki, J., Bubeck, A., Weisshardt, F., Jacobs, T., Parlitz,
C., Hägele, M. & Verl, A. (2009). Care-O-bot 3 – Creating a product vision for service
robot applications by integrating design and technology, Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (ICRA), St. Louis, USA, pp. 1992–1997.

Schlegel, C. (2007). Communication patterns as key towards component interoperability, in
D. Brugali (ed.), Software Engineering for Experimental Robotics, STAR 30, Springer,
pp. 183–210.

Schlegel, C. (2011). SMARTSOFT – Components and Toolchain for Robotics.
URL: http://smart-robotics.sf.net/

Schlegel, C., Steck, A., Brugali, D. & Knoll, A. (2010). Design abstraction and processes in
robotics: From code-driven to model-driven engineering, 2nd Int. Conf. on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR), Springer LNAI 6472,
pp. 324–335.

Schlegel, C., Steck, A. & Lotz, A. (2011). Model-driven software development in robotics:
Communication patterns as key for a robotics component model, Introduction to
Modern Robotics, iConcept Press.

Schmidt, D. (2011). The ADAPTIVE Communication Environment.
URL: http://www.cs.wustl.edu/ schmidt/ACE.html

Sprott, D. & Wilkes, L. (2004). CBDI Forum.
URL: http://msdn.microsoft.com/en-us/library/aa480021.aspx

Stahl, T. & Völter, M. (2006). Model-Driven Software Development: Technology, Engineering,
Management, Wiley.

Steck, A. & Schlegel, C. (2010). SmartTCL: An Execution Language for Conditional Reactive
Task Execution in a Three Layer Architecture for Service Robots, Int. Workshop
on DYnamic languages for RObotic and Sensors systems (DYROS/SIMPAR), Germany,
pp. 274–277.

501Robotic Software Systems: From Code-Driven to Model-Driven Software Development

www.intechopen.com

30 Robotic Systems

Steck, A. & Schlegel, C. (2011). Managing execution variants in task coordination by exploiting
design-time models at run-time, Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), San Francisco, CA.

Szyperski, C. (2002). Component-Software: Beyond Object-Oriented Programming,
Addison-Wesley Professional, ISBN 0-201-74572-0, Boston.

Tarr, P., Harrison, W., Finkelstein, A., Nuseibeh, B. & Perry, D. (eds) (2000). Proc. of the
Workshop on Multi-Dimensional Separation of Concerns in Software Engineering (ICSE
2000), Limerick, Ireland.

Vlissides, J. (2009). Pattern Hatching – Generation Gap Pattern.
URL: http://researchweb.watson.ibm.com/designpatterns/pubs/gg.html

Völter, M. (2006). MDSD Benefits - Technical and Economical.
URL: http://www.voelter.de/data/presentations/mdsd-tutorial/02_Benefits.pdf

Webber, D. L. & Gomaa, H. (2004). Modeling variability in software product lines with
the variation point model, Science of Computer Programming - Software Variability
Management 53(3): 305–331.

Willow Garage (2011). PR2: Robot platform for experimentation and innovation.
URL: http://www.willowgarage.com/pages/pr2/overview

502 Robotic Systems – Applications, Control and Programming

www.intechopen.com

Robotic Systems - Applications, Control and Programming
Edited by Dr. Ashish Dutta

ISBN 978-953-307-941-7
Hard cover, 628 pages
Publisher InTech
Published online 03, February, 2012
Published in print edition February, 2012

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

This book brings together some of the latest research in robot applications, control, modeling, sensors and
algorithms. Consisting of three main sections, the first section of the book has a focus on robotic surgery,
rehabilitation, self-assembly, while the second section offers an insight into the area of control with discussions
on exoskeleton control and robot learning among others. The third section is on vision and ultrasonic sensors
which is followed by a series of chapters which include a focus on the programming of intelligent service robots
and systems adaptations.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Christian Schlegel, Andreas Steck and Alex Lotz (2012). Robotic Software Systems: From Code-Driven to
Model-Driven Software Development, Robotic Systems - Applications, Control and Programming, Dr. Ashish
Dutta (Ed.), ISBN: 978-953-307-941-7, InTech, Available from: http://www.intechopen.com/books/robotic-
systems-applications-control-and-programming/robotic-software-systems-from-code-driven-to-model-driven-
software-development

© 2012 The Author(s). Licensee IntechOpen. This is an open access article
distributed under the terms of the Creative Commons Attribution 3.0
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0

